AlreadyExists
commited on
Commit
·
15fdef8
1
Parent(s):
76405f8
update model card README.md
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [AlreadyExists/detr-resnet-50_finetuned_bbatch](https://huggingface.co/AlreadyExists/detr-resnet-50_finetuned_bbatch) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 2.
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -40,59 +40,60 @@ The following hyperparameters were used during training:
|
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
- num_epochs: 200
|
|
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
|:-------------:|:------:|:----:|:---------------:|
|
48 |
-
|
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
|
97 |
|
98 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [AlreadyExists/detr-resnet-50_finetuned_bbatch](https://huggingface.co/AlreadyExists/detr-resnet-50_finetuned_bbatch) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 2.6508
|
18 |
|
19 |
## Model description
|
20 |
|
|
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
- num_epochs: 200
|
43 |
+
- mixed_precision_training: Native AMP
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:------:|:----:|:---------------:|
|
49 |
+
| 1.1643 | 4.17 | 50 | 2.4138 |
|
50 |
+
| 1.1684 | 8.33 | 100 | 2.4418 |
|
51 |
+
| 1.1564 | 12.5 | 150 | 2.3408 |
|
52 |
+
| 1.1355 | 16.67 | 200 | 2.3903 |
|
53 |
+
| 1.1388 | 20.83 | 250 | 2.3484 |
|
54 |
+
| 1.139 | 25.0 | 300 | 2.4016 |
|
55 |
+
| 1.1098 | 29.17 | 350 | 2.4911 |
|
56 |
+
| 1.0869 | 33.33 | 400 | 2.3021 |
|
57 |
+
| 1.0871 | 37.5 | 450 | 2.4474 |
|
58 |
+
| 1.0793 | 41.67 | 500 | 2.4549 |
|
59 |
+
| 1.0691 | 45.83 | 550 | 2.5207 |
|
60 |
+
| 1.0539 | 50.0 | 600 | 2.4158 |
|
61 |
+
| 1.0579 | 54.17 | 650 | 2.4542 |
|
62 |
+
| 1.0365 | 58.33 | 700 | 2.4569 |
|
63 |
+
| 1.0221 | 62.5 | 750 | 2.5253 |
|
64 |
+
| 1.0173 | 66.67 | 800 | 2.4495 |
|
65 |
+
| 1.0241 | 70.83 | 850 | 2.4273 |
|
66 |
+
| 1.0111 | 75.0 | 900 | 2.4554 |
|
67 |
+
| 1.0127 | 79.17 | 950 | 2.4211 |
|
68 |
+
| 0.998 | 83.33 | 1000 | 2.5111 |
|
69 |
+
| 0.9869 | 87.5 | 1050 | 2.4077 |
|
70 |
+
| 0.9783 | 91.67 | 1100 | 2.5871 |
|
71 |
+
| 0.9802 | 95.83 | 1150 | 2.5365 |
|
72 |
+
| 0.983 | 100.0 | 1200 | 2.5527 |
|
73 |
+
| 0.9719 | 104.17 | 1250 | 2.5728 |
|
74 |
+
| 0.9578 | 108.33 | 1300 | 2.5637 |
|
75 |
+
| 0.9459 | 112.5 | 1350 | 2.5525 |
|
76 |
+
| 0.9353 | 116.67 | 1400 | 2.5476 |
|
77 |
+
| 0.94 | 120.83 | 1450 | 2.5374 |
|
78 |
+
| 0.9313 | 125.0 | 1500 | 2.6336 |
|
79 |
+
| 0.9236 | 129.17 | 1550 | 2.5556 |
|
80 |
+
| 0.9129 | 133.33 | 1600 | 2.5768 |
|
81 |
+
| 0.9231 | 137.5 | 1650 | 2.5904 |
|
82 |
+
| 0.9093 | 141.67 | 1700 | 2.6503 |
|
83 |
+
| 0.9169 | 145.83 | 1750 | 2.6057 |
|
84 |
+
| 0.9082 | 150.0 | 1800 | 2.6561 |
|
85 |
+
| 0.911 | 154.17 | 1850 | 2.6234 |
|
86 |
+
| 0.9019 | 158.33 | 1900 | 2.6442 |
|
87 |
+
| 0.8892 | 162.5 | 1950 | 2.6090 |
|
88 |
+
| 0.8891 | 166.67 | 2000 | 2.5849 |
|
89 |
+
| 0.8898 | 170.83 | 2050 | 2.6186 |
|
90 |
+
| 0.8745 | 175.0 | 2100 | 2.7664 |
|
91 |
+
| 0.8714 | 179.17 | 2150 | 2.6261 |
|
92 |
+
| 0.8902 | 183.33 | 2200 | 2.6510 |
|
93 |
+
| 0.8781 | 187.5 | 2250 | 2.7035 |
|
94 |
+
| 0.8826 | 191.67 | 2300 | 2.5627 |
|
95 |
+
| 0.8733 | 195.83 | 2350 | 2.5455 |
|
96 |
+
| 0.8694 | 200.0 | 2400 | 2.6508 |
|
97 |
|
98 |
|
99 |
### Framework versions
|