Upload eval_mteb.py
Browse files- scripts/eval_mteb.py +668 -0
scripts/eval_mteb.py
ADDED
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from collections import defaultdict
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import queue
|
9 |
+
from typing import Dict, List, Optional, Union
|
10 |
+
|
11 |
+
from tqdm.autonotebook import trange
|
12 |
+
import datasets
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torch.multiprocessing as mp
|
16 |
+
from transformers import AutoModel, AutoTokenizer
|
17 |
+
from transformers import AutoModelForCausalLM
|
18 |
+
from mteb import MTEB, CrosslingualTask, MultilingualTask
|
19 |
+
|
20 |
+
TASK_LIST_CLASSIFICATION = [
|
21 |
+
"AmazonCounterfactualClassification",
|
22 |
+
"AmazonPolarityClassification",
|
23 |
+
"AmazonReviewsClassification",
|
24 |
+
"Banking77Classification",
|
25 |
+
"EmotionClassification",
|
26 |
+
"ImdbClassification",
|
27 |
+
"MassiveIntentClassification",
|
28 |
+
"MassiveScenarioClassification",
|
29 |
+
"MTOPDomainClassification",
|
30 |
+
"MTOPIntentClassification",
|
31 |
+
"ToxicConversationsClassification",
|
32 |
+
"TweetSentimentExtractionClassification",
|
33 |
+
]
|
34 |
+
|
35 |
+
TASK_LIST_CLUSTERING = [
|
36 |
+
"ArxivClusteringP2P",
|
37 |
+
"ArxivClusteringS2S",
|
38 |
+
"BiorxivClusteringP2P",
|
39 |
+
"BiorxivClusteringS2S",
|
40 |
+
"MedrxivClusteringP2P",
|
41 |
+
"MedrxivClusteringS2S",
|
42 |
+
"RedditClustering",
|
43 |
+
"RedditClusteringP2P",
|
44 |
+
"StackExchangeClustering",
|
45 |
+
"StackExchangeClusteringP2P",
|
46 |
+
"TwentyNewsgroupsClustering",
|
47 |
+
]
|
48 |
+
|
49 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
50 |
+
"SprintDuplicateQuestions",
|
51 |
+
"TwitterSemEval2015",
|
52 |
+
"TwitterURLCorpus",
|
53 |
+
]
|
54 |
+
|
55 |
+
TASK_LIST_RERANKING = [
|
56 |
+
"AskUbuntuDupQuestions",
|
57 |
+
"MindSmallReranking",
|
58 |
+
"SciDocsRR",
|
59 |
+
"StackOverflowDupQuestions",
|
60 |
+
]
|
61 |
+
|
62 |
+
TASK_LIST_RETRIEVAL = [
|
63 |
+
"ArguAna",
|
64 |
+
"ClimateFEVER",
|
65 |
+
"CQADupstackAndroidRetrieval",
|
66 |
+
"CQADupstackEnglishRetrieval",
|
67 |
+
"CQADupstackGamingRetrieval",
|
68 |
+
"CQADupstackGisRetrieval",
|
69 |
+
"CQADupstackMathematicaRetrieval",
|
70 |
+
"CQADupstackPhysicsRetrieval",
|
71 |
+
"CQADupstackProgrammersRetrieval",
|
72 |
+
"CQADupstackStatsRetrieval",
|
73 |
+
"CQADupstackTexRetrieval",
|
74 |
+
"CQADupstackUnixRetrieval",
|
75 |
+
"CQADupstackWebmastersRetrieval",
|
76 |
+
"CQADupstackWordpressRetrieval",
|
77 |
+
"DBPedia",
|
78 |
+
"FEVER",
|
79 |
+
"FiQA2018",
|
80 |
+
"HotpotQA",
|
81 |
+
"MSMARCO",
|
82 |
+
"NFCorpus",
|
83 |
+
"NQ",
|
84 |
+
"QuoraRetrieval",
|
85 |
+
"SCIDOCS",
|
86 |
+
"SciFact",
|
87 |
+
"Touche2020",
|
88 |
+
"TRECCOVID",
|
89 |
+
]
|
90 |
+
|
91 |
+
TASK_LIST_STS = [
|
92 |
+
"BIOSSES",
|
93 |
+
"SICK-R",
|
94 |
+
"STS12",
|
95 |
+
"STS13",
|
96 |
+
"STS14",
|
97 |
+
"STS15",
|
98 |
+
"STS16",
|
99 |
+
"STS17",
|
100 |
+
"STS22",
|
101 |
+
"STSBenchmark",
|
102 |
+
"SummEval",
|
103 |
+
]
|
104 |
+
|
105 |
+
MTEB_TASK_LIST = (
|
106 |
+
TASK_LIST_CLASSIFICATION
|
107 |
+
+ TASK_LIST_CLUSTERING
|
108 |
+
+ TASK_LIST_PAIR_CLASSIFICATION
|
109 |
+
+ TASK_LIST_RERANKING
|
110 |
+
+ TASK_LIST_RETRIEVAL
|
111 |
+
+ TASK_LIST_STS
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
CMTEB_TASK_LIST = ['TNews', 'IFlyTek', 'MultilingualSentiment', 'JDReview', 'OnlineShopping', 'Waimai','AmazonReviewsClassification', 'MassiveIntentClassification', 'MassiveScenarioClassification', 'MultilingualSentiment',
|
116 |
+
'CLSClusteringS2S', 'CLSClusteringP2P', 'ThuNewsClusteringS2S', 'ThuNewsClusteringP2P',
|
117 |
+
'Ocnli', 'Cmnli',
|
118 |
+
'T2Reranking', 'MmarcoReranking', 'CMedQAv1', 'CMedQAv2',
|
119 |
+
