AlinaKozyreva
commited on
Commit
•
42557b9
1
Parent(s):
dab4c56
Upload PPO HalfCheetah-v4 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-HalfCheetah-v4.zip +1 -1
- ppo-HalfCheetah-v4/data +16 -16
- ppo-HalfCheetah-v4/policy.optimizer.pth +1 -1
- ppo-HalfCheetah-v4/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: HalfCheetah-v4
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: HalfCheetah-v4
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 3404.54 +/- 627.30
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c2e983f6320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c2e983f63b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c2e983f6440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c2e983f64d0>", "_build": "<function ActorCriticPolicy._build at 0x7c2e983f6560>", "forward": "<function ActorCriticPolicy.forward at 0x7c2e983f65f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c2e983f6680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c2e983f6710>", "_predict": "<function ActorCriticPolicy._predict at 0x7c2e983f67a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c2e983f6830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c2e983f68c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c2e983f6950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c2e983f2080>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "num_timesteps": 800256, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711907393914947525, "learning_rate": 2.0633e-05, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAPb6yfPG+bu/YpoP60batj9x2iwnfCfFPzD1dRHNwbs/Dqo886Xe0r8Gk7uUQ9Xnv8/dEvGZeEW/WjFuD3Cq0b9X7dYYUVkDQAvaFImlFt+/ok6+8amxCED0iN46maEpwHjrUtNFZRtAHFlv9tIRKcAUEH5DL5MwwKBsTdtdKHa/RI0BBkzhIECUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLb+8B+4LGMAWyUTegDjAF0lEdAowkPcvduYXV9lChoBkdAnb/so2GZeGgHTegDaAhHQKMRY8UVSGd1fZQoaAZHQKszqlk6LfloB03oA2gIR0CjF/0yHmA9dX2UKGgGR0CXsvP4VRDUaAdN6ANoCEdAoxvniPyTZHV9lChoBkdApgn+zposZ2gHTegDaAhHQKMizRLK3d91fZQoaAZHQKsG1GwRoRJoB03oA2gIR0CjK12+49X+dX2UKGgGR0CZIRDtw71aaAdN6ANoCEdAozFRUaQ3gnV9lChoBkdAohuWLFXJYGgHTegDaAhHQKM3oqZML4N1fZQoaAZHQJoiKSKWLP5oB03oA2gIR0CjPbSK3uuzdX2UKGgGR0CaDaQoTfzjaAdN6ANoCEdAo0Wu49X9znV9lChoBkdAql2eapgkT2gHTegDaAhHQKNMA6RyOrB1fZQoaAZHQKpDFhy8zyloB03oA2gIR0CjUkvjfek6dX2UKGgGR0CryHK9wm3OaAdN6ANoCEdAo1lcc+7lJnV9lChoBkdAoft4aWHDaWgHTegDaAhHQKNgWMUh3aB1fZQoaAZHQKFDRV2icoZoB03oA2gIR0CjZv1rZamodX2UKGgGR0CgjoAwwj+raAdN6ANoCEdAo21CaVlf7nV9lChoBkdAoaQ2pQ1rI2gHTegDaAhHQKN1lJ5mh/R1fZQoaAZHQKsSGQsf7rNoB03