AmelieSchreiber
commited on
Commit
•
0c083d0
1
Parent(s):
1f043b2
Update README.md
Browse files
README.md
CHANGED
@@ -44,6 +44,57 @@ Test:
|
|
44 |
|
45 |
## Using the Model
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
Head over to [here](https://huggingface.co/datasets/AmelieSchreiber/binding_sites_random_split_by_family)
|
48 |
to download the dataset first. Once you have the pickle files downloaded locally, run the following:
|
49 |
|
|
|
44 |
|
45 |
## Using the Model
|
46 |
|
47 |
+
### Using on your Protein Sequences
|
48 |
+
|
49 |
+
To use the model on one of your protein sequences try running the following:
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
53 |
+
from peft import PeftModel
|
54 |
+
import torch
|
55 |
+
|
56 |
+
# Path to the saved LoRA model
|
57 |
+
model_path = "AmelieSchreiber/esm2_t12_35M_lora_binding_sites_cp1"
|
58 |
+
# ESM2 base model
|
59 |
+
base_model_path = "facebook/esm2_t12_35M_UR50D"
|
60 |
+
|
61 |
+
# Load the model
|
62 |
+
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
|
63 |
+
loaded_model = PeftModel.from_pretrained(base_model, model_path)
|
64 |
+
|
65 |
+
# Ensure the model is in evaluation mode
|
66 |
+
loaded_model.eval()
|
67 |
+
|
68 |
+
# Load the tokenizer
|
69 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
70 |
+
|
71 |
+
# Protein sequence for inference
|
72 |
+
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
|
73 |
+
|
74 |
+
# Tokenize the sequence
|
75 |
+
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
|
76 |
+
|
77 |
+
# Run the model
|
78 |
+
with torch.no_grad():
|
79 |
+
logits = loaded_model(**inputs).logits
|
80 |
+
|
81 |
+
# Get predictions
|
82 |
+
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
|
83 |
+
predictions = torch.argmax(logits, dim=2)
|
84 |
+
|
85 |
+
# Define labels
|
86 |
+
id2label = {
|
87 |
+
0: "No binding site",
|
88 |
+
1: "Binding site"
|
89 |
+
}
|
90 |
+
|
91 |
+
# Print the predicted labels for each token
|
92 |
+
for token, prediction in zip(tokens, predictions[0].numpy()):
|
93 |
+
if token not in ['<pad>', '<cls>', '<eos>']:
|
94 |
+
print((token, id2label[prediction]))
|
95 |
+
```
|
96 |
+
|
97 |
+
### Getting the Train/Test Metrics:
|
98 |
Head over to [here](https://huggingface.co/datasets/AmelieSchreiber/binding_sites_random_split_by_family)
|
99 |
to download the dataset first. Once you have the pickle files downloaded locally, run the following:
|
100 |
|