'T2Retrieval', 'MMarcoRetrieval', 'DuRetrieval', 'CovidRetrieval', 'CmedqaRetrieval', 'EcomRetrieval', 'MedicalRetrieval', 'VideoRetrieval',
|
120 |
+
'ATEC', 'BQ', 'LCQMC', 'PAWSX', 'STSB', 'AFQMC', 'QBQTC', 'STS22']
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
logging.basicConfig(
|
125 |
+
level=logging.INFO,
|
126 |
+
format='%(asctime)s - %(levelname)s - %(name)s : %(message)s'
|
127 |
+
)
|
128 |
+
|
129 |
+
logger = logging.getLogger('eval_mteb_qwen.py')
|
130 |
+
|
131 |
+
def get_detailed_instruct(task_description: str) -> str:
|
132 |
+
if not task_description:
|
133 |
+
return ''
|
134 |
+
|
135 |
+
return 'Instruct: {}\nQuery: '.format(task_description)
|
136 |
+
|
137 |
+
def get_task_def_by_task_name_and_type(task_name: str, task_type: str, default_instruct='Given a web search query, retrieve relevant passages that answer the query') -> str:
|
138 |
+
if task_type in ['STS']:
|
139 |
+
# return "Given a premise, retrieve a hypothesis that is entailed by the premise."
|
140 |
+
return "Retrieve semantically similar text"
|
141 |
+
|
142 |
+
if task_type in ['Summarization']:
|
143 |
+
return "Given a news summary, retrieve other semantically similar summaries"
|
144 |
+
|
145 |
+
if task_type in ['BitextMining']:
|
146 |
+
return "Retrieve parallel sentences"
|
147 |
+
|
148 |
+
if task_type in ['Classification']:
|
149 |
+
task_name_to_instruct: Dict[str, str] = {
|
150 |
+
'AmazonCounterfactualClassification': 'Classify a given Amazon customer review text as either counterfactual or not-counterfactual',
|
151 |
+
'AmazonPolarityClassification': 'Classify Amazon reviews into positive or negative sentiment',
|
152 |
+
'AmazonReviewsClassification': 'Classify the given Amazon review into its appropriate rating category',
|
153 |
+
'Banking77Classification': 'Given a online banking query, find the corresponding intents',
|
154 |
+
'EmotionClassification': 'Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise',
|
155 |
+
'ImdbClassification': 'Classify the sentiment expressed in the given movie review text from the IMDB dataset',
|
156 |
+
'MassiveIntentClassification': 'Given a user utterance as query, find the user intents',
|
157 |
+
'MassiveScenarioClassification': 'Given a user utterance as query, find the user scenarios',
|
158 |
+
'MTOPDomainClassification': 'Classify the intent domain of the given utterance in task-oriented conversation',
|
159 |
+
'MTOPIntentClassification': 'Classify the intent of the given utterance in task-oriented conversation',
|
160 |
+
'ToxicConversationsClassification': 'Classify the given comments as either toxic or not toxic',
|
161 |
+
'TweetSentimentExtractionClassification': 'Classify the sentiment of a given tweet as either positive, negative, or neutral',
|
162 |
+
# C-MTEB eval instructions
|
163 |
+
'TNews': 'Classify the fine-grained category of the given news title',
|
164 |
+
'IFlyTek': 'Given an App description text, find the appropriate fine-grained category',
|
165 |
+
'MultilingualSentiment': 'Classify sentiment of the customer review into positive, neutral, or negative',
|
166 |
+
'JDReview': 'Classify the customer review for iPhone on e-commerce platform into positive or negative',
|
167 |
+
'OnlineShopping': 'Classify the customer review for online shopping into positive or negative',
|
168 |
+
'Waimai': 'Classify the customer review from a food takeaway platform into positive or negative',
|
169 |
+
}
|
170 |
+
return task_name_to_instruct[task_name]
|
171 |
+
|
172 |
+
if task_type in ['Clustering']:
|
173 |
+
task_name_to_instruct: Dict[str, str] = {
|
174 |
+
'ArxivClusteringP2P': 'Identify the main and secondary category of Arxiv papers based on the titles and abstracts',
|
175 |
+
'ArxivClusteringS2S': 'Identify the main and secondary category of Arxiv papers based on the titles',
|
176 |
+
'BiorxivClusteringP2P': 'Identify the main category of Biorxiv papers based on the titles and abstracts',
|
177 |
+
'BiorxivClusteringS2S': 'Identify the main category of Biorxiv papers based on the titles',
|
178 |
+
'MedrxivClusteringP2P': 'Identify the main category of Medrxiv papers based on the titles and abstracts',
|
179 |
+
'MedrxivClusteringS2S': 'Identify the main category of Medrxiv papers based on the titles',
|
180 |
+
'RedditClustering': 'Identify the topic or theme of Reddit posts based on the titles',
|
181 |
+
'RedditClusteringP2P': 'Identify the topic or theme of Reddit posts based on the titles and posts',
|
182 |
+
'StackExchangeClustering': 'Identify the topic or theme of StackExchange posts based on the titles',
|
183 |
+
'StackExchangeClusteringP2P': 'Identify the topic or theme of StackExchange posts based on the given paragraphs',
|
184 |
+
'TwentyNewsgroupsClustering': 'Identify the topic or theme of the given news articles',
|
185 |
+
# C-MTEB eval instructions
|
186 |
+
'CLSClusteringS2S': 'Identify the main category of scholar papers based on the titles',
|
187 |
+
'CLSClusteringP2P': 'Identify the main category of scholar papers based on the titles and abstracts',
|
188 |
+
'ThuNewsClusteringS2S': 'Identify the topic or theme of the given news articles based on the titles',
|
189 |
+
'ThuNewsClusteringP2P': 'Identify the topic or theme of the given news articles based on the titles and contents',
|
190 |
+
}
|
191 |
+
return task_name_to_instruct[task_name]
|
192 |
+
|
193 |
+
if task_type in ['Reranking', 'PairClassification']:
|
194 |
+
task_name_to_instruct: Dict[str, str] = {
|
195 |
+
'AskUbuntuDupQuestions': 'Retrieve duplicate questions from AskUbuntu forum',
|
196 |
+
'MindSmallReranking': 'Retrieve relevant news articles based on user browsing history',
|
197 |
+
'SciDocsRR': 'Given a title of a scientific paper, retrieve the titles of other relevant papers',
|
198 |
+
'StackOverflowDupQuestions': 'Retrieve duplicate questions from StackOverflow forum',
|
199 |
+
'SprintDuplicateQuestions': 'Retrieve duplicate questions from Sprint forum',
|
200 |
+
'TwitterSemEval2015': 'Retrieve tweets that are semantically similar to the given tweet',
|
201 |
+
'TwitterURLCorpus': 'Retrieve tweets that are semantically similar to the given tweet',
|
202 |
+
# C-MTEB eval instructions
|
203 |
+
'T2Reranking': 'Given a Chinese search query, retrieve web passages that answer the question',
|
204 |
+
'MmarcoReranking': 'Given a Chinese search query, retrieve web passages that answer the question',
|
205 |
+
'CMedQAv1': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
206 |
+
'CMedQAv2': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
207 |
+
'Ocnli': 'Retrieve semantically similar text.',
|
208 |
+
'Cmnli': 'Retrieve semantically similar text.',
|
209 |
+
}
|
210 |
+
return task_name_to_instruct[task_name]
|
211 |
+
|
212 |
+
if task_type in ['Retrieval']:
|
213 |
+
if task_name.lower().startswith('cqadupstack'):
|
214 |
+
return 'Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question'
|
215 |
+
|
216 |
+
task_name_to_instruct: Dict[str, str] = {
|
217 |
+
'ArguAna': 'Given a claim, find documents that refute the claim',
|
218 |
+
'ClimateFEVER': 'Given a claim about climate change, retrieve documents that support or refute the claim',
|
219 |
+
'DBPedia': 'Given a query, retrieve relevant entity descriptions from DBPedia',
|
220 |
+
'FEVER': 'Given a claim, retrieve documents that support or refute the claim',
|
221 |
+
'FiQA2018': 'Given a financial question, retrieve user replies that best answer the question',
|
222 |
+
'HotpotQA': 'Given a multi-hop question, retrieve documents that can help answer the question',
|
223 |
+
'MSMARCO': 'Given a web search query, retrieve relevant passages that answer the query',
|
224 |
+
'NFCorpus': 'Given a question, retrieve relevant documents that best answer the question',
|
225 |
+
'NQ': 'Given a question, retrieve Wikipedia passages that answer the question',
|
226 |
+
'QuoraRetrieval': 'Given a question, retrieve questions that are semantically equivalent to the given question',
|
227 |
+
'SCIDOCS': 'Given a scientific paper title, retrieve paper abstracts that are cited by the given paper',
|
228 |
+
'SciFact': 'Given a scientific claim, retrieve documents that support or refute the claim',
|
229 |
+
'Touche2020': 'Given a question, retrieve detailed and persuasive arguments that answer the question',
|
230 |
+
'TRECCOVID': 'Given a query on COVID-19, retrieve documents that answer the query',
|
231 |
+
# C-MTEB eval instructions
|
232 |
+
'T2Retrieval': 'Given a Chinese search query, retrieve web passages that answer the question',
|
233 |
+
'MMarcoRetrieval': 'Given a web search query, retrieve relevant passages that answer the query',
|
234 |
+
'DuRetrieval': 'Given a Chinese search query, retrieve web passages that answer the question',
|
235 |
+
'CovidRetrieval': 'Given a question on COVID-19, retrieve news articles that answer the question',
|
236 |
+
'CmedqaRetrieval': 'Given a Chinese community medical question, retrieve replies that best answer the question',
|
237 |
+
'EcomRetrieval': 'Given a user query from an e-commerce website, retrieve description sentences of relevant products',
|
238 |
+
'MedicalRetrieval': 'Given a medical question, retrieve user replies that best answer the question',
|
239 |
+
'VideoRetrieval': 'Given a video search query, retrieve the titles of relevant videos',
|
240 |
+
}
|
241 |
+
|
242 |
+
# add lower case keys to match some beir names
|
243 |
+
task_name_to_instruct.update({k.lower(): v for k, v in task_name_to_instruct.items()})
|
244 |
+
# other cases where lower case match still doesn't work
|
245 |
+
task_name_to_instruct['trec-covid'] = task_name_to_instruct['TRECCOVID']
|
246 |
+
task_name_to_instruct['climate-fever'] = task_name_to_instruct['ClimateFEVER']
|
247 |
+
task_name_to_instruct['dbpedia-entity'] = task_name_to_instruct['DBPedia']
|
248 |
+
task_name_to_instruct['webis-touche2020'] = task_name_to_instruct['Touche2020']
|
249 |
+
task_name_to_instruct['fiqa'] = task_name_to_instruct['FiQA2018']
|
250 |
+
task_name_to_instruct['quora'] = task_name_to_instruct['QuoraRetrieval']
|
251 |
+
|
252 |
+
# for miracl evaluation
|
253 |
+
task_name_to_instruct['miracl'] = 'Given a question, retrieve Wikipedia passages that answer the question'
|
254 |
+
|
255 |
+
return task_name_to_instruct[task_name]
|
256 |
+
logging.warning(f"No instruction config for task {task_name} with type {task_type}, use default instruction.")
|
257 |
+
return default_instruct
|
258 |
+
|
259 |
+
class Encoder(torch.nn.Module):
|
260 |
+
def __init__(self, name_or_path:str, pooling: str):
|
261 |
+
super().__init__()
|
262 |
+
self.model = AutoModel.from_pretrained(name_or_path, trust_remote_code=True)
|
263 |
+
self.model = self.model.half()
|
264 |
+
self.model.eval()
|
265 |
+
self.pooling = pooling
|
266 |
+
|
267 |
+
def forward(self, **features) -> torch.Tensor:
|
268 |
+
output = self.model(**features, output_hidden_states=True, return_dict=True)
|
269 |
+
hidden_state = output.hidden_states[-1]
|
270 |
+
embeddings = self.pooler(hidden_state, **features)
|
271 |
+
return embeddings
|
272 |
+
|
273 |
+
def pooler(
|
274 |
+
self,
|
275 |
+
hidden_state: torch.Tensor,
|
276 |
+
attention_mask: torch.Tensor,
|
277 |
+
**kwargs
|
278 |
+
) -> torch.Tensor:
|
279 |
+
if attention_mask.ndim == 2:
|
280 |
+
mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_state.size())
|
281 |
+
elif attention_mask.ndim == 3:
|
282 |
+
mask_expanded = attention_mask
|
283 |
+
else:
|
284 |
+
raise RuntimeError(f"Unexpected {attention_mask.ndim=}")
|
285 |
+
|
286 |
+
hidden_state = hidden_state * mask_expanded
|
287 |
+
|
288 |
+
if self.pooling == 'first':
|
289 |
+
pooled_output = hidden_state[:, 0]
|
290 |
+
|
291 |
+
elif self.pooling == 'last':
|
292 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
293 |
+
if left_padding:
|
294 |
+
return hidden_state[:, -1]
|
295 |
+
else:
|
296 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
297 |
+
batch_size = hidden_state.shape[0]
|
298 |
+
return hidden_state[torch.arange(batch_size, device=hidden_state.device), sequence_lengths]
|
299 |
+
elif self.pooling == 'mean':
|
300 |
+
# TODO: weight
|
301 |
+
lengths = mask_expanded.sum(1).clamp(min=1e-9)
|
302 |
+
pooled_output = hidden_state.sum(dim=1) / lengths
|
303 |
+
|
304 |
+
elif self.pooling == 'weightedmean':
|
305 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_state.size()).float()
|
306 |
+
# hidden_state shape: bs, seq, hidden_dim
|
307 |
+
weights = (
|
308 |
+
torch.arange(start=1, end=hidden_state.shape[1] + 1)
|
309 |
+
.unsqueeze(0)
|
310 |
+
.unsqueeze(-1)
|
311 |
+
.expand(hidden_state.size())
|
312 |
+
.float().to(hidden_state.device)
|
313 |
+
)
|
314 |
+
assert weights.shape == hidden_state.shape == input_mask_expanded.shape
|
315 |
+
input_mask_expanded = input_mask_expanded * weights
|
316 |
+
|
317 |
+
sum_embeddings = torch.sum(hidden_state * input_mask_expanded, 1)
|
318 |
+
sum_mask = input_mask_expanded.sum(1)
|
319 |
+
sum_mask = torch.clamp(sum_mask, min=1e-9)
|
320 |
+
pooled_output = sum_embeddings / sum_mask
|
321 |
+
|
322 |
+
else:
|
323 |
+
raise ValueError(f"Wrong pooler mode : {self.pooling}")
|
324 |
+
return pooled_output
|
325 |
+
|
326 |
+
|
327 |
+
class Wrapper:
|
328 |
+
def __init__(
|
329 |
+
self,
|
330 |
+
tokenizer,
|
331 |
+
encoder: Encoder,
|
332 |
+
batch_size: int,
|
333 |
+
max_seq_len: int = 512,
|
334 |
+
normalize_embeddings: bool = False,
|
335 |
+
default_query: bool = False,
|
336 |
+
force_default: bool = False,
|
337 |
+
sep: str = " ",
|
338 |
+
mp_tensor_to_cuda: bool = False,
|
339 |
+
instruction: str = None,
|
340 |
+
attn_type: str = None
|
341 |
+
):
|
342 |
+
self.tokenizer = tokenizer
|
343 |
+
self.model = encoder
|
344 |
+
self.batch_size = batch_size
|
345 |
+
self.max_seq_len = max_seq_len
|
346 |
+
self.pool: dict = None
|
347 |
+
self.normalize_embeddings = normalize_embeddings
|
348 |
+
self.mp_tensor_to_cuda = mp_tensor_to_cuda
|
349 |
+
self._target_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
350 |
+
self.eod_id = self.tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
351 |
+
self.instruction = instruction
|
352 |
+
|
353 |
+
if self.tokenizer.padding_side != 'right':
|
354 |
+
logger.warning(f"Change tokenizer.padding_side from {self.tokenizer.padding_side} to right")
|
355 |
+
self.tokenizer.padding_side = 'right'
|
356 |
+
if self.tokenizer.pad_token is None:
|
357 |
+
logger.warning(f"Set tokenizer.pad_token as eos_token {self.tokenizer.eos_token}")
|
358 |
+
self.tokenizer.pad_token='<|endoftext|>'
|
359 |
+
|
360 |
+
def start(self, target_devices: Optional[List[str]] = None):
|
361 |
+
"""
|
362 |
+
Starts multi process to process the encoding with several, independent processes.
|
363 |
+
This method is recommended if you want to encode on multiple GPUs. It is advised
|
364 |
+
to start only one process per GPU. This method works together with encode_multi_process
|
365 |
+
|
366 |
+
:param target_devices: PyTorch target devices, e.g. cuda:0, cuda:1... If None, all available CUDA devices will be used
|
367 |
+
:return: Returns a dict with the target processes, an input queue and and output queue.