oA2gIR0Cje/2BBiTddX2UKGgGR0CiH8jxsl9jaAdN6ANoCEdAo4JUHD766HV9lChoBkdAoHyf7el9B2gHTegDaAhHQKOIzDej2zx1fZQoaAZHQJZjiBFuvU1oB03oA2gIR0CjkOXn6l+FdX2UKGgGR0CrBh/sVtXQaAdN6ANoCEdAo5dHVVghKXV9lChoBkdAm8DK46Oo52gHTegDaAhHQKOd141P3zt1fZQoaAZHQJmtq56MR6FoB03oA2gIR0CjpW/GdZq3dX2UKGgGR0CdhG1QIldDaAdN6ANoCEdAo6xNJSR8t3V9lChoBkdAoaCr6ab4J2gHTegDaAhHQKOwVKji4rl1fZQoaAZHQJmsxs54nndoB03oA2gIR0CjtvHjhky2dX2UKGgGR0CnySxbjcVQaAdN6ANoCEdAo76gPRRdhXV9lChoBkdAoRoQxDb8FmgHTegDaAhHQKPFs6r/82t1fZQoaAZHQJ5mptBOYY1oB03oA2gIR0CjzBeNT987dX2UKGgGR0Cc5fStNi6QaAdN6ANoCEdAo9LHy5I6KnV9lChoBkdAm972A08/2WgHTegDaAhHQKPa6neBQN11fZQoaAZHQKt1kQZn+Q5oB03oA2gIR0Cj4YdUbT+edX2UKGgGR0Capn44ZMtcaAdN6ANoCEdAo+faR+z+m3V9lChoBkdApZvB/ustCmgHTegDaAhHQKPvqIWP91l1fZQoaAZHQJcYYjbBXS1oB03oA2gIR0Cj9j6bF0gbdX2UKGgGR0Cpcoy4e9zwaAdN6ANoCEdAo/xiDyvs7nV9lChoBkdAoGXmkP+XJGgHTegDaAhHQKQDBiF0xM51fZQoaAZHQJfMw4xUNrloB03oA2gIR0CkC08PvrnldX2UKGgGR0Cj1SenZTQ3aAdN6ANoCEdApBHzjtG/e3V9lChoBkdAqBrZ4D9wWGgHTegDaAhHQKQYku+yquN1fZQoaAZHQJgjIIkZ75VoB03oA2gIR0CkHyG2CulodX2UKGgGR0CmUMjrzGxVaAdN6ANoCEdApCbRr8BMjHV9lChoBkdAmPHpuyeI22gHTegDaAhHQKQtgp3HJcR1fZQoaAZHQKJSa5PM0P9oB03oA2gIR0CkM61+Zw4sdX2UKGgGR0CdUW7wrlNlaAdN6ANoCEdApDuCaEzwdHV9lChoBkdAmqff9YOlPGgHTegDaAhHQKQ/83EQ5FR1fZQoaAZHQJdMTD50r9VoB03oA2gIR0CkRgpIUahpdX2UKGgGR0Cir8oL5RCQaAdN6ANoCEdApEyjO3UhFHV9lChoBkdAmi6TUutfX2gHTegDaAhHQKRVo8Md92J1fZQoaAZHQJ9SN3LV4HJoB03oA2gIR0CkXJCbMHKPdX2UKGgGR0CetOSFXaJzaAdN6ANoCEdApGN86YE4enV9lChoBkdAl+HC04R282gHTegDaAhHQKRqIzyBkI51fZQoaAZHQJqZPQUpNK1oB03oA2gIR0CkciAqur6tdX2UKGgGR0CaWjp9ZzPsaAdN6ANoCEdApHiT2USqVHV9lChoBkdAoKHU+3YthGgHTegDaAhHQKR/U2fChvl1fZQoaAZHQJfHPZ+QU6BoB03oA2gIR0CkhziI1tO3dX2UKGgGR0CYbDYU34sVaAdN6ANoCEdApI3B9ZzPr3V9lChoBkdAnPv6f8MuvmgHTegDaAhHQKSUhCN0eU91fZQoaAZHQKRtFgqEvkBoB03oA2gIR0CkmoTjebd8dX2UKGgGR0CoWbIPsiSraAdN6ANoCEdApKI5At4A0nV9lChoBkdApQxszj3mFWgHTegDaAhHQKSodu3trsV1fZQoaAZHQKoZTTBInShoB03oA2gIR0CkrsAxi5NHdX2UKGgGR0CbwDrZrYXgaAdN6ANoCEdApLXm/5+H8HV9lChoBkdAo6J1Nvfj0mgHTegDaAhHQKS9XTQVsUJ1fZQoaAZHQJ6gis+3YthoB03oA2gIR0Ckw9sQd0aIdX2UKGgGR0Cpo1fAKv3baAdN6ANoCEdApMrAmReTmnV9lChoBkdAmup0bHZK4GgHTegDaAhHQKTQNOh0yQB1fZQoaAZHQKPQi3x4IKNoB03oA2gIR0Ck15mFajesdX2UKGgGR0CalnI8yN4raAdN6ANoCEdApN5GizsyBXV9lChoBkdAmciEHhS9/WgHTegDaAhHQKTkuKSgXdl1fZQoaAZHQJmzO1qnFYNoB03oA2gIR0Ck7UJ4jbBXdX2UKGgGR0Cf9qRaX8fnaAdN6ANoCEdApPNrru6VdHV9lChoBkdAmxEtTkyULWgHTegDaAhHQKT5h7ZWaMJ1fZQoaAZHQJgv8NutOmBoB03oA2gIR0ClAHmOU+s6dX2UKGgGR0CbXrJRO1v3aAdN6ANoCEdApQgVKsdT53V9lChoBkdAmxv/029+PWgHTegDaAhHQKUOcSEDhcZ1fZQoaAZHQKthHps41gpoB03oA2gIR0ClFI4YJmdzdX2UKGgGR0Cn3CRzJZGKaAdN6ANoCEdApR0EC1Z1WHV9lChoBkdAp9KO6qbSZ2gHTegDaAhHQKUjkWIGhVV1fZQoaAZHQKWHbXvphWpoB03oA2gIR0ClKcHGjsUqdX2UKGgGR0CXFloBaLXMaAdN6ANoCEdApTA7tu1nd3V9lChoBkdAnEthJZntfGgHTegDaAhHQKU4f79hqj91fZQoaAZHQKquHIJZ4fRoB03oA2gIR0ClPxGlImPYdX2UKGgGR0CbSiwTM7lraAdN6ANoCEdApUWZul41P3V9lChoBkdAqEWnM+u/12gHTegDaAhHQKVNZtj0+Tx1fZQoaAZHQKRKcza9K29oB03oA2gIR0ClVHHLidaudX2UKGgGR0Cjk+LCN0eVaAdN6ANoCEdApVsLS3LFGXV9lChoBkdApT2wIppeu2gHTegDaAhHQKVhVjDsMRZ1fZQoaAZHQJdhpPykKu1oB03oA2gIR0ClZqO+qR2bdX2UKGgGR0CnG0pxm03PaAdN6ANoCEdApW1VN5+pfnV9lChoBkdAm86cifQKKGgHTegDaAhHQKV0AXVLBbh1fZQoaAZHQKD4vYZEUj9oB03oA2gIR0CleqFbeMyadX2UKGgGR0Ch8A5M10koaAdN6ANoCEdApYLgSFoL5XV9lChoBkdAmsojD4xk/mgHTegDaAhHQKWJkJJoTPB1fZQoaAZHQJnojUrkKeFoB03oA2gIR0ClkEJzLfUGdX2UKGgGR0CYwktsN2C/aAdN6ANoCEdApZeVIClrM3V9lChoBkdAoMMub3Gn42gHTegDaAhHQKWetgzguRN1fZQoaAZHQKGyvuNxVABoB03oA2gIR0ClpPwpe/pMdX2UKGgGR0CjP1LVnVXnaAdN6ANoCEdApaspW3jMmnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31260, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVsQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFUsRhZRoGXSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBEologAAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoC0sRhZRoGXSUUpSMBGhpZ2iUaBEologAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sRhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False]", "_shape": [17], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVuwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 1, "n_steps": 512, "gamma": 0.98, "gae_lambda": 0.92, "ent_coef": 0.000401762, "vf_coef": 0.58096, "max_grad_norm": 0.8, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz71oqD2p4kThZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c70bd950820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c70bd9508b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c70bd950940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c70bd9509d0>", "_build": "<function ActorCriticPolicy._build at 0x7c70bd950a60>", "forward": "<function ActorCriticPolicy.forward at 0x7c70bd950af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c70bd950b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c70bd950c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7c70bd950ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c70bd950d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c70bd950dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c70bd950e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c70bd8eff40>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "num_timesteps": 