Commit
·
4912248
1
Parent(s):
1ec86a4
removed
Browse files- Naive_gpt/__init__.py +0 -0
- Naive_gpt/__pycache__/__init__.cpython-310.pyc +0 -0
- Naive_gpt/__pycache__/__init__.cpython-312.pyc +0 -0
- Naive_gpt/__pycache__/config.cpython