|
368 |
+
"""
|
369 |
+
if target_devices is None:
|
370 |
+
if torch.cuda.is_available():
|
371 |
+
target_devices = ['cuda:{}'.format(i) for i in range(torch.cuda.device_count())]
|
372 |
+
else:
|
373 |
+
logger.info("CUDA is not available. Start 4 CPU worker")
|
374 |
+
target_devices = ['cpu']*4
|
375 |
+
|
376 |
+
logger.info("Start multi-process pool on devices: {}".format(', '.join(map(str, target_devices))))
|
377 |
+
print('multi instruction', self.instruction)
|
378 |
+
ctx = mp.get_context('spawn')
|
379 |
+
input_queue = ctx.Queue()
|
380 |
+
output_queue = ctx.Queue()
|
381 |
+
processes = []
|
382 |
+
|
383 |
+
for cuda_id in target_devices:
|
384 |
+
p = ctx.Process(
|
385 |
+
target=self._encode_multi_process_worker,
|
386 |
+
args=(cuda_id, self, input_queue, output_queue),
|
387 |
+
daemon=True
|
388 |
+
)
|
389 |
+
p.start()
|
390 |
+
processes.append(p)
|
391 |
+
|
392 |
+
self.pool = {'input': input_queue, 'output': output_queue, 'processes': processes}
|
393 |
+
|
394 |
+
def stop(self):
|
395 |
+
"""
|
396 |
+
Stops all processes started with start_multi_process_pool
|
397 |
+
"""
|
398 |
+
for p in self.pool['processes']:
|
399 |
+
p.terminate()
|
400 |
+
|
401 |
+
for p in self.pool['processes']:
|
402 |
+
p.join()
|
403 |
+
p.close()
|
404 |
+
|
405 |
+
self.pool['input'].close()
|
406 |
+
self.pool['output'].close()
|
407 |
+
|
408 |
+
@staticmethod
|
409 |
+
def _encode_multi_process_worker(target_device: str, model, input_queue, results_queue):
|
410 |
+
"""
|
411 |
+
Internal working process to encode sentences in multi-process setup
|
412 |
+
"""
|
413 |
+
while True:
|
414 |
+
try:
|
415 |
+
id, sentences, kwargs = input_queue.get()
|
416 |
+
kwargs.update(device=target_device, show_progress_bar=False, convert_to_numpy=True)
|
417 |
+
embeddings = model._encode(sentences, **kwargs)
|
418 |
+
results_queue.put([id, embeddings])
|
419 |
+
except queue.Empty:
|
420 |
+
break
|
421 |
+
|
422 |
+
def encode_multi_process(
|
423 |
+
self,
|
424 |
+
sentences: List[str],
|
425 |
+
**kwargs
|
426 |
+
):
|
427 |
+
"""
|
428 |
+
This method allows to run encode() on multiple GPUs. The sentences are chunked into smaller packages
|
429 |
+
and sent to individual processes, which encode these on the different GPUs. This method is only suitable
|
430 |
+
for encoding large sets of sentences
|
431 |
+
|
432 |
+
:param sentences: List of sentences
|
433 |
+
:param pool: A pool of workers started with SentenceTransformer.start_multi_process_pool
|
434 |
+
:param chunk_size: Sentences are chunked and sent to the individual processes. If none, it determine a sensible size.
|
435 |
+
:param kwargs: other keyword arguments for model.encode() such as batch_size
|
436 |
+
:return: Numpy matrix with all embeddings
|
437 |
+
"""
|
438 |
+
part_size = math.ceil(len(sentences) / len(self.pool["processes"]))
|
439 |
+
chunk_size = part_size if part_size < 3200 else 3200 # for retrieval chunk 50000
|
440 |
+
|
441 |
+
logger.debug(f"Chunk data into {math.ceil(len(sentences) / chunk_size)} packages of size {chunk_size}")
|
442 |
+
|
443 |
+
input_queue = self.pool['input']
|
444 |
+
last_chunk_id = 0
|
445 |
+
chunk = []
|
446 |
+
|
447 |
+
for sentence in sentences:
|
448 |
+
chunk.append(sentence)
|
449 |
+
if len(chunk) >= chunk_size:
|
450 |
+
input_queue.put([last_chunk_id, chunk, kwargs])
|
451 |
+
last_chunk_id += 1
|
452 |
+
chunk = []
|
453 |
+
|
454 |
+
if len(chunk) > 0:
|
455 |
+
input_queue.put([last_chunk_id, chunk, kwargs])
|
456 |
+
last_chunk_id += 1
|
457 |
+
|
458 |
+
output_queue = self.pool['output']
|
459 |
+
results_list = sorted([output_queue.get() for _ in range(last_chunk_id)], key=lambda x: x[0])
|
460 |
+
embeddings = np.concatenate([result[1] for result in results_list])
|
461 |
+
return embeddings
|
462 |
+
|
463 |
+
@staticmethod
|
464 |
+
def batch_to_device(batch, target_device):
|
465 |
+
"""
|
466 |
+
send a pytorch batch to a device (CPU/GPU)
|
467 |
+
"""
|
468 |
+
for key in batch:
|
469 |
+
if isinstance(batch[key], torch.Tensor):
|
470 |
+
batch[key] = batch[key].to(target_device)
|
471 |
+
return batch
|
472 |
+
|
473 |
+
def _text_length(self, text: Union[List[int], List[List[int]]]):
|
474 |
+
"""
|
475 |
+
Help function to get the length for the input text. Text can be either
|
476 |
+
a list of ints (which means a single text as input), or a tuple of list of ints
|
477 |
+
(representing several text inputs to the model).
