Alian3785 commited on
Commit
2ba13a5
·
1 Parent(s): ec76404

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - FrozenLake-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 0.70 +/- 0.46
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: FrozenLake-v1
20
+ type: FrozenLake-v1
21
+ ---
22
+
23
+ # **PPO** Agent playing **FrozenLake-v1**
24
+ This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc9a9daa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc9a9dab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc9a9dab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc9a9dac20>", "_build": "<function ActorCriticPolicy._build at 0x7fcc9a9dacb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc9a9dad40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc9a9dadd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc9a9dae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc9a9daef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc9a9daf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc9a9e1050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc9aa1cd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 16, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652745639.4016604, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAQAAAAAAAAADgAAAAAAAAAKAAAAAAAAAAkAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAkAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAJAAAAAAAAAAkAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUS0GMAXSUR0CVntTC+De1dX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVnspxFRYSdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVnuPHktEodX2UKGgGRz/wAAAAAAAAaAdLL2gIR0CVntlE7W/bdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CVnvLamGdqdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CVnvErXlKcdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVnue2d/aydX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVnup1zQu3dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CVnvGNaQmvdX2UKGgGRz/wAAAAAAAAaAdLPmgIR0CVnwdtl7MQdX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CVnv4JeE7GdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CVnwLThHbzdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CVnxl8w5/9dX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CVny2GIsRQdX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CVnynjyWiUdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CVn0H/cWTHdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CVnz6Hj6vadX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVnz0p3HJcdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVnzqXnhbXdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CVn0sq8UVSdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CVn0W/8EV4dX2UKGgGRwAAAAAAAAAAaAdLEGgIR0CVn2EtNBWxdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVn1+BpYcOdX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CVn1UF0PpZdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVn1Q8OkLydX2UKGgGRz/wAAAAAAAAaAdLEmgIR0CVn2GrS3LFdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0CVn1z+3pfQdX2UKGgGRz/wAAAAAAAAaAdLL2gIR0CVn2v38GcGdX2UKGgGRz/wAAAAAAAAaAdLImgIR0CVn2wUQCjldX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVn2XIU8FIdX2UKGgGRz/wAAAAAAAAaAdLTGgIR0CVn3fcer+6dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVn3o6CDmKdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CVn4je9Ba+dX2UKGgGRwAAAAAAAAAAaAdLIGgIR0CVn4Nt65XmdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVn4Z1V5rydX2UKGgGRz/wAAAAAAAAaAdLPWgIR0CVn5Zf2K2sdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVn6HI6r/9dX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVn5tq59VndX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CVn6rf+CK8dX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CVn8EMspXqdX2UKGgGRz/wAAAAAAAAaAdLQGgIR0CVn7jMFEApdX2UKGgGRz/wAAAAAAAAaAdLM2gIR0CVn8Phhpg1dX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CVn7f9xZMddX2UKGgGRz/wAAAAAAAAaAdLNmgIR0CVn8pz90ihdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CVn844p+c6dX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CVn+vKEFnqdX2UKGgGRwAAAAAAAAAAaAdLSWgIR0CVn/LHdXT3dX2UKGgGRz/wAAAAAAAAaAdLM2gIR0CVn+++/QBxdX2UKGgGRz/wAAAAAAAAaAdLUmgIR0CVn/lkH2RJdX2UKGgGRwAAAAAAAAAAaAdLUGgIR0CVn/5vtMPCdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVoA1BdD6WdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoAt+kP+XdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVoAd0JWvKdX2UKGgGRz/wAAAAAAAAaAdLTWgIR0CVoAfnOjZddX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoBOHnEEUdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVoBdNWU8ndX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CVoCEal1r7dX2UKGgGRz/wAAAAAAAAaAdLImgIR0CVoBkq+ajOdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0CVoCXjENvwdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoCBVuJk5dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVoDIczZYgdX2UKGgGRz/wAAAAAAAAaAdLNmgIR0CVoDTCLuQZdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CVoDRK6FufdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CVoDTLGJemdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CVoDM23rledX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoDmKZUkwdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVoEuXNTtLdX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CVoE60pmVadX2UKGgGRz/wAAAAAAAAaAdLRGgIR0CVoFkiUxEfdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVoFV1fVqfdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0CVoFyd4FA3dX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CVoHavRqoIdX2UKGgGRwAAAAAAAAAAaAdLJ2gIR0CVoG1SOzY3dX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVoHxRVIZqdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0CVoIT1TR6XdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoJCaZx7zdX2UKGgGRz/wAAAAAAAAaAdLWmgIR0CVoKgg5imVdX2UKGgGRwAAAAAAAAAAaAdLNGgIR0CVoLJlJ6IFdX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CVoK4etCAudX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CVoKk7wKBvdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVoKe4Cp3pdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVoK8PFvQ4dX2UKGgGRwAAAAAAAAAAaAdLUGgIR0CVoLgGKQ7tdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CVoMDTz/ZNdX2UKGgGRwAAAAAAAAAAaAdLN2gIR0CVoLs4DLbIdX2UKGgGRwAAAAAAAAAAaAdLY2gIR0CVoMAnlXA/dX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CVoMuoP07KdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVoNMVDa4+dX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CVoN0vGp++dX2UKGgGRz/wAAAAAAAAaAdLVGgIR0CVoNnNgSezdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CVoOolUp/gdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoO+MZP2xdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoO8TSLIgdX2UKGgGRwAAAAAAAAAAaAdLCWgIR0CVoQFqSHM2dX2UKGgGRwAAAAAAAAAAaAdLJmgIR0CVoQGuLaVVdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CVoQ/tpmEodX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVoRUedTYNdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CVoRpuMuOCdX2UKGgGRwAAAAAAAAAAaAdLOGgIR0CVoSBMBZIQdX2UKGgGRz/wAAAAAAAAaAdLYmgIR0CVoR/kNnXedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-FrozenLake-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e272d16c9fc3eb29473a566286262a1305a4d5f48f0113adc74f0ebdcc596e42
3
+ size 153659
ppo-FrozenLake-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-FrozenLake-v1/data ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc9a9daa70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc9a9dab00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc9a9dab90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc9a9dac20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcc9a9dacb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcc9a9dad40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc9a9dadd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcc9a9dae60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc9a9daef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc9a9daf80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc9a9e1050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcc9aa1cd20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
25
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "n": 16,
27
+ "_shape": [],
28
+ "dtype": "int64",
29
+ "_np_random": null
30
+ },
31
+ "action_space": {
32
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
33
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
34
+ "n": 4,
35
+ "_shape": [],
36
+ "dtype": "int64",
37
+ "_np_random": null
38
+ },
39
+ "n_envs": 16,
40
+ "num_timesteps": 1212416,
41
+ "_total_timesteps": 1200000,
42
+ "_num_timesteps_at_start": 0,
43
+ "seed": null,
44
+ "action_noise": null,
45
+ "start_time": 1652745639.4016604,
46
+ "learning_rate": 0.0003,
47
+ "tensorboard_log": null,
48
+ "lr_schedule": {
49
+ ":type:": "<class 'function'>",
50
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
51
+ },
52
+ "_last_obs": {
53
+ ":type:": "<class 'numpy.ndarray'>",
54
+ ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAQAAAAAAAAADgAAAAAAAAAKAAAAAAAAAAkAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAkAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAJAAAAAAAAAAkAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
55
+ },
56
+ "_last_episode_starts": {
57
+ ":type:": "<class 'numpy.ndarray'>",
58
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
59
+ },
60
+ "_last_original_obs": null,
61
+ "_episode_num": 0,
62
+ "use_sde": false,
63
+ "sde_sample_freq": -1,
64
+ "_current_progress_remaining": -0.010346666666666726,
65
+ "ep_info_buffer": {
66
+ ":type:": "<class 'collections.deque'>",
67
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUS0GMAXSUR0CVntTC+De1dX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVnspxFRYSdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVnuPHktEodX2UKGgGRz/wAAAAAAAAaAdLL2gIR0CVntlE7W/bdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CVnvLamGdqdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CVnvErXlKcdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVnue2d/aydX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVnup1zQu3dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CVnvGNaQmvdX2UKGgGRz/wAAAAAAAAaAdLPmgIR0CVnwdtl7MQdX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CVnv4JeE7GdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CVnwLThHbzdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CVnxl8w5/9dX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CVny2GIsRQdX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CVnynjyWiUdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CVn0H/cWTHdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CVnz6Hj6vadX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVnz0p3HJcdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVnzqXnhbXdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CVn0sq8UVSdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CVn0W/8EV4dX2UKGgGRwAAAAAAAAAAaAdLEGgIR0CVn2EtNBWxdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVn1+BpYcOdX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CVn1UF0PpZdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVn1Q8OkLydX2UKGgGRz/wAAAAAAAAaAdLEmgIR0CVn2GrS3LFdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0CVn1z+3pfQdX2UKGgGRz/wAAAAAAAAaAdLL2gIR0CVn2v38GcGdX2UKGgGRz/wAAAAAAAAaAdLImgIR0CVn2wUQCjldX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVn2XIU8FIdX2UKGgGRz/wAAAAAAAAaAdLTGgIR0CVn3fcer+6dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVn3o6CDmKdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CVn4je9Ba+dX2UKGgGRwAAAAAAAAAAaAdLIGgIR0CVn4Nt65XmdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVn4Z1V5rydX2UKGgGRz/wAAAAAAAAaAdLPWgIR0CVn5Zf2K2sdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVn6HI6r/9dX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVn5tq59VndX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CVn6rf+CK8dX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CVn8EMspXqdX2UKGgGRz/wAAAAAAAAaAdLQGgIR0CVn7jMFEApdX2UKGgGRz/wAAAAAAAAaAdLM2gIR0CVn8Phhpg1dX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CVn7f9xZMddX2UKGgGRz/wAAAAAAAAaAdLNmgIR0CVn8pz90ihdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CVn844p+c6dX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CVn+vKEFnqdX2UKGgGRwAAAAAAAAAAaAdLSWgIR0CVn/LHdXT3dX2UKGgGRz/wAAAAAAAAaAdLM2gIR0CVn+++/QBxdX2UKGgGRz/wAAAAAAAAaAdLUmgIR0CVn/lkH2RJdX2UKGgGRwAAAAAAAAAAaAdLUGgIR0CVn/5vtMPCdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVoA1BdD6WdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoAt+kP+XdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVoAd0JWvKdX2UKGgGRz/wAAAAAAAAaAdLTWgIR0CVoAfnOjZddX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoBOHnEEUdX2UKGgGRz/wAAAAAAAAaAdLNGgIR0CVoBdNWU8ndX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CVoCEal1r7dX2UKGgGRz/wAAAAAAAAaAdLImgIR0CVoBkq+ajOdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0CVoCXjENvwdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoCBVuJk5dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVoDIczZYgdX2UKGgGRz/wAAAAAAAAaAdLNmgIR0CVoDTCLuQZdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CVoDRK6FufdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CVoDTLGJemdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CVoDM23rledX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoDmKZUkwdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CVoEuXNTtLdX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CVoE60pmVadX2UKGgGRz/wAAAAAAAAaAdLRGgIR0CVoFkiUxEfdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CVoFV1fVqfdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0CVoFyd4FA3dX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CVoHavRqoIdX2UKGgGRwAAAAAAAAAAaAdLJ2gIR0CVoG1SOzY3dX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CVoHxRVIZqdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0CVoIT1TR6XdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoJCaZx7zdX2UKGgGRz/wAAAAAAAAaAdLWmgIR0CVoKgg5imVdX2UKGgGRwAAAAAAAAAAaAdLNGgIR0CVoLJlJ6IFdX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CVoK4etCAudX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CVoKk7wKBvdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CVoKe4Cp3pdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVoK8PFvQ4dX2UKGgGRwAAAAAAAAAAaAdLUGgIR0CVoLgGKQ7tdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CVoMDTz/ZNdX2UKGgGRwAAAAAAAAAAaAdLN2gIR0CVoLs4DLbIdX2UKGgGRwAAAAAAAAAAaAdLY2gIR0CVoMAnlXA/dX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CVoMuoP07KdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0CVoNMVDa4+dX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CVoN0vGp++dX2UKGgGRz/wAAAAAAAAaAdLVGgIR0CVoNnNgSezdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CVoOolUp/gdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CVoO+MZP2xdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CVoO8TSLIgdX2UKGgGRwAAAAAAAAAAaAdLCWgIR0CVoQFqSHM2dX2UKGgGRwAAAAAAAAAAaAdLJmgIR0CVoQGuLaVVdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CVoQ/tpmEodX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CVoRUedTYNdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CVoRpuMuOCdX2UKGgGRwAAAAAAAAAAaAdLOGgIR0CVoSBMBZIQdX2UKGgGRz/wAAAAAAAAaAdLYmgIR0CVoR/kNnXedWUu"
68
+ },
69
+ "ep_success_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
72
+ },
73
+ "_n_updates": 496,
74
+ "n_steps": 1024,
75
+ "gamma": 0.999,
76
+ "gae_lambda": 0.98,
77
+ "ent_coef": 0.01,
78
+ "vf_coef": 0.5,
79
+ "max_grad_norm": 0.5,
80
+ "batch_size": 64,
81
+ "n_epochs": 4,
82
+ "clip_range": {
83
+ ":type:": "<class 'function'>",
84
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
85
+ },
86
+ "clip_range_vf": null,
87
+ "normalize_advantage": true,
88
+ "target_kl": null
89
+ }
ppo-FrozenLake-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3871de714ee42af0fd9e8a9d79aed4024e091a2991472cbff3f7a80250da7ac7
3
+ size 93085
ppo-FrozenLake-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e75ed8ff390beea9722e28f7e90895fca306a29477c6de00f19ac6e8381af3
3
+ size 47297
ppo-FrozenLake-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-FrozenLake-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 0.7, "std_reward": 0.45825756949558394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T00:15:48.386023"}