|
import os |
|
import re |
|
import math |
|
import json |
|
import argparse |
|
import warnings |
|
import traceback |
|
|
|
from tqdm import tqdm |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
import sys |
|
sys.path.append('./') |
|
from videollama2 import model_init, mm_infer |
|
from videollama2.utils import disable_torch_init |
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
class EgoschemaDataset(Dataset): |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
def __init__(self, data_folder, data_list, processor): |
|
self.data_folder = data_folder |
|
self.data_list = data_list |
|
self.processor = processor |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|
|
def __getitem__(self, idx): |
|
line = self.data_list[idx] |
|
q_uid = line['q_uid'] |
|
|
|
for fmt in self.video_formats: |
|
temp_path = os.path.join(self.data_folder, f"{q_uid}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
break |
|
|
|
video_tensor = self.processor(video_path) |
|
|
|
question = line['question'] |
|
a0 = line['option 0'] |
|
a1 = line['option 1'] |
|
a2 = line['option 2'] |
|
a3 = line['option 3'] |
|
a4 = line['option 4'] |
|
axs = [a0, a1, a2, a3, a4] |
|
ops = ['(A)', '(B)', '(C)', '(D)', '(E)'] |
|
|
|
instruct = f'Select the best answer to the following multiple-choice question based on the video.\n{question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option. The best answer is: ' |
|
|
|
return { |
|
'q_uid': q_uid, |
|
'video': video_tensor, |
|
'instruct': instruct, |
|
} |
|
|
|
|
|
def build_egoschema_eval(args, processor): |
|
questions = json.load(open(args.question_file, "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
dataset = EgoschemaDataset(args.video_folder, questions, processor) |
|
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) |
|
|
|
return dataloader |
|
|
|
|
|
def egoschema_dump(ans_file, line, outputs): |
|
for idx, output in enumerate(outputs): |
|
q_uid = line['q_uid'][idx] |
|
instruct = line['instruct'][idx] |
|
letters = ['A', 'B', 'C', 'D', 'E'] |
|
|
|
output = output.replace('answer', '') |
|
output = output.replace('Answer', '') |
|
pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output) |
|
try: |
|
|
|
assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(line['q_uid'], instruct, output) |
|
pred_answer = pred_answer[0].strip() |
|
pred_answer = pred_answer.strip('()') |
|
pred_idx = letters.index(pred_answer) |
|
except: |
|
traceback.print_exc() |
|
pred_idx = 2 |
|
|
|
ans_file.write(f'{q_uid}, {pred_idx}\n') |
|
|
|
|
|
def run_inference(args): |
|
disable_torch_init() |
|
|
|
model, processor, tokenizer = model_init(args.model_path) |
|
|
|
answer_file = os.path.expanduser(args.answer_file) |
|
os.makedirs(os.path.dirname(answer_file), exist_ok=True) |
|
ans_file = open(answer_file, "w") |
|
|
|
val_loader = build_egoschema_eval(args, processor['video']) |
|
|
|
|
|
for i, line in enumerate(tqdm(val_loader)): |
|
video_tensor = line['video'][0] |
|
instruct = line['instruct'][0] |
|
|
|
try: |
|
pred = mm_infer( |
|
video_tensor, |
|
instruct, |
|
model=model, |
|
tokenizer=tokenizer, |
|
modal='video', |
|
do_sample=False, |
|
) |
|
except: |
|
traceback.print_exc() |
|
pred = 'C' |
|
|
|
egoschema_dump(ans_file, line, [pred]) |
|
|
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.') |
|
|
|
parser.add_argument('--model-path', help='', required=True) |
|
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) |
|
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument("--batch-size", type=int, default=1) |
|
parser.add_argument("--num-workers", type=int, default=8) |
|
args = parser.parse_args() |
|
|
|
run_inference(args) |
|
|