|
478 |
+
"""
|
479 |
+
|
480 |
+
if isinstance(text, dict): #{key: value} case
|
481 |
+
return len(next(iter(text.values())))
|
482 |
+
elif not hasattr(text, '__len__'): #Object has no len() method
|
483 |
+
return 1
|
484 |
+
elif len(text) == 0 or isinstance(text[0], int): #Empty string or list of ints
|
485 |
+
return len(text)
|
486 |
+
else:
|
487 |
+
return sum([len(t) for t in text]) #Sum of length of individual strings
|
488 |
+
|
489 |
+
def _tokenize(self, sentences: List[str], is_query: bool):
|
490 |
+
|
491 |
+
batch_dict = tokenizer(sentences, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
492 |
+
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
493 |
+
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
494 |
+
batch_dict['is_causal'] = False
|
495 |
+
return batch_dict
|
496 |
+
|
497 |
+
|
498 |
+
def _encode(
|
499 |
+
self,
|
500 |
+
sentences: List[str],
|
501 |
+
is_query: bool,
|
502 |
+
convert_to_numpy: bool = True,
|
503 |
+
convert_to_tensor: bool = False,
|
504 |
+
device: str = None,
|
505 |
+
show_progress_bar: bool = True,
|
506 |
+
**kwargs
|
507 |
+
):
|
508 |
+
"""
|
509 |
+
Computes sentence embeddings
|
510 |
+
|
511 |
+
:param sentences: the sentences to embed
|
512 |
+
:param batch_size: the batch size used for the computation
|
513 |
+
:param show_progress_bar: Output a progress bar when encode sentences
|
514 |
+
:param output_value: Default sentence_embedding, to get sentence embeddings. Can be set to token_embeddings to get wordpiece token embeddings. Set to None, to get all output values
|
515 |
+
:param convert_to_numpy: If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors.
|
516 |
+
:param convert_to_tensor: If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy
|
517 |
+
:param device: Which torch.device to use for the computation
|
518 |
+
:param normalize_embeddings: If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
|
519 |
+
|
520 |
+
:return:
|
521 |
+
By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned.
|
522 |
+
"""
|
523 |
+
self.model.eval()
|
524 |
+
|
525 |
+
if convert_to_tensor:
|
526 |
+
convert_to_numpy = False
|
527 |
+
|
528 |
+
input_was_string = False
|
529 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'): #Cast an individual sentence to a list with length 1
|
530 |
+
sentences = [sentences]
|
531 |
+
input_was_string = True
|
532 |
+
|
533 |
+
if device is None:
|
534 |
+
device = self._target_device
|
535 |
+
|
536 |
+
self.model.to(device)
|
537 |
+
|
538 |
+
all_embeddings = []
|
539 |
+
length_sorted_idx = np.argsort([-self._text_length(s) for s in sentences])
|
540 |
+
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
|
541 |
+
|
542 |
+
for start_index in trange(0, len(sentences), self.batch_size, desc="Batches", disable=not show_progress_bar):
|
543 |
+
sentences_batch = sentences_sorted[start_index:start_index + self.batch_size]
|
544 |
+
features = self._tokenize(sentences_batch, is_query)
|
545 |
+
features = self.batch_to_device(features, device)
|
546 |
+
|
547 |
+
with torch.no_grad():
|
548 |
+
embeddings = self.model(**features)
|
549 |
+
|
550 |
+
if self.normalize_embeddings:
|
551 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
552 |
+
|
553 |
+
# fixes for #522 and #487 to avoid oom problems on gpu with large datasets
|
554 |
+
if convert_to_numpy:
|
555 |
+
embeddings = embeddings.cpu()
|
556 |
+
|
557 |
+
all_embeddings.extend(embeddings)
|
558 |
+
|
559 |
+
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
|
560 |
+
|
561 |
+
if convert_to_tensor:
|
562 |
+
all_embeddings = torch.stack(all_embeddings)
|
563 |
+
elif convert_to_numpy:
|
564 |
+
#all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
565 |
+
all_embeddings = np.asarray([emb.to(torch.float).numpy() for emb in all_embeddings])
|
566 |
+
if input_was_string:
|
567 |
+
all_embeddings = all_embeddings[0]
|
568 |
+
|
569 |
+
return all_embeddings
|
570 |
+
|
571 |
+
def encode(
|
572 |
+
self,
|
573 |
+
sentences: List[str],
