Upload PPO LunarLander-v2 trained agent2
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 207.21 +/- 53.55
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff709e63f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff709e6c050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff709e6c0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff709e6c170>", "_build": "<function ActorCriticPolicy._build at 0x7ff709e6c200>", "forward": "<function ActorCriticPolicy.forward at 0x7ff709e6c290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff709e6c320>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff709e6c3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff709e6c440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff709e6c4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff709e6c560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff709ea4e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651865772.0832722, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPZ3iT5ekdA9PHAdPa5ZKr5mLwe8JCGZvQAAAAAAAAAALfkxPjfghD53ZL699W0XvgneFr0UD6u7AAAAAAAAAADNNha9KeBFujDdlrtn1Py1pnHaOZZUXzUAAIA/AACAP9BITr543rs9K69VPpTsab6NdpE89YEJvQAAAAAAAAAA/VaTPjEIAL2ILhM7JvKaucVlXb7O9ju6AACAPwAAgD+m/bI9FLy6uo2OsTsn/oy4SgvPOTPPN7kAAIA/AACAP+Zdaj5h5o477ab4vNooy70EMUo8s9wgvwAAAAAAAAAAoNavPvjRmT0+tgK+ADZAvrYRCz2rrP67AAAAAAAAAABgMQK+C5mnP0CtkL7zty2+99Aevpp8F74AAAAAAAAAAIDFfj5HQC8/+E14uS83Xb7MZXa8C2tyPgAAAAAAAAAAWlECPo+WN7oqm5C8LsTsPDh3Azxmod+9AACAPwAAgD/ayO49L0oMPiDWnzsxgCy+GxNzvRZPnL0AAAAAAAAAAK2uDL4PPnE/I16MPGksgL5Ggp688927vAAAAAAAAAAAMy+hPOypxLmjMnI5AF+ENPR4MbqzfYu4AACAPwAAgD/KhdO+84WfP6d/pb7rHXC+QWaDvpZMtz0AAAAAAAAAAH4WkL5hb7E79sQBu2JpkTg3fl+93ZAUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHk/LD1y5X0CUhpRSlIwBbJRN6AOMAXSUR0CBk+eeWfK7dX2UKGgGaAloD0MIn5CdtzE5YECUhpRSlGgVTegDaBZHQIGYRRCQcPx1fZQoaAZoCWgPQwg0ZhL1gsNgQJSGlFKUaBVN6ANoFkdAgc3wEpy6tnV9lChoBmgJaA9DCAUVVb/SYTXAlIaUUpRoFU0EAWgWR0CBz8pNKyv+dX2UKGgGaAloD0MIE2OZfgmJY0CUhpRSlGgVTegDaBZHQIHQDLjghr51fZQoaAZoCWgPQwheg7709r1pQJSGlFKUaBVNXgJoFkdAgdJGEwnIAHV9lChoBmgJaA9DCNE8gEX+RWRAlIaUUpRoFU3oA2gWR0CB6hAbhm5EdX2UKGgGaAloD0MIw/ARMSXDZECUhpRSlGgVTegDaBZHQIHsKY9gWrR1fZQoaAZoCWgPQwjq6SPwB2piQJSGlFKUaBVN6ANoFkdAgfCMgdOqN3V9lChoBmgJaA9DCHwnZr2YmGJAlIaUUpRoFU3oA2gWR0CB8wVcD8tPdX2UKGgGaAloD0MI1V3ZBYOIYECUhpRSlGgVTegDaBZHQIH90VxjriV1fZQoaAZoCWgPQwisjhzpjHlgQJSGlFKUaBVN6ANoFkdAggXOCf6Gg3V9lChoBmgJaA9DCFhv1ArT12FAlIaUUpRoFU3oA2gWR0CCBuBiCrcTdX2UKGgGaAloD0MIMC5VaYtUZUCUhpRSlGgVTegDaBZHQIIKa2OQyRB1fZQoaAZoCWgPQwiR1ELJ5Dg5wJSGlFKUaBVNHwFoFkdAgg2qp1ie/nV9lChoBmgJaA9DCITWw5eJBGBAlIaUUpRoFU3oA2gWR0CCGTPacqe9dX2UKGgGaAloD0MIGArYDsbNYECUhpRSlGgVTegDaBZHQIItwxSHdoF1fZQoaAZoCWgPQwhaSMDo8iFiQJSGlFKUaBVN6ANoFkdAgjjl10T103V9lChoBmgJaA9DCNKKbyh8TWJAlIaUUpRoFU3oA2gWR0CCPae05U97dX2UKGgGaAloD0MI/WmjOh3xXECUhpRSlGgVTegDaBZHQIJ0gieNDMN1fZQoaAZoCWgPQwi/8EqS53FbQJSGlFKUaBVN6ANoFkdAgnZ8vugHvHV9lChoBmgJaA9DCFR0JJf/dllAlIaUUpRoFU3oA2gWR0CCdsrEtNBXdX2UKGgGaAloD0MI+MWlKm3JWECUhpRSlGgVTegDaBZHQIJ5NvIfbK11fZQoaAZoCWgPQwiALESHwAdKQJSGlFKUaBVNJQFoFkdAgoX8HGCI13V9lChoBmgJaA9DCMfVyK60sD/AlIaUUpRoFU0hAWgWR0CCidCiRGMGdX2UKGgGaAloD0MIZ5qw/WSOYkCUhpRSlGgVTegDaBZHQIKTgOQQtjF1fZQoaAZoCWgPQwhKfVnaqQxjQJSGlFKUaBVN6ANoFkdAgpf05U96knV9lChoBmgJaA9DCPhxNEfWg2JAlIaUUpRoFU3oA2gWR0CCmo4dZJTVdX2UKGgGaAloD0MIsW8nEeGjO0CUhpRSlGgVTS0BaBZHQIKdi4Wk8A91fZQoaAZoCWgPQwgVVFT9Sq5cQJSGlFKUaBVN6ANoFkdAgqVKIi1RcnV9lChoBmgJaA9DCE7TZwdc9xnAlIaUUpRoFU0dAWgWR0CCqoR+z+m4dX2UKGgGaAloD0MIz4O7s3a/YECUhpRSlGgVTegDaBZHQIKtEKTjebd1fZQoaAZoCWgPQwgPlxx3SlRfQJSGlFKUaBVN6ANoFkdAgq3/VI7NjnV9lChoBmgJaA9DCGtkV1pG31pAlIaUUpRoFU3oA2gWR0CCsXNlAeJYdX2UKGgGaAloD0MIXk2espouYkCUhpRSlGgVTegDaBZHQIK0kb1h9b51fZQoaAZoCWgPQwiM2v0qwFM3QJSGlFKUaBVL/mgWR0CCus8Hv+fidX2UKGgGaAloD0MIjV2iemvg+L+UhpRSlGgVTSEBaBZHQIK774xk/bF1fZQoaAZoCWgPQwgvvmiPl4hhQJSGlFKUaBVN6ANoFkdAgr7T101ZT3V9lChoBmgJaA9DCJYKKqp+4F1AlIaUUpRoFU3oA2gWR0CC0N4Glhw3dX2UKGgGaAloD0MIIR6Jl6erLUCUhpRSlGgVTYoBaBZHQILW9cD8tPJ1fZQoaAZoCWgPQwjqPZXTnpIlQJSGlFKUaBVNOgFoFkdAgtgVJcxCY3V9lChoBmgJaA9DCD9SRIZVnDLAlIaUUpRoFU0EAWgWR0CC2PIOH310dX2UKGgGaAloD0MImpXtQ16EYkCUhpRSlGgVTegDaBZHQIMTSQYDT0B1fZQoaAZoCWgPQwjVXdkFA6xgQJSGlFKUaBVN6ANoFkdAgxUmPYFqz3V9lChoBmgJaA9DCFBUNqypx1lAlIaUUpRoFU3oA2gWR0CDF97sOXmedX2UKGgGaAloD0MIyv55GrD7YECUhpRSlGgVTegDaBZHQIMowQ+UyHp1fZQoaAZoCWgPQwjGia92FElhQJSGlFKUaBVN6