{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ef3ca17e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ef3ca1870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ef3ca1900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ef3ca1990>", "_build": "<function ActorCriticPolicy._build at 0x7f3ef3ca1a20>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ef3ca1ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3ef3ca1b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ef3ca1bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ef3ca1c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ef3ca1cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ef3ca1d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ef3ca1e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3ef3c477c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726657466653597351, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZF1Lyuw5W6moaCO115Mzgn/Qo7a7QrugAAgD8AAIA/pu/DPkHmVj/sDY09fZaYvrpO+T2SxK07AAAAAAAAAADFrbC+MVTYPWIztD28GP+9u5vAvR4CKzsAAAAAAAAAAG3hWT7swqA8K4TQOgraQTlGwyw+gt8IugAAgD8AAIA/psKcvXCWpT/cjRS/1VvuvqsOwrwOScu9AAAAAAAAAADz/eq9Oxf7Pss7xj23X1a+u2/hPGD8abwAAAAAAAAAALPdOj7buGc/VcVIPomWpb7llSM+KT2MvAAAAAAAAAAAoAIqvtyAO7yZS0W7bhdQuT6kqj1z53w6AACAPwAAgD8A2hw8uHbwuTMdrTuX34Y4Kyy6uTlSELkAAIA/AACAP+Z4S71knaU/0lhNvvkv0r6AdIe9KUAaPQAAAAAAAAAAFkmAPqQsUDoSJ4y74SR2t1StUDwjSn24AACAPwAAgD+NFrU9w7EguvuDWrrkv2K18ZpPuYOteTkAAIA/AACAP7OhfD3skZs4ZdzEu6F8U7aleqc7ixzFNQAAgD8AAAAAAMpZvMPhAro+RoG6zWvatWQgwboKcZc5AACAPwAAgD8u7P++3h5lPwKgT77JLJC+8mp2vZ7ynj0AAAAAAAAAAGZE3rzDyRS6R4jIOtdHoDVOAsI60C/muQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSkb+cYqG2MAWyUTegDjAF0lEdApjWaEpRXOnV9lChoBkdAYwMnXNC7b2gHTegDaAhHQKY2kojOcDt1fZQoaAZHQGEsub7TDwZoB03oA2gIR0CmOJq/VRUFdX2UKGgGR0Bf60qUeMhpaAdN6ANoCEdApjjwDA8B/HV9lChoBkdAYurT7VJ+UmgHTegDaAhHQKY5uQSzw+d1fZQoaAZHQGBs7G3nZChoB03oA2gIR0CmOpSOaOPvdX2UKGgGR0BpZ3dAPd2xaAdNdAFoCEdApjvmSZBsynV9lChoBkdAYuJB68g6l2gHTegDaAhHQKZG2/etSyd1fZQoaAZHQGMszviLl3hoB03oA2gIR0CmSfqifxtpdX2UKGgGR0Bc/98E3bVSaAdN6ANoCEdApksOEytV73V9lChoBkdAYwVwkxASnWgHTegDaAhHQKZM4hOgxrV1fZQoaAZHQGI5M10knkVoB03oA2gIR0CmTs9SMtK7dX2UKGgGR0BgxBr56+nJaAdN6ANoCEdAplfLnoxHoXV9lChoBkdAYpCsjmjj72gHTegDaAhHQKZZB9srNGF1fZQoaAZHQGIp3BpHqeNoB03oA2gIR0CmWjTr3TNMdX2UKGgGR0BkeZJ04iosaAdN6ANoCEdAplqkGkep43V9lChoBkdAYMObwSamXWgHTegDaAhHQKZbIC6H0sh1fZQoaAZHQGIT2iDdxhloB03oA2gIR0CmXEyZjQRgdX2UKGgGR0BiLsLhJiAlaAdN6ANoCEdApl6b5XU6P3V9lChoBkdAXC7dfsu3+mgHTegDaAhHQKZe/s8gZCR1fZQoaAZHQGSAlD4QBghoB03oA2gIR0CmX+e4kNWmdX2UKGgGR0Bgq/AsTWXkaAdN6ANoCEdApmE3V/c32nV9lChoBkdAX6a1a4c3l2gHTegDaAhHQKZjVEQ5FPV1fZQoaAZHQGPq4MfA9FFoB03oA2gIR0CmZylc6eXidX2UKGgGR0BpGjn7pFCtaAdNhgNoCEdApnBUP4EfT3V9lChoBkdAYpKqGUOd5WgHTegDaAhHQKZya6nzg/F1fZQoaAZHQGm5Fqi48U5oB00mAmgIR0CmdDqnm7rcdX2UKGgGR0BgKLGo73fyaAdN6ANoCEdApnTeHck+o3V9lChoBkdAYSAPd2xIKGgHTegDaAhHQKZ21UgB91F1fZQoaAZHQGhgO9vjwQVoB02zAWgIR0CmeXz/p+tsdX2UKGgGR0AcINtqHoHLaAdL3GgIR0Cmettr0rbydX2UKGgGR0Bf0FzIV/MGaAdN6ANoCEdApoFUvIwM6XV9lChoBkfAJOIatLcsUmgHS+loCEdApoKZ6Uqx1XV9lChoBkdAYPAVkc0cfmgHTegDaAhHQKaComJm/WV1fZQoaAZHQGSDAR02caxoB03oA2gIR0CmhEuWrwOOdX2UKGgGR0BjJ7p/wy6+aAdN6ANoCEdApoTRZ6lchXV9lChoBkdAYUmj0L+glGgHTegDaAhHQKaF9lsguAZ1fZQoaAZHQGKcWBBiTdNoB03oA2gIR0CmiGiExqO+dX2UKGgGR0BhpeEdvKlpaAdN6ANoCEdApojUfs/puHV9lChoBkdAHWNHYpUgjmgHS/poCEdApokrwx33YnV9lChoBkdAYkFJPqLS/mgHTegDaAhHQKaJyIrOJLx1fZQoaAZHQGGmGsV+I/JoB03oA2gIR0CmisIeo1k2dX2UKGgGR7/3Eb5uZThpaAdNEAFoCEdApovxnOB193V9lChoBkdAZDSDnNgSe2gHTegDaAhHQKaO8yJsO5J1fZQoaAZHQGNVgCfYjB5oB03oA2gIR0Cmj5bjDKoydX2UKGgGR0BnuoWznieeaAdNigFoCEdApo+3qC6H03V9lChoBkdAN3pMlC1JDmgHTRoBaAhHQKaaS0uUUwl1fZQoaAZHQDeik30f5k9oB0v5aAhHQKabQnO0LMN1fZQoaAZHQGCti4SYgJVoB03oA2gIR0Cmm1VpCa7VdX2UKGgGR0Bq2rE5yU9qaAdNXQNoCEdAppugrz5GjXV9lChoBkdAZ8OSgXdj5WgHTWMBaAhHQKacOlIEr5J1fZQoaAZHQF8veyiVSoBoB03oA2gIR0CmnQYrrgO0dX2UKGgGR0BjIQQ6IWP+aAdN6ANoCEdApqGzn7pFC3V9lChoBkdAaH6SdOIqLGgHTbEBaAhHQKal2p/gBLh1fZQoaAZHQFtgQHAymANoB03oA2gIR0Cmpx19ORDDdX2UKGgGR0BS4Tmjj7yhaAdN6ANoCEdApqckyHmA9XV9lChoBkdAYd1VlPJq7GgHTegDaAhHQKap45wOvuB1fZQoaAZHQFyoUM5OrQxoB03oA2gIR0CmrCGgrYoRdX2UKGgGR0BjgXnfVI7OaAdN6ANoCEdApq16DmKZUnV9lChoBkdAZBlgBLf1pWgHTegDaAhHQKawm8hcJMR1fZQoaAZHQG1O8/D+BH1oB02TAWgIR0Cms5FG5MDfdX2UKGgGR0BkeLQ1JlJ6aAdN6ANoCEdAprRrj7yhBnV9lChoBkdAYTiQ6p5u62gHTegDaAhHQKa1ELPUrkN1fZQoaAZHQGDaP7WNFSdoB03oA2gIR0CmtTJWV/tqdX2UKGgGR0BbwxFVktmMaAdN6ANoCEdAprXF65XlsHV9lChoBkdAYX/5Qgs9S2gHTegDaAhHQKa/T1tfoid1fZQoaAZHQGOkoS+QEIRoB03oA2gIR0Cmv6WepXIVdX2UKGgGR0BhvuPikwevaAdN6ANoCEdApsBZSrHU+nV9lChoBkdAYAejZcs19GgHTegDaAhHQKbBTRPXTVl1fZQoaAZHQGRPhIFvAGloB03oA2gIR0CmxoiUxEfDdX2UKGgGR0Bim7sv7FbWaAdN6ANoCEdAps0HFUADJXV9lChoBkdAYEmCcPOIImgHTegDaAhHQKbOh39rGip1fZQoaAZHQGFosRg7YChoB03oA2gIR0Cm0dN6X0GvdX2UKGgGR0BjPzamGdqdaAdN6ANoCEdAptRQHqu8snV9lChoBkdAXdqFDfFaS2gHTegDaAhHQKbVvE7W/ah1fZQoaAZHQGEjvv8ZUDNoB03oA2gIR0Cm2CQbdadMdX2UKGgGR0Ba1rQw9JSSaAdN6ANoCEdAptpn3QD3d3V9lChoBkdAYvD1cMVk+WgHTegDaAhHQKbbPu4wyqN1fZQoaAZHwAs/rjYI0IloB0vNaAhHQKbbdzp5eJJ1fZQoaAZHQGWK1z6rNnpoB03oA2gIR0Cm29qLbYbsdX2UKGgGR0BZpo7aIvalaAdN6ANoCEdAptv7Uoa1kXV9lChoBkdAX2KvPkaMrGgHTegDaAhHQKbcgWKuSwJ1fZQoaAZHQGDUg5BC2MNoB03oA2gIR0Cm3XQ3YL9ddX2UKGgGR0BW2Dg2qDK6aAdN6ANoCEdApueCWHDaXnV9lChoBkdAYjk10knkUGgHTegDaAhHQKboI1E3Kjl1fZQoaAZHQGw4I8hcJMRoB03MA2gIR0Cm6GH3lCC0dX2UKGgGR8A2HKw6hg3MaAdL7GgIR0Cm6lF+EytWdX2UKGgGR0AvRyXlbNbDaAdNCAFoCEdApusyxVyWA3V9lChoBkdAYpSgkC3gDWgHTegDaAhHQKbuA8vEjxF1fZQoaAZHQF4zlWfbsWxoB03oA2gIR0Cm8uV8Ti84dX2UKGgGR0BhCYfnwG4aaAdN6ANoCEdApvR5gkTpPnV9lChoBkdAYbNROUMXrWgHTegDaAhHQKb4RpD/lyR1fZQoaAZHQGBfJfYzzmRoB03oA2gIR0Cm+4AUcn3MdX2UKGgGR0Biec+HJtBOaAdN6ANoCEdApwF27+T/yXV9lChoBkdAU9p7NSqEOGgHTegDaAhHQKcEP8zAN5N1fZQoaAZHQGG7cf3evZBoB03oA2gIR0CnBhFXzUZvdX2UKGgGR0BfTwUcn3L3aAdN6ANoCEdApwY45HVf/nV9lChoBkdAXVC5UcXFcmgHTegDaAhHQKcG6vysjml1fZQoaAZHQGDZKxLTQVtoB03oA2gIR0CnCB+vyLAIdX2UKGgGR0BbNZI6Kcd6aAdN6ANoCEdApwh+1UlzEXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |