|
import json |
|
import argparse |
|
from tabulate import tabulate |
|
|
|
|
|
tasks = { |
|
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), |
|
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), |
|
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False), |
|
"Fine-grained Action": ("fine_grained_action.json", "pMoments_in_Time_Raw/videos/", "video", False), |
|
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False), |
|
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False), |
|
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), |
|
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False), |
|
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False), |
|
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), |
|
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False), |
|
"Action Count": ("action_count.json", "perception/videos/", "video", False), |
|
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False), |
|
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False), |
|
"State Change": ("state_change.json", "perception/videos/", "video", False), |
|
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False), |
|
"Character Order": ("character_order.json", "perception/videos/", "video", False), |
|
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False), |
|
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), |
|
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False), |
|
} |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
res = [eval(x.strip()) for x in open(args.pred_path, 'r').readlines()] |
|
task_types = tasks.keys() |
|
task_acc = {x: [] for x in task_types} |
|
acc = [] |
|
for i, x in enumerate(res): |
|
value = 1 |
|
if x['pred'] != x['gt']: |
|
value = 0 |
|
acc.append(value) |
|
task_acc[x['task_type']].append(value) |
|
acc = sum(acc) * 100 / len(acc) |
|
task_acc = {x: sum(task_acc[x]) * 100 / len(task_acc[x]) for x in task_acc} |
|
print(f"{args.pred_path}:", acc) |
|
task_names = list(tasks.keys()) |
|
|
|
table_data = [] |
|
for i in range(len(task_names) // 4): |
|
row_task_names = task_names[i * 4: (i + 1) * 4] |
|
row_task_acc = [task_acc[x] for x in row_task_names] |
|
table_data.append(row_task_names) |
|
table_data.append(row_task_acc) |
|
print(tabulate(table_data, floatfmt=".1f"), '\n') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Evaluate video captioning.") |
|
parser.add_argument("--pred_path", default=r'', help="The path to file containing prediction.") |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|