VideoLLaMA2-7B / videollama2 /eval /inference_video_cap_msvc.py
Aliayub1995's picture
Upload 52 files
87ce8f2 verified
raw
history blame
4.05 kB
import math
import os
import argparse
import json
import warnings
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
class MSVCDataset(Dataset):
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
def __init__(self, folder, questions, processor):
self.folder = folder
self.questions = questions
self.processor = processor
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
sample = self.questions[idx]
video_name = sample['video_path']
question = sample['question']
answer = sample['captions']
video_path = os.path.join(self.folder, video_name)
video_tensor = self.processor(video_path)
return {
'video': video_tensor,
'video_name': video_name,
'question': question,
'answer': answer,
}
def collate_fn(batch):
vid = [x['video'] for x in batch]
v_id = [x['video_name'] for x in batch]
qus = [x['question'] for x in batch]
ans = [x['answer'] for x in batch]
return vid, v_id, qus, ans
def run_inference(args):
disable_torch_init()
model, processor, tokenizer = model_init(args.model_path)
gt_questions = json.load(open(args.question_file, "r"))
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
answer_file = os.path.join(args.output_file)
os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
ans_file = open(answer_file, "w")
assert args.batch_size == 1, "Batch size must be 1 for inference"
dataset = MSVCDataset(args.video_folder, gt_questions, processor['video'])
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
# Iterate over each sample in the ground truth file
for idx, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)):
video_tensor = video_tensors[0]
video_name = video_names[0]
question = questions[0]
answer = answers[0]
output = mm_infer(
video_tensor,
question,
model=model,
tokenizer=tokenizer,
modal='video',
do_sample=False,
)
sample_set = {'video_name': video_name, 'question': question, 'answer': answer, 'pred': output}
ans_file.write(json.dumps(sample_set) + "\n")
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', help='', required=True)
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--device", type=str, required=False, default='cuda:0')
parser.add_argument("--batch-size", type=int, required=False, default=1)
parser.add_argument("--num-workers", type=int, required=False, default=8)
args = parser.parse_args()
run_inference(args)