VideoLLaMA2-7B / videollama2 /eval /inference_video_mcqa_perception_test_mcqa.py
Aliayub1995's picture
Upload 52 files
87ce8f2 verified
import os
import re
import math
import json
import argparse
import warnings
import traceback
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
class PerceptionTestMCQADataset(Dataset):
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
def __init__(self, data_list, processor):
self.data_list = data_list
self.processor = processor
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
line = self.data_list[idx]
video_name = line['metadata']['video_id']
mc_questions = line['mc_question']
for fmt in self.video_formats: # Added this line
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
if os.path.exists(temp_path):
video_path = temp_path
break
video_tensor = self.processor(video_path)
instructs = []
qids = []
ops = []
for q in mc_questions:
question = q['question']
qid = q['id']
options = q['options']
instruct = f'Question: {question}\nOptions:\n(A) {options[0]}\n(B) {options[1]}\n(C) {options[2]}\nAnswer with the option\'s letter from the given choices directly and only give the best option.'
instructs.append(instruct)
qids.append(qid)
ops.append(options)
return {
'video': video_tensor,
'video_id': video_name,
'instructs': instructs,
'question_ids': qids,
'options': ops,
}
def collate_fn(batch):
vid = [x['video'] for x in batch]
v_id = [x['video_id'] for x in batch]
ins = [x['instructs'] for x in batch]
q_ids = [x['question_ids'] for x in batch]
ops = [x['options'] for x in batch]
vid = torch.stack(vid, dim=0)
return vid, v_id, ins, q_ids, ops
def run_inference(args):
disable_torch_init()
model, processor, tokenizer = model_init(args.model_path)
questions = json.load(open(args.question_file, "r"))
questions = list(questions.values())
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
assert args.batch_size == 1, "Batch size must be 1 for inference"
dataset = PerceptionTestMCQADataset(questions, processor['video'])
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
answer_file = os.path.expanduser(args.answer_file)
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
ans_file = open(answer_file, "w")
# Iterate over each sample in the ground truth file
for i, (video_tensor, video_id, instructs, question_ids, options) in enumerate(tqdm(dataloader)):
# reduce batch dimension
video_tensor = video_tensor[0]
video_id = video_id[0]
instructs = instructs[0]
question_ids = question_ids[0]
options = options[0]
qas = []
for idx, instruct in enumerate(instructs):
letters = ['(A)', '(B)', '(C)']
question_id = question_ids[idx]
_options = options[idx]
output = mm_infer(
video_tensor,
instruct,
model=model,
tokenizer=tokenizer,
modal='video',
do_sample=False,
)
output = output.replace('answer', '')
output = output.replace('Answer', '')
pred_answer = re.findall('\(*[A-C]\)*', output)
try:
assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(video_id, instruct, output)
pred_answer = pred_answer[0].strip()
# if not pred_answer.startswith('('):
pred_answer = pred_answer.strip('()')
pred_answer = f'({pred_answer})'
pred_idx = letters.index(pred_answer)
except:
traceback.print_exc()
tmp_options = [x.lower() for x in _options]
if output.lower() in tmp_options:
tmp_options = [x.lower() for x in _options]
pred_idx = tmp_options.index(output.lower())
else:
pred_idx = 2
qas.append({'id': question_id, 'answer_id': pred_idx, 'answer': _options[pred_idx]})
ans_file.write('\"{}\": {},\n'.format(video_id, json.dumps(qas)))
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', help='', required=True)
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--device", type=str, required=False, default='cuda:0')
parser.add_argument("--model_max_length", type=int, required=False, default=2048)
parser.add_argument("--batch-size", type=int, required=False, default=1)
parser.add_argument("--num-workers", type=int, required=False, default=8)
args = parser.parse_args()
run_inference(args)