|
574 |
+
is_query: Optional[bool] = None,
|
575 |
+
convert_to_tensor: bool = False,
|
576 |
+
**kwargs
|
577 |
+
):
|
578 |
+
is_query = self.default_query if is_query is None else is_query
|
579 |
+
if is_query and self.instruction:
|
580 |
+
sentences = [self.instruction + sent for sent in sentences]
|
581 |
+
kwargs.update(is_query=is_query)
|
582 |
+
if self.pool is not None:
|
583 |
+
kwargs.update(show_progress_bar=False)
|
584 |
+
embeddings = self.encode_multi_process(sentences, **kwargs)
|
585 |
+
if convert_to_tensor:
|
586 |
+
embeddings = torch.from_numpy(embeddings)
|
587 |
+
if self.mp_tensor_to_cuda and torch.cuda.is_available():
|
588 |
+
embeddings = embeddings.to(torch.device('cuda')) # default 0-th gpu
|
589 |
+
return embeddings
|
590 |
+
|
591 |
+
return self._encode(sentences, convert_to_tensor=convert_to_tensor, **kwargs)
|
592 |
+
|
593 |
+
def encode_queries(self, queries: List[str], **kwargs):
|
594 |
+
is_query = self.default_query if self.force_default else True
|
595 |
+
return self.encode(queries, is_query=is_query, **kwargs)
|
596 |
+
|
597 |
+
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
|
598 |
+
# borrowed from mteb.abstasks.AbsTaskRetrieval.DRESModel
|
599 |
+
if type(corpus) is dict:
|
600 |
+
sentences = [
|
601 |
+
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
|
602 |
+
if "title" in corpus
|
603 |
+
else corpus["text"][i].strip()
|
604 |
+
for i in range(len(corpus["text"]))
|
605 |
+
]
|
606 |
+
elif isinstance(corpus[0], dict):
|
607 |
+
sentences = [
|
608 |
+
(doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
|
609 |
+
for doc in corpus
|
610 |
+
]
|
611 |
+
else:
|
612 |
+
sentences = corpus
|
613 |
+
is_query = self.default_query if self.force_default else False
|
614 |
+
return self.encode(sentences, is_query=is_query, **kwargs)
|
615 |
+
|
616 |
+
def main(args):
|
617 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
618 |
+
encoder = Encoder(args.model, args.pooling)
|
619 |
+
model = Wrapper(
|
620 |
+
tokenizer, encoder,
|
621 |
+
batch_size=args.batch_size,
|
622 |
+
max_seq_len=args.max_seq_len,
|
623 |
+
normalize_embeddings=args.norm
|
624 |
+
)
|
625 |
+
|
626 |
+
if args.task == 'mteb':
|
627 |
+
task_names = MTEB_TASK_LIST
|
628 |
+
lang = ['en']
|
629 |
+
elif args.task == 'cmteb':
|
630 |
+
task_names = CMTEB_TASK_LIST
|
631 |
+
lang = ['zh','zh-CN']
|
632 |
+
else:
|
633 |
+
task_names = [args.task]
|
634 |
+
lang = ['en','zh','zh-CN']
|
635 |
+
for task in task_names:
|
636 |
+
evaluation = MTEB(tasks=[task], task_langs=lang)
|
637 |
+
task_cls = evaluation.tasks[0]
|
638 |
+
task_name: str = task_cls.description['name']
|
639 |
+
task_type: str = task_cls.description['type']
|
640 |
+
instruction = get_task_def_by_task_name_and_type(task_name, task_type)
|
641 |
+
model.instruction = get_detailed_instruct(instruction)
|
642 |
+
if task == 'MSMARCO':
|
643 |
+
eval_splits = ["dev"]
|
644 |
+
elif task in CMTEB_TASK_LIST:
|
645 |
+
eval_splits = task_cls.description['eval_splits']
|
646 |
+
else:
|
647 |
+
eval_splits = ["test"]
|
648 |
+
|
649 |
+
evaluation.run(model, output_folder=args.output_dir, eval_splits=eval_splits)
|
650 |
+
print('\n')
|
651 |
+
|
652 |
+
|
653 |
+
if __name__ == "__main__":
|
654 |
+
_PARSER = argparse.ArgumentParser()
|
655 |
+
_PARSER.add_argument(
|
656 |
+
"-m", "--model", type=str, default=None
|
657 |
+
)
|
658 |
+
_PARSER.add_argument("--pooling", type=str, default='last')
|
659 |
+
_PARSER.add_argument("--output_dir", type=str, default=None)
|
660 |
+
_PARSER.add_argument("--default_type", type=str, default='query')
|
661 |
+
_PARSER.add_argument("--max_seq_len", type=int, default=512)
|
662 |
+
_PARSER.add_argument("-b", "--batch_size", type=int, default=32)
|
663 |
+
_PARSER.add_argument(
|
664 |
+
"-t", "--task", type=str, default=None # None for running default tasks
|
665 |
+
)
|
666 |
+
_PARSER.add_argument("--norm", action="store_true")
|
667 |
+
_ARGS = _PARSER.parse_args()
|
668 |
+
main(_ARGS)
|