Ameer05 commited on
Commit
0236fc2
1 Parent(s): 573023a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - summarization
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: distilbart-cnn-12-6-finetuned-resume-summarizer
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # distilbart-cnn-12-6-finetuned-resume-summarizer
16
+
17
+ This model is a fine-tuned version of [Ameer05/model-tokenizer-repo](https://huggingface.co/Ameer05/model-tokenizer-repo) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.1123
20
+ - Rouge1: 52.5826
21
+ - Rouge2: 34.3861
22
+ - Rougel: 41.8525
23
+ - Rougelsum: 51.0015
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 32
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 10
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
57
+ | No log | 0.91 | 5 | 3.2243 | 42.8593 | 24.8652 | 34.1789 | 41.406 |
58
+ | No log | 1.91 | 10 | 2.6948 | 48.8571 | 28.6711 | 39.2648 | 46.188 |
59
+ | No log | 2.91 | 15 | 2.4665 | 50.6085 | 30.4034 | 39.7406 | 48.5449 |
60
+ | No log | 3.91 | 20 | 2.3329 | 52.2357 | 32.3398 | 41.574 | 49.4316 |
61
+ | 3.6611 | 4.91 | 25 | 2.2362 | 52.0134 | 33.1612 | 41.3103 | 50.255 |
62
+ | 3.6611 | 5.91 | 30 | 2.1833 | 51.5434 | 32.7045 | 40.5683 | 49.4238 |
63
+ | 3.6611 | 6.91 | 35 | 2.1462 | 53.5144 | 35.4518 | 42.8615 | 51.4053 |
64
+ | 3.6611 | 7.91 | 40 | 2.1518 | 52.0985 | 33.6754 | 41.5936 | 50.5159 |
65
+ | 2.0326 | 8.91 | 45 | 2.1075 | 53.1401 | 34.9721 | 42.2973 | 51.8454 |
66
+ | 2.0326 | 9.91 | 50 | 2.1123 | 52.5826 | 34.3861 | 41.8525 | 51.0015 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.15.0
72
+ - Pytorch 1.9.1
73
+ - Datasets 2.0.0
74
+ - Tokenizers 0.10.3