800256, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711911047348203515, "learning_rate": 2.0633e-05, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAFgmuwI6hbm/KgCaP/gJxj8vkOT93SHZP6CuMZ/JY+G/vpEfZlig4T+tHv4fbGfqv7oCYaLJy9C/qX474lgYsz8XmrDhgEX/P6R/nvTctM0/cKaoJEqx/j/AoaJkUKYIwEqzmIANygDAKpWJxbooHEAqSR4O8HPyv1DMd0aPyBTAO8D9m/Y7AsCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKMjzngYP5KMAWyUTegDjAF0lEdAoYTShUR3/3V9lChoBkdAqITvvlU6xWgHTegDaAhHQKGMrz3AVO91fZQoaAZHQJSOzcdo371oB03oA2gIR0Chkq3j2i+MdX2UKGgGR0CgOrk1/DtPaAdN6ANoCEdAoZahpeu3dHV9lChoBkdArQLvvrnkk2gHTegDaAhHQKGct9v0h/11fZQoaAZHQKAZ0yHEdeZoB03oA2gIR0ChpC6hQFcIdX2UKGgGR0CnJOTJIUaiaAdN6ANoCEdAoaqcj1PFenV9lChoBkdAoP+LvNNahmgHTegDaAhHQKGwhW1+iJx1fZQoaAZHQJtcyZNO/L1oB03oA2gIR0ChtoAeJYT1dX2UKGgGR0CmF1/fXPJJaAdN6ANoCEdAob3VOXVslHV9lChoBkdApFRmBFuvU2gHTegDaAhHQKHEMzQeFL51fZQoaAZHQJ3jtaGHpKVoB03oA2gIR0ChyjZWilBQdX2UKGgGR0CH/s5H3DekaAdN6ANoCEdAodBJ9XtBwHV9lChoBkdAoEZDYChexGgHTegDaAhHQKHX20FbFCN1fZQoaAZHQJ5iMSf16E9oB03oA2gIR0Ch3deYMOPOdX2UKGgGR0CQdLy/sVtXaAdN6ANoCEdAoeO+tCAtnXV9lChoBkdAp3mXeLvTgGgHTegDaAhHQKHpksPJ7sx1fZQoaAZHQIThpiRW915oB03oA2gIR0Ch8MNSqEOBdX2UKGgGR0CRf5mI0qH5aAdN6ANoCEdAofbwKx9oe3V9lChoBkdAliqlsxfv4WgHTegDaAhHQKH9BCsOoYN1fZQoaAZHQKnYRZ3cHnloB03oA2gIR0CiAt95IH1OdX2UKGgGR0CqsP99MK1HaAdN6ANoCEdAogoQ9JSR83V9lChoBkdAo3tojhUBGWgHTegDaAhHQKIQBNIsiB51fZQoaAZHQKVPpyiEg4hoB03oA2gIR0CiFefn4fwJdX2UKGgGR0CiscucUdq+aAdN6ANoCEdAoht8a/ATI3V9lChoBkdApukGeHzpYGgHTegDaAhHQKIfqlrM1TB1fZQoaAZHQKsn6YGdI5JoB03oA2gIR0CiJwOHWSU1dX2UKGgGR0ClU0NJOFg2aAdN6ANoCEdAoizWzY287XV9lChoBkdAnH0UFW4mTmgHTegDaAhHQKIy1aGHpKV1fZQoaAZHQKrLWSEDhcZoB03oA2gIR0CiOIa99MK1dX2UKGgGR0CBcV+fh/AkaAdN6ANoCEdAokAL3bmEG3V9lChoBkdAkBcljd56dGgHTegDaAhHQKJFp9aUzKt1fZQoaAZHQKCIoFCb+cZoB03oA2gIR0CiS9YRujyndX2UKGgGR0CkrUpYDDCQaAdN6ANoCEdAolGnIKc/dXV9lChoBkdAqzdZPVNHpmgHTegDaAhHQKJZkE2YOUd1fZQoaAZHQKVgrFWGRFJoB03oA2gIR0CiX3XoTwlTdX2UKGgGR0CjBfShSLqEaAdN6ANoCEdAomWPARChOHV9lChoBkdAqu9pssQNC2gHTegDaAhHQKJrWL3K0Up1fZQoaAZHQKvjRS0BwMpoB03oA2gIR0CicsqXfIjodX2UKGgGR0CrNyfr8iwCaAdN6ANoCEdAoniSkAPuonV9lChoBkdApI8OeSSvDGgHTegDaAhHQKJ+njOLR8d1fZQoaAZHQKhmTF+/gzhoB03oA2gIR0CihJzXBguzdX2UKGgGR0Ck8ofWcz68aAdN6ANoCEdAooy8vmHP/3V9lChoBkdApPjJ4t6HCWgHTegDaAhHQKKS+Tq0MPV1fZQoaAZHQKF5Ma4MF2VoB03oA2gIR0CimLvd2xIKdX2UKGgGR0CSRIcAzYVZaAdN6ANoCEdAop7eSntOVXV9lChoBkdAqvrdPnB+F2gHTegDaAhHQKKkfMK1G9Z1fZQoaAZHQKx9qDp1RtRoB03oA2gIR0CiqqW8yvcKdX2UKGgGR0CnzKb+T/yYaAdN6ANoCEdAorDPWWhRInV9lChoBkdAez/vYvnKXGgHTegDaAhHQKK260rK/211fZQoaAZHQH557DuSfUZoB03oA2gIR0Civmanzg/DdX2UKGgGR0Cox5RyGSIQaAdN6ANoCEdAosQC/qPfbnV9lChoBkdApAdpTQ3PzGgHTegDaAhHQKLJ7DR+jM51fZQoaAZHQJrU64mTkhloB03oA2gIR0Ciz8bZvkzXdX2UKGgGR0Cp5T5FG5MDaAdN6ANoCEdAotdzGJemenV9lChoBkdApHP7Y/Vy3mgHTegDaAhHQKLdJfzBhx51fZQoaAZHQKUdqNI9TxZoB03oA2gIR0Ci4xt0NjLCdX2UKGgGR0CqjxpQDV6NaAdN6ANoCEdAouizlxOtXHV9lChoBkdAoUsqsZHd42gHTegDaAhHQKLv9kSVW0Z1fZQoaAZHQKuHsASWZ7ZoB03oA2gIR0Ci9fRMvh60dX2UKGgGR0Cp0RaLOzIFaAdN6ANoCEdAovvC1stTUHV9lChoBkdApKPBRQ79ymgHTegDaAhHQKMBvaGpMpR1fZQoaAZHQKVGJnGKhtdoB03oA2gIR0CjCKweV9ncdX2UKGgGR0CFV/FPSDywaAdN6ANoCEdAow9fDej2z3V9lChoBkdAqqL4WLxZuGgHTegDaAhHQKMVbMGorFx1fZQoaAZHQKgR1vc8DCBoB03oA2gIR0CjGwStNi6QdX2UKGgGR0CrpkD+717IaAdN6ANoCEdAoyINwtJ4B3V9lChoBkdArbgym8/Uv2gHTegDaAhHQKMmj7Jnxrl1fZQoaAZHQJbMdVMmF8JoB03oA2gIR0CjLCInKGL2dX2UKGgGR0Cj+HkSdvsJaAdN6ANoCEdAozHmwTufEnV9lChoBkdApWh3ZsbedmgHTegDaAhHQKM3+7+1jRV1fZQoaAZHQI+wiHGjsUtoB03oA2gIR0CjP2TCtRvWdX2UKGgGR0Cmvbovi97GaAdN6ANoCEdAo0U2loDgZXV9lChoBkdAquZEPQOWjWgHTegDaAhHQKNLHYlIEr51fZQoaAZHQK4B77v5P/JoB03oA2gIR0CjUMuU2UB5dX2UKGgGR0CG2My2x6fKaAdN6ANoCEdAo1iWBWgezXV9lChoBkdAm4nJjc2zfWgHTegDaAhHQKNempsoDxN1fZQoaAZHQJreYKjSG8FoB03oA2gIR0CjZGtOM2m6dX2UKGgGR0Cj0vBC2MKkaAdN6ANoCEdAo2plKdxyXHV9lChoBkdApPo70J4SpWgHTegDaAhHQKNyVz9S/CZ1fZQoaAZHQIJjD0163RZoB03oA2gIR0CjeF9ZaFEidX2UKGgGR0B5zVTLns9kaAdN6ANoCEdAo35aJQ+EAnV9lChoBkdAg1mujZcs2GgHTegDaAhHQKOEQuTzNEB1fZQoaAZHQJU11n3+MqBoB03oA2gIR0CjjAvugHu7dX2UKGgGR0CkQJ61TisGaAdN6ANoCEdAo5HLgjyFwnV9lChoBkdAlzmUkKNQ02gHTegDaAhHQKOX0ZPVNHp1fZQoaAZHQKG3LiyY5T9oB03oA2gIR0CjncgFgUlBdX2UKGgGR0CZljona37UaAdN6ANoCEdAo6VpBX0Xg3V9lChoBkdAnxYnpfQa72gHTegDaAhHQKOrKV0Lc9J1fZQoaAZHQKOlfgdfb9JoB03oA2gIR0Cjry8VpKzzdX2UKGgGR0ClZz3CKrJbaAdN6ANoCEdAo7T4Zl4C63V9lChoBkdAo3vDS1E3KmgHTegDaAhHQKO8SVnmJWN1fZQoaAZHQI1tnDziCJ5oB03oA2gIR0CjwpLXL/0edX2UKGgGR0Cuhx4raufVaAdN6ANoCEdAo8j9hd+ocnV9lChoBkdAo9EPHNorWmgHTegDaAhHQKPOuMR6F/R1fZQoaAZHQKF0eDlo11poB03oA2gIR0Cj1dDOkcjrdX2UKGgGR0CjG2ujqOcUaAdN6ANoCEdAo9uZZpztC3V9lChoBkdAg/n7uDzy0GgHTegDaAhHQKPheAG0NSZ1fZQoaAZHQKVypha1TitoB03oA2gIR0Cj501TR6WxdX2UKGgGR0ClrfTkhib2aAdN6ANoCEdAo+34oVmBfHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31260, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVsQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFUsRhZRoGXSUUpSMBl9zaGFwZZRLEYWUjANsb3eUaBEologAAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoC0sRhZRoGXSUUpSMBGhpZ2iUaBEologAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sRhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False]", "_shape": [17], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVuwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sGhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 1, "n_steps": 512, "gamma": 0.98, "gae_lambda": 0.92, "ent_coef": 0.000401762, "vf_coef": 0.58096, "max_grad_norm": 0.8, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz71oqD2p4kThZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-HalfCheetah-v4.