|
import os |
|
import re |
|
import math |
|
import json |
|
import argparse |
|
import warnings |
|
import traceback |
|
from tqdm import tqdm |
|
|
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
import sys |
|
sys.path.append('./') |
|
from videollama2 import model_init, mm_infer |
|
from videollama2.utils import disable_torch_init |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
class PerceptionTestMCQADataset(Dataset): |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
def __init__(self, data_list, processor): |
|
self.data_list = data_list |
|
self.processor = processor |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
line = self.data_list[idx] |
|
video_name = line['metadata']['video_id'] |
|
mc_questions = line['mc_question'] |
|
|
|
for fmt in self.video_formats: |
|
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
video_tensor = self.processor(video_path) |
|
|
|
instructs = [] |
|
qids = [] |
|
ops = [] |
|
for q in mc_questions: |
|
question = q['question'] |
|
qid = q['id'] |
|
options = q['options'] |
|
instruct = f'Question: {question}\nOptions:\n(A) {options[0]}\n(B) {options[1]}\n(C) {options[2]}\nAnswer with the option\'s letter from the given choices directly and only give the best option.' |
|
|
|
instructs.append(instruct) |
|
qids.append(qid) |
|
ops.append(options) |
|
|
|
return { |
|
'video': video_tensor, |
|
'video_id': video_name, |
|
'instructs': instructs, |
|
'question_ids': qids, |
|
'options': ops, |
|
} |
|
|
|
|
|
def collate_fn(batch): |
|
vid = [x['video'] for x in batch] |
|
v_id = [x['video_id'] for x in batch] |
|
ins = [x['instructs'] for x in batch] |
|
q_ids = [x['question_ids'] for x in batch] |
|
ops = [x['options'] for x in batch] |
|
vid = torch.stack(vid, dim=0) |
|
return vid, v_id, ins, q_ids, ops |
|
|
|
|
|
def run_inference(args): |
|
disable_torch_init() |
|
|
|
model, processor, tokenizer = model_init(args.model_path) |
|
|
|
questions = json.load(open(args.question_file, "r")) |
|
questions = list(questions.values()) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
|
|
assert args.batch_size == 1, "Batch size must be 1 for inference" |
|
dataset = PerceptionTestMCQADataset(questions, processor['video']) |
|
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) |
|
|
|
answer_file = os.path.expanduser(args.answer_file) |
|
os.makedirs(os.path.dirname(answer_file), exist_ok=True) |
|
ans_file = open(answer_file, "w") |
|
|
|
|
|
for i, (video_tensor, video_id, instructs, question_ids, options) in enumerate(tqdm(dataloader)): |
|
|
|
|
|
video_tensor = video_tensor[0] |
|
video_id = video_id[0] |
|
instructs = instructs[0] |
|
question_ids = question_ids[0] |
|
options = options[0] |
|
|
|
qas = [] |
|
for idx, instruct in enumerate(instructs): |
|
letters = ['(A)', '(B)', '(C)'] |
|
question_id = question_ids[idx] |
|
_options = options[idx] |
|
|
|
output = mm_infer( |
|
video_tensor, |
|
instruct, |
|
model=model, |
|
tokenizer=tokenizer, |
|
modal='video', |
|
do_sample=False, |
|
) |
|
|
|
output = output.replace('answer', '') |
|
output = output.replace('Answer', '') |
|
pred_answer = re.findall('\(*[A-C]\)*', output) |
|
try: |
|
assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(video_id, instruct, output) |
|
pred_answer = pred_answer[0].strip() |
|
|
|
pred_answer = pred_answer.strip('()') |
|
pred_answer = f'({pred_answer})' |
|
pred_idx = letters.index(pred_answer) |
|
except: |
|
traceback.print_exc() |
|
tmp_options = [x.lower() for x in _options] |
|
if output.lower() in tmp_options: |
|
tmp_options = [x.lower() for x in _options] |
|
pred_idx = tmp_options.index(output.lower()) |
|
else: |
|
pred_idx = 2 |
|
|
|
qas.append({'id': question_id, 'answer_id': pred_idx, 'answer': _options[pred_idx]}) |
|
|
|
ans_file.write('\"{}\": {},\n'.format(video_id, json.dumps(qas))) |
|
|
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--model-path', help='', required=True) |
|
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) |
|
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument("--model_max_length", type=int, required=False, default=2048) |
|
parser.add_argument("--batch-size", type=int, required=False, default=1) |
|
parser.add_argument("--num-workers", type=int, required=False, default=8) |
|
args = parser.parse_args() |
|
|
|
run_inference(args) |
|
|