Alyosha11 commited on
Commit
4b60ebe
·
verified ·
1 Parent(s): c4d0a5f

Upload 50k.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. 50k.py +83 -0
50k.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ from multiprocessing import Pool
4
+ import time
5
+ from tqdm import tqdm
6
+
7
+ def process_rows(args):
8
+ rows, output_directory = args
9
+ for index, row in rows.iterrows():
10
+ # Generate the output text file path
11
+ text_filename = f"row_{index}.txt"
12
+ text_file_path = os.path.join(output_directory, text_filename)
13
+
14
+ # Write the row to a text file
15
+ with open(text_file_path, 'w') as text_file:
16
+ text_file.write(','.join(row.astype(str)))
17
+
18
+ # Directory containing the CSV files
19
+ csv_directory = "extracted_csv_files"
20
+
21
+ # Number of text files to generate
22
+ target_count = 50000
23
+
24
+ # Get the list of CSV files in the directory
25
+ csv_files = [os.path.join(csv_directory, file) for file in os.listdir(csv_directory) if file.endswith(".csv")]
26
+
27
+ # Create a directory to store the extracted text files
28
+ output_directory = "extracted_text_files_50k"
29
+ os.makedirs(output_directory, exist_ok=True)
30
+
31
+ # Initialize variables
32
+ total_count = 0
33
+ file_index = 0
34
+
35
+ # Start the timer
36
+ start_time = time.time()
37
+
38
+ # Create a progress bar
39
+ progress_bar = tqdm(total=target_count, unit='files')
40
+
41
+ # Process CSV files until the target count is reached
42
+ while total_count < target_count and file_index < len(csv_files):
43
+ csv_file_path = csv_files[file_index]
44
+
45
+ # Read the CSV file using pandas
46
+ df = pd.read_csv(csv_file_path)
47
+
48
+ # Get the number of rows in the CSV file
49
+ num_rows = len(df)
50
+
51
+ # Calculate the number of rows to extract from the current CSV file
52
+ rows_to_extract = min(target_count - total_count, num_rows)
53
+
54
+ # Extract the rows from the CSV file
55
+ rows = df.iloc[:rows_to_extract]
56
+
57
+ # Create a multiprocessing pool
58
+ pool = Pool()
59
+
60
+ # Process the rows in parallel
61
+ pool.map(process_rows, [(rows, output_directory)])
62
+
63
+ # Close the multiprocessing pool
64
+ pool.close()
65
+ pool.join()
66
+
67
+ total_count += rows_to_extract
68
+ file_index += 1
69
+
70
+ # Update the progress bar
71
+ progress_bar.update(rows_to_extract)
72
+
73
+ # Close the progress bar
74
+ progress_bar.close()
75
+
76
+ # End the timer
77
+ end_time = time.time()
78
+
79
+ # Calculate the execution time
80
+ execution_time = end_time - start_time
81
+
82
+ print(f"\nGenerated {total_count} text files.")
83
+ print(f"Execution time: {execution_time:.2f} seconds.")