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1743065
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95f81bf210a04a29a44b062dc3da68799d084ce164981f8b14fe7d1b0181e5f1
|
3 |
size 1743065
|
ppo-HalfCheetah-v4/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {
|
@@ -44,12 +44,12 @@
|
|
44 |
"_num_timesteps_at_start": 0,
|
45 |
"seed": null,
|
46 |
"action_noise": null,
|
47 |
-
"start_time":
|
48 |
"learning_rate": 2.0633e-05,
|
49 |
"tensorboard_log": null,
|
50 |
"_last_obs": {
|
51 |
":type:": "<class 'numpy.ndarray'>",
|
52 |
-
":serialized:": "gAWV/
|
53 |
},
|
54 |
"_last_episode_starts": {
|
55 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -63,7 +63,7 @@
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c70bd950820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c70bd9508b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c70bd950940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c70bd9509d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c70bd950a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c70bd950af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c70bd950b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c70bd950c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c70bd950ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c70bd950d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c70bd950dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c70bd950e50>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c70bd8eff40>"
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {
|
|
|
44 |
"_num_timesteps_at_start": 0,
|
45 |
"seed": null,
|
46 |
"action_noise": null,
|
47 |
+
"start_time": 1711911047348203515,
|
48 |
"learning_rate": 2.0633e-05,
|
49 |
"tensorboard_log": null,
|
50 |
"_last_obs": {
|
51 |
":type:": "<class 'numpy.ndarray'>",
|
52 |
+
":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAFgmuwI6hbm/KgCaP/gJxj8vkOT93SHZP6CuMZ/JY+G/vpEfZlig4T+tHv4fbGfqv7oCYaLJy9C/qX474lgYsz8XmrDhgEX/P6R/nvTctM0/cKaoJEqx/j/AoaJkUKYIwEqzmIANygDAKpWJxbooHEAqSR4O8HPyv1DMd0aPyBTAO8D9m/Y7AsCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"
|
53 |