ANoFkdAgzJhQemvXHV9lChoBmgJaA9DCBptVRLZPGFAlIaUUpRoFU3oA2gWR0CDNqsd1dPddX2UKGgGaAloD0MIjEgUWtZaW0CUhpRSlGgVTegDaBZHQINEN+EytV91fZQoaAZoCWgPQwi+wKxQpGBfQJSGlFKUaBVN6ANoFkdAg0xhHLA573V9lChoBmgJaA9DCOW1ErpL5F9AlIaUUpRoFU3oA2gWR0CDTXa7mMfjdX2UKGgGaAloD0MINQpJZvVvZkCUhpRSlGgVTX4DaBZHQINQsVJtix51fZQoaAZoCWgPQwj0TgXc8+FbQJSGlFKUaBVN6ANoFkdAg1FIJZ4fOnV9lChoBmgJaA9DCKzFpwAYRWFAlIaUUpRoFU3oA2gWR0CDYEefZmI1dX2UKGgGaAloD0MItf0rK02OOECUhpRSlGgVTSEBaBZHQINnDQmeDnN1fZQoaAZoCWgPQwh8KNGSx9soQJSGlFKUaBVNIQFoFkdAg3NMAFPi1nV9lChoBmgJaA9DCPTDCOHRlV5AlIaUUpRoFU3oA2gWR0CDc2/VRUFTdX2UKGgGaAloD0MIxFvn3y5GXkCUhpRSlGgVTegDaBZHQIN5msaKk2x1fZQoaAZoCWgPQwhOfLWjOOpkQJSGlFKUaBVN6ANoFkdAg3rC8WbgCXV9lChoBmgJaA9DCBe2Ziuvv2BAlIaUUpRoFU3oA2gWR0CDe6tga3qidX2UKGgGaAloD0MISRRa1v3rJMCUhpRSlGgVTS0BaBZHQIOL97IDHOt1fZQoaAZoCWgPQwgKTRJLyk5jQJSGlFKUaBVN6ANoFkdAg4/4rz5GjXV9lChoBmgJaA9DCJshVRQvCmBAlIaUUpRoFU3oA2gWR0CDkalyimEXdX2UKGgGaAloD0MI6Ih8l1KeWkCUhpRSlGgVTegDaBZHQIO5A/PgNw11fZQoaAZoCWgPQwiqKck6nB9kQJSGlFKUaBVN6ANoFkdAg8jVkc0cfnV9lChoBmgJaA9DCI5aYfpeZl9AlIaUUpRoFU3oA2gWR0CD0wHmig01dX2UKGgGaAloD0MIQwOxbOawXECUhpRSlGgVTegDaBZHQIPXnEMspXp1fZQoaAZoCWgPQwgPYmcKnZ8uwJSGlFKUaBVNFAFoFkdAg9nY3Ns3ynV9lChoBmgJaA9DCKBrX0AvumpAlIaUUpRoFU3VAWgWR0CD2yQNCqp+dX2UKGgGaAloD0MI5llJK76ZW0CUhpRSlGgVTegDaBZHQIPt+4G2TgV1fZQoaAZoCWgPQwhZhc0AF6tdQJSGlFKUaBVN6ANoFkdAg+8oMrmQsHV9lChoBmgJaA9DCE3Z6Qd1aV9AlIaUUpRoFU3oA2gWR0CD8z+Q2dd3dX2UKGgGaAloD0MIVmZK628YY0CUhpRSlGgVTegDaBZHQIQEgZn+Q2d1fZQoaAZoCWgPQwjlJf+Tv2M4QJSGlFKUaBVNAwFoFkdAhBDzguRLb3V9lChoBmgJaA9DCBDLZg5JgFpAlIaUUpRoFU3oA2gWR0CEGgXrt3OfdX2UKGgGaAloD0MIfnTqymcLYECUhpRSlGgVTegDaBZHQIQaLIYFaB91fZQoaAZoCWgPQwhg5GVNLDRrQJSGlFKUaBVNAwJoFkdAhB8iudPLxXV9lChoBmgJaA9DCPRtwVLdBmJAlIaUUpRoFU3oA2gWR0CEIGepXIU8dX2UKGgGaAloD0MIQMObNXiqYUCUhpRSlGgVTegDaBZHQIQhZhpg1FZ1fZQoaAZoCWgPQwio5Qeu8qQ0QJSGlFKUaBVNSgFoFkdAhC1zabnX/nV9lChoBmgJaA9DCC0FpP0P4mFAlIaUUpRoFU3oA2gWR0CEMJyEL6UJdX2UKGgGaAloD0MIMEs7NRcgYkCUhpRSlGgVTegDaBZHQIQz01KoQ4F1fZQoaAZoCWgPQwjtZHCUvEdeQJSGlFKUaBVN6ANoFkdAhDeT5wfhdnV9lChoBmgJaA9DCKSrdHed5WFAlIaUUpRoFU3oA2gWR0CEa7irksBidX2UKGgGaAloD0MINZcbDHVGXUCUhpRSlGgVTegDaBZHQIR1q+Yc/+t1fZQoaAZoCWgPQwgijnVxGxhhQJSGlFKUaBVN6ANoFkdAhHozcynDSHV9lChoBmgJaA9DCIEKR5DKg2BAlIaUUpRoFU3oA2gWR0CEfaBo24usdX2UKGgGaAloD0MIdJXurrMEW0CUhpRSlGgVTegDaBZHQISQVkQPI4l1fZQoaAZoCWgPQwinH9RFCjZlQJSGlFKUaBVN6ANoFkdAhJSPIfbKzXV9lChoBmgJaA9DCMECmDJw1mBAlIaUUpRoFU3oA2gWR0CEtA7xNIsidX2UKGgGaAloD0MIfUELCRj1WkCUhpRSlGgVTegDaBZHQIS9lxp+MIh1fZQoaAZoCWgPQwjHhJhLKsZhQJSGlFKUaBVN6ANoFkdAhL3AM+eOGXV9lChoBmgJaA9DCGmtaHOc0znAlIaUUpRoFU0iAWgWR0CEvm33Hq/udX2UKGgGaAloD0MImNwosta+XUCUhpRSlGgVTegDaBZHQITC+mJm/WV1fZQoaAZoCWgPQwgyHxDoTBFVQJSGlFKUaBVN6ANoFkdAhMQll05lv3V9lChoBmgJaA9DCCtrm+Jx72BAlIaUUpRoFU3oA2gWR0CExSsf7rLRdX2UKGgGaAloD0MIxa7t7RaRYECUhpRSlGgVTegDaBZHQITSSEal1r91fZQoaAZoCWgPQwh6w33k1u1iQJSGlFKUaBVN6ANoFkdAhNV3LNfPX3V9lChoBmgJaA9DCD1kyoegWFhAlIaUUpRoFU3oA2gWR0CE2NVyWAwxdX2UKGgGaAloD0MIXHNH/8uMY0CUhpRSlGgVTegDaBZHQITcePFNtZV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98d4712e08ab64115af7560eef46ad33b5eb8c1d537a8b23a1973b11d0c6e7d8
|
3 |
+
size 144048
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff709e63f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff709e6c050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff709e6c0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff709e6c170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff709e6c200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff709e6c290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff709e6c320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff709e6c3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff709e6c440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff709e6c4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff709e6c560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff709ea4e40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651865772.0832722,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPZ3iT5ekdA9PHAdPa5ZKr5mLwe8JCGZvQAAAAAAAAAALfkxPjfghD53ZL699W0XvgneFr0UD6u7AAAAAAAAAADNNha9KeBFujDdlrtn1Py1pnHaOZZUXzUAAIA/AACAP9BITr543rs9K69VPpTsab6NdpE89YEJvQAAAAAAAAAA/VaTPjEIAL2ILhM7JvKaucVlXb7O9ju6AACAPwAAgD+m/bI9FLy6uo2OsTsn/oy4SgvPOTPPN7kAAIA/AACAP+Zdaj5h5o477ab4vNooy70EMUo8s9wgvwAAAAAAAAAAoNavPvjRmT0+tgK+ADZAvrYRCz2rrP67AAAAAAAAAABgMQK+C5mnP0CtkL7zty2+99Aevpp8F74AAAAAAAAAAIDFfj5HQC8/+E14uS83Xb7MZXa8C2tyPgAAAAAAAAAAWlECPo+WN7oqm5C8LsTsPDh3Azxmod+9AACAPwAAgD/ayO49L0oMPiDWnzsxgCy+GxNzvRZPnL0AAAAAAAAAAK2uDL4PPnE/I16MPGksgL5Ggp688927vAAAAAAAAAAAMy+hPOypxLmjMnI5AF+ENPR4MbqzfYu4AACAPwAAgD/KhdO+84WfP6d/pb7rHXC+QWaDvpZMtz0AAAAAAAAAAH4WkL5hb7E79sQBu2JpkTg3fl+93ZAUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHk/LD1y5X0CUhpRSlIwBbJRN6AOMAXSUR0CBk+eeWfK7dX2UKGgGaAloD0MIn5CdtzE5YECUhpRSlGgVTegDaBZHQIGYRRCQcPx1fZQoaAZoCWgPQwg0ZhL1gsNgQJSGlFKUaBVN6ANoFkdAgc3wEpy6tnV9lChoBmgJaA9DCAUVVb/SYTXAlIaUUpRoFU0EAWgWR0CBz8pNKyv+dX2UKGgGaAloD0MIE2OZfgmJY0CUhpRSlGgVTegDaBZHQIHQDLjghr51fZQoaAZoCWgPQwheg7709r1pQJSGlFKUaBVNXgJoFkdAgdJGEwnIAHV9lChoBmgJaA9DCNE8gEX+RWRAlIaUUpRoFU3oA2gWR0CB6hAbhm5EdX2UKGgGaAloD0MIw/ARMSXDZECUhpRSlGgVTegDaBZHQIHsKY9gWrR1fZQoaAZoCWgPQwjq6SPwB2piQJSGlFKUaBVN6ANoFkdAgfCMgdOqN3V9lChoBmgJaA9DCHwnZr2YmGJAlIaUUpRoFU3oA2gWR0CB8wVcD8tPdX2UKGgGaAloD0MI1V3ZBYOIYECUhpRSlGgVTegDaBZHQIH90VxjriV1fZQoaAZoCWgPQwisjhzpjHlgQJSGlFKUaBVN6ANoFkdAggXOCf6Gg3V9lChoBmgJaA9DCFhv1ArT12FAlIaUUpRoFU3oA2gWR0CCBuBiCrcTdX2UKGgGaAloD0MIMC5VaYtUZUCUhpRSlGgVTegDaBZHQIIKa2OQyRB1fZQoaAZoCWgPQwiR1ELJ5Dg5wJSGlFKUaBVNHwFoFkdAgg2qp1ie/nV9lChoBmgJaA9DCITWw5eJBGBAlIaUUpRoFU3oA2gWR0CCGTPacqe9dX2UKGgGaAloD0MIGArYDsbNYECUhpRSlGgVTegDaBZHQIItwxSHdoF1fZQoaAZoCWgPQwhaSMDo8iFiQJSGlFKUaBVN6ANoFkdAgjjl10T103V9lChoBmgJaA9DCNKKbyh8TWJAlIaUUpRoFU3oA2gWR0CCPae05U97dX2UKGgGaAloD0MI/WmjOh3xXECUhpRSlGgVTegDaBZHQIJ0gieNDMN1fZQoaAZoCWgPQwi/8EqS53FbQJSGlFKUaBVN6ANoFkdAgnZ8vugHvHV9lChoBmgJaA9DCFR0JJf/dllAlIaUUpRoFU3oA2gWR0CCdsrEtNBXdX2UKGgGaAloD0MI+MWlKm3JWECUhpRSlGgVTegDaBZHQIJ5NvIfbK11fZQoaAZoCWgPQwiALESHwAdKQJSGlFKUaBVNJQFoFkdAgoX8HGCI13V9lChoBmgJaA9DCMfVyK60sD/AlIaUUpRoFU0hAWgWR0CCidCiRGMGdX2UKGgGaAloD0MIZ5qw/WSOYkCUhpRSlGgVTegDaBZHQIKTgOQQtjF1fZQoaAZoCWgPQwhKfVnaqQxjQJSGlFKUaBVN6ANoFkdAgpf05U96knV9lChoBmgJaA9DCPhxNEfWg2JAlIaUUpRoFU3oA2gWR0CCmo4dZJTVdX2UKGgGaAloD0MIsW8nEeGjO0CUhpRSlGgVTS0BaBZHQIKdi4Wk8A91fZQoaAZoCWgPQwgVVFT9Sq5cQJSGlFKUaBVN6ANoFkdAgqVKIi1RcnV9lChoBmgJaA9DCE7TZwdc9xnAlIaUUpRoFU0dAWgWR0CCqoR+z+m4dX2UKGgGaAloD0MIz4O7s3a/YECUhpRSlGgVTegDaBZHQIKtEKTjebd1fZQoaAZoCWgPQwgPlxx3SlRfQJSGlFKUaBVN6ANoFkdAgq3/VI7NjnV9lChoBmgJaA9DCGtkV1pG31pAlIaUUpRoFU3oA2gWR0CCsXNlAeJYdX2UKGgGaAloD0MIXk2espouYkCUhpRSlGgVTegDaBZHQIK0kb1h9b51fZQoaAZoCWgPQwiM2v0qwFM3QJSGlFKUaBVL/mgWR0CCus8Hv+fidX2UKGgGaAloD0MIjV2iemvg+L+UhpRSlGgVTSEBaBZHQIK774xk/bF1fZQoaAZoCWgPQwgvvmiPl4hhQJSGlFKUaBVN6ANoFkdAgr7T101ZT3V9lChoBmgJaA9DCJYKKqp+4F1AlIaUUpRoFU3oA2gWR0CC0N4Glhw3dX2UKGgGaAloD0MIIR6Jl6erLUCUhpRSlGgVTYoBaBZHQILW9cD8tPJ1fZQoaAZoCWgPQwjqPZXTnpIlQJSGlFKUaBVNOgFoFkdAgtgVJcxCY3V9lChoBmgJaA9DCD9SRIZVnDLAlIaUUpRoFU0EAWgWR0CC2PIOH310dX2UKGgGaAloD0MImpXtQ16EYkCUhpRSlGgVTegDaBZHQIMTSQYDT0B1fZQoaAZoCWgPQwjVXdkFA6xgQJSGlFKUaBVN6ANoFkdAgxUmPYFqz3V9lChoBmgJaA9DCFBUNqypx1lAlIaUUpRoFU3oA2gWR0CDF97sOXmedX2UKGgGaAloD0MIyv55GrD7YECUhpRSlGgVTegDaBZHQIMowQ+UyHp1fZQoaAZoCWgPQwjGia92FElhQJSGlFKUaBVN6ANoFkdAgzJhQemvXHV9lChoBmgJaA9DCBptVRLZPGFAlIaUUpRoFU3oA2gWR0CDNqsd1dPddX2UKGgGaAloD0MIjEgUWtZaW0CUhpRSlGgVTegDaBZHQINEN+EytV91fZQoaAZoCWgPQwi+wKxQpGBfQJSGlFKUaBVN6ANoFkdAg0xhHLA573V9lChoBmgJaA9DCOW1ErpL5F9AlIaUUpRoFU3oA2gWR0CDTXa7mMfjdX2UKGgGaAloD0MINQpJZvVvZkCUhpRSlGgVTX4DaBZHQINQsVJtix51fZQoaAZoCWgPQwj0TgXc8+FbQJSGlFKUaBVN6ANoFkdAg1FIJZ4fOnV9lChoBmgJaA9DCKzFpwAYRWFAlIaUUpRoFU3oA2gWR0CDYEefZmI1dX2UKGgGaAloD0MItf0rK02OOECUhpRSlGgVTSEBaBZHQINnDQmeDnN1fZQoaAZoCWgPQwh8KNGSx9soQJSGlFKUaBVNIQFoFkdAg3NMAFPi1nV9lChoBmgJaA9DCPTDCOHRlV5AlIaUUpRoFU3oA2gWR0CDc2/VRUFTdX2UKGgGaAloD0MIxFvn3y5GXkCUhpRSlGgVTegDaBZHQIN5msaKk2x1fZQoaAZoCWgPQwhOfLWjOOpkQJSGlFKUaBVN6ANoFkdAg3rC8WbgCXV9lChoBmgJaA9DCBe2Ziuvv2BAlIaUUpRoFU3oA2gWR0CDe6tga3qidX2UKGgGaAloD0MISRRa1v3rJMCUhpRSlGgVTS0BaBZHQIOL97IDHOt1fZQoaAZoCWgPQwgKTRJLyk5jQJSGlFKUaBVN6ANoFkdAg4/4rz5GjXV9lChoBmgJaA9DCJshVRQvCmBAlIaUUpRoFU3oA2gWR0CDkalyimEXdX2UKGgGaAloD0MI6Ih8l1KeWkCUhpRSlGgVTegDaBZHQIO5A/PgNw11fZQoaAZoCWgPQwiqKck6nB9kQJSGlFKUaBVN6ANoFkdAg8jVkc0cfnV9lChoBmgJaA9DCI5aYfpeZl9AlIaUUpRoFU3oA2gWR0CD0wHmig01dX2UKGgGaAloD0MIQwOxbOawXECUhpRSlGgVTegDaBZHQIPXnEMspXp1fZQoaAZoCWgPQwgPYmcKnZ8uwJSGlFKUaBVNFAFoFkdAg9nY3Ns3ynV9lChoBmgJaA9DCKBrX0AvumpAlIaUUpRoFU3VAWgWR0CD2yQNCqp+dX2UKGgGaAloD0MI5llJK76ZW0CUhpRSlGgVTegDaBZHQIPt+4G2TgV1fZQoaAZoCWgPQwhZhc0AF6tdQJSGlFKUaBVN6ANoFkdAg+8oMrmQsHV9lChoBmgJaA9DCE3Z6Qd1aV9AlIaUUpRoFU3oA2gWR0CD8z+Q2dd3dX2UKGgGaAloD0MIVmZK628YY0CUhpRSlGgVTegDaBZHQIQEgZn+Q2d1fZQoaAZoCWgPQwjlJf+Tv2M4QJSGlFKUaBVNAwFoFkdAhBDzguRLb3V9lChoBmgJaA9DCBDLZg5JgFpAlIaUUpRoFU3oA2gWR0CEGgXrt3OfdX2UKGgGaAloD0MIfnTqymcLYECUhpRSlGgVTegDaBZHQIQaLIYFaB91fZQoaAZoCWgPQwhg5GVNLDRrQJSGlFKUaBVNAwJoFkdAhB8iudPLxXV9lChoBmgJaA9DCPRtwVLdBmJAlIaUUpRoFU3oA2gWR0CEIGepXIU8dX2UKGgGaAloD0MIQMObNXiqYUCUhpRSlGgVTegDaBZHQIQhZhpg1FZ1fZQoaAZoCWgPQwio5Qeu8qQ0QJSGlFKUaBVNSgFoFkdAhC1zabnX/nV9lChoBmgJaA9DCC0FpP0P4mFAlIaUUpRoFU3oA2gWR0CEMJyEL6UJdX2UKGgGaAloD0MIMEs7NRcgYkCUhpRSlGgVTegDaBZHQIQz01KoQ4F1fZQoaAZoCWgPQwjtZHCUvEdeQJSGlFKUaBVN6ANoFkdAhDeT5wfhdnV9lChoBmgJaA9DCKSrdHed5WFAlIaUUpRoFU3oA2gWR0CEa7irksBidX2UKGgGaAloD0MINZcbDHVGXUCUhpRSlGgVTegDaBZHQIR1q+Yc/+t1fZQoaAZoCWgPQwgijnVxGxhhQJSGlFKUaBVN6ANoFkdAhHozcynDSHV9lChoBmgJaA9DCIEKR5DKg2BAlIaUUpRoFU3oA2gWR0CEfaBo24usdX2UKGgGaAloD0MIdJXurrMEW0CUhpRSlGgVTegDaBZHQISQVkQPI4l1fZQoaAZoCWgPQwinH9RFCjZlQJSGlFKUaBVN6ANoFkdAhJSPIfbKzXV9lChoBmgJaA9DCMECmDJw1mBAlIaUUpRoFU3oA2gWR0CEtA7xNIsidX2UKGgGaAloD0MIfUELCRj1WkCUhpRSlGgVTegDaBZHQIS9lxp+MIh1fZQoaAZoCWgPQwjHhJhLKsZhQJSGlFKUaBVN6ANoFkdAhL3AM+eOGXV9lChoBmgJaA9DCGmtaHOc0znAlIaUUpRoFU0iAWgWR0CEvm33Hq/udX2UKGgGaAloD0MImNwosta+XUCUhpRSlGgVTegDaBZHQITC+mJm/WV1fZQoaAZoCWgPQwgyHxDoTBFVQJSGlFKUaBVN6ANoFkdAhMQll05lv3V9lChoBmgJaA9DCCtrm+Jx72BAlIaUUpRoFU3oA2gWR0CExSsf7rLRdX2UKGgGaAloD0MIxa7t7RaRYECUhpRSlGgVTegDaBZHQITSSEal1r91fZQoaAZoCWgPQwh6w33k1u1iQJSGlFKUaBVN6ANoFkdAhNV3LNfPX3V9lChoBmgJaA9DCD1kyoegWFhAlIaUUpRoFU3oA2gWR0CE2NVyWAwxdX2UKGgGaAloD0MIXHNH/8uMY0CUhpRSlGgVTegDaBZHQITcePFNtZV1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:945241785fd191d09c3317d8633957cfc34f6fd84d1e83c1e630408afb0341f4
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9007c72bafa387b6986bb77ebad93b3083c9078a0a4afe04c0889df925ee8797
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82358784c0807ac0c02dadfddecbf8d0c5a50f8192d5735893c6df2065c63c90
|
3 |
+
size 245466
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 207.20557271863655, "std_reward": 53.54569971186692, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T20:07:18.445710"}
|