},
|
54 |
"_last_episode_starts": {
|
55 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKMjzngYP5KMAWyUTegDjAF0lEdAoYTShUR3/3V9lChoBkdAqITvvlU6xWgHTegDaAhHQKGMrz3AVO91fZQoaAZHQJSOzcdo371oB03oA2gIR0Chkq3j2i+MdX2UKGgGR0CgOrk1/DtPaAdN6ANoCEdAoZahpeu3dHV9lChoBkdArQLvvrnkk2gHTegDaAhHQKGct9v0h/11fZQoaAZHQKAZ0yHEdeZoB03oA2gIR0ChpC6hQFcIdX2UKGgGR0CnJOTJIUaiaAdN6ANoCEdAoaqcj1PFenV9lChoBkdAoP+LvNNahmgHTegDaAhHQKGwhW1+iJx1fZQoaAZHQJtcyZNO/L1oB03oA2gIR0ChtoAeJYT1dX2UKGgGR0CmF1/fXPJJaAdN6ANoCEdAob3VOXVslHV9lChoBkdApFRmBFuvU2gHTegDaAhHQKHEMzQeFL51fZQoaAZHQJ3jtaGHpKVoB03oA2gIR0ChyjZWilBQdX2UKGgGR0CH/s5H3DekaAdN6ANoCEdAodBJ9XtBwHV9lChoBkdAoEZDYChexGgHTegDaAhHQKHX20FbFCN1fZQoaAZHQJ5iMSf16E9oB03oA2gIR0Ch3deYMOPOdX2UKGgGR0CQdLy/sVtXaAdN6ANoCEdAoeO+tCAtnXV9lChoBkdAp3mXeLvTgGgHTegDaAhHQKHpksPJ7sx1fZQoaAZHQIThpiRW915oB03oA2gIR0Ch8MNSqEOBdX2UKGgGR0CRf5mI0qH5aAdN6ANoCEdAofbwKx9oe3V9lChoBkdAliqlsxfv4WgHTegDaAhHQKH9BCsOoYN1fZQoaAZHQKnYRZ3cHnloB03oA2gIR0CiAt95IH1OdX2UKGgGR0CqsP99MK1HaAdN6ANoCEdAogoQ9JSR83V9lChoBkdAo3tojhUBGWgHTegDaAhHQKIQBNIsiB51fZQoaAZHQKVPpyiEg4hoB03oA2gIR0CiFefn4fwJdX2UKGgGR0CiscucUdq+aAdN6ANoCEdAoht8a/ATI3V9lChoBkdApukGeHzpYGgHTegDaAhHQKIfqlrM1TB1fZQoaAZHQKsn6YGdI5JoB03oA2gIR0CiJwOHWSU1dX2UKGgGR0ClU0NJOFg2aAdN6ANoCEdAoizWzY287XV9lChoBkdAnH0UFW4mTmgHTegDaAhHQKIy1aGHpKV1fZQoaAZHQKrLWSEDhcZoB03oA2gIR0CiOIa99MK1dX2UKGgGR0CBcV+fh/AkaAdN6ANoCEdAokAL3bmEG3V9lChoBkdAkBcljd56dGgHTegDaAhHQKJFp9aUzKt1fZQoaAZHQKCIoFCb+cZoB03oA2gIR0CiS9YRujyndX2UKGgGR0CkrUpYDDCQaAdN6ANoCEdAolGnIKc/dXV9lChoBkdAqzdZPVNHpmgHTegDaAhHQKJZkE2YOUd1fZQoaAZHQKVgrFWGRFJoB03oA2gIR0CiX3XoTwlTdX2UKGgGR0CjBfShSLqEaAdN6ANoCEdAomWPARChOHV9lChoBkdAqu9pssQNC2gHTegDaAhHQKJrWL3K0Up1fZQoaAZHQKvjRS0BwMpoB03oA2gIR0CicsqXfIjodX2UKGgGR0CrNyfr8iwCaAdN6ANoCEdAoniSkAPuonV9lChoBkdApI8OeSSvDGgHTegDaAhHQKJ+njOLR8d1fZQoaAZHQKhmTF+/gzhoB03oA2gIR0CihJzXBguzdX2UKGgGR0Ck8ofWcz68aAdN6ANoCEdAooy8vmHP/3V9lChoBkdApPjJ4t6HCWgHTegDaAhHQKKS+Tq0MPV1fZQoaAZHQKF5Ma4MF2VoB03oA2gIR0CimLvd2xIKdX2UKGgGR0CSRIcAzYVZaAdN6ANoCEdAop7eSntOVXV9lChoBkdAqvrdPnB+F2gHTegDaAhHQKKkfMK1G9Z1fZQoaAZHQKx9qDp1RtRoB03oA2gIR0CiqqW8yvcKdX2UKGgGR0CnzKb+T/yYaAdN6ANoCEdAorDPWWhRInV9lChoBkdAez/vYvnKXGgHTegDaAhHQKK260rK/211fZQoaAZHQH557DuSfUZoB03oA2gIR0Civmanzg/DdX2UKGgGR0Cox5RyGSIQaAdN6ANoCEdAosQC/qPfbnV9lChoBkdApAdpTQ3PzGgHTegDaAhHQKLJ7DR+jM51fZQoaAZHQJrU64mTkhloB03oA2gIR0Ciz8bZvkzXdX2UKGgGR0Cp5T5FG5MDaAdN6ANoCEdAotdzGJemenV9lChoBkdApHP7Y/Vy3mgHTegDaAhHQKLdJfzBhx51fZQoaAZHQKUdqNI9TxZoB03oA2gIR0Ci4xt0NjLCdX2UKGgGR0CqjxpQDV6NaAdN6ANoCEdAouizlxOtXHV9lChoBkdAoUsqsZHd42gHTegDaAhHQKLv9kSVW0Z1fZQoaAZHQKuHsASWZ7ZoB03oA2gIR0Ci9fRMvh60dX2UKGgGR0Cp0RaLOzIFaAdN6ANoCEdAovvC1stTUHV9lChoBkdApKPBRQ79ymgHTegDaAhHQKMBvaGpMpR1fZQoaAZHQKVGJnGKhtdoB03oA2gIR0CjCKweV9ncdX2UKGgGR0CFV/FPSDywaAdN6ANoCEdAow9fDej2z3V9lChoBkdAqqL4WLxZuGgHTegDaAhHQKMVbMGorFx1fZQoaAZHQKgR1vc8DCBoB03oA2gIR0CjGwStNi6QdX2UKGgGR0CrpkD+717IaAdN6ANoCEdAoyINwtJ4B3V9lChoBkdArbgym8/Uv2gHTegDaAhHQKMmj7Jnxrl1fZQoaAZHQJbMdVMmF8JoB03oA2gIR0CjLCInKGL2dX2UKGgGR0Cj+HkSdvsJaAdN6ANoCEdAozHmwTufEnV9lChoBkdApWh3ZsbedmgHTegDaAhHQKM3+7+1jRV1fZQoaAZHQI+wiHGjsUtoB03oA2gIR0CjP2TCtRvWdX2UKGgGR0Cmvbovi97GaAdN6ANoCEdAo0U2loDgZXV9lChoBkdAquZEPQOWjWgHTegDaAhHQKNLHYlIEr51fZQoaAZHQK4B77v5P/JoB03oA2gIR0CjUMuU2UB5dX2UKGgGR0CG2My2x6fKaAdN6ANoCEdAo1iWBWgezXV9lChoBkdAm4nJjc2zfWgHTegDaAhHQKNempsoDxN1fZQoaAZHQJreYKjSG8FoB03oA2gIR0CjZGtOM2m6dX2UKGgGR0Cj0vBC2MKkaAdN6ANoCEdAo2plKdxyXHV9lChoBkdApPo70J4SpWgHTegDaAhHQKNyVz9S/CZ1fZQoaAZHQIJjD0163RZoB03oA2gIR0CjeF9ZaFEidX2UKGgGR0B5zVTLns9kaAdN6ANoCEdAo35aJQ+EAnV9lChoBkdAg1mujZcs2GgHTegDaAhHQKOEQuTzNEB1fZQoaAZHQJU11n3+MqBoB03oA2gIR0CjjAvugHu7dX2UKGgGR0CkQJ61TisGaAdN6ANoCEdAo5HLgjyFwnV9lChoBkdAlzmUkKNQ02gHTegDaAhHQKOX0ZPVNHp1fZQoaAZHQKG3LiyY5T9oB03oA2gIR0CjncgFgUlBdX2UKGgGR0CZljona37UaAdN6ANoCEdAo6VpBX0Xg3V9lChoBkdAnxYnpfQa72gHTegDaAhHQKOrKV0Lc9J1fZQoaAZHQKOlfgdfb9JoB03oA2gIR0Cjry8VpKzzdX2UKGgGR0ClZz3CKrJbaAdN6ANoCEdAo7T4Zl4C63V9lChoBkdAo3vDS1E3KmgHTegDaAhHQKO8SVnmJWN1fZQoaAZHQI1tnDziCJ5oB03oA2gIR0CjwpLXL/0edX2UKGgGR0Cuhx4raufVaAdN6ANoCEdAo8j9hd+ocnV9lChoBkdAo9EPHNorWmgHTegDaAhHQKPOuMR6F/R1fZQoaAZHQKF0eDlo11poB03oA2gIR0Cj1dDOkcjrdX2UKGgGR0CjG2ujqOcUaAdN6ANoCEdAo9uZZpztC3V9lChoBkdAg/n7uDzy0GgHTegDaAhHQKPheAG0NSZ1fZQoaAZHQKVypha1TitoB03oA2gIR0Cj501TR6WxdX2UKGgGR0ClrfTkhib2aAdN6ANoCEdAo+34oVmBfHVlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
ppo-HalfCheetah-v4/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1151201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9148713ab8d549fe20917b6298d6dcd1225d07149f74fcba826a3f023e3a16c0
|
3 |
size 1151201
|
ppo-HalfCheetah-v4/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 575215
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c98ca0cf080cd2f9405f820f76b5dacf895ded3ca97b86d408a6fc7fb63efd27
|
3 |
size 575215
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3bd041badf8206741ab945f43f43e077ebd97ae9d4155d8270e39fecfcee382
|
3 |
+
size 1340929
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 3404.5442749803333, "std_reward": 627.299199909608, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-31T19:33:42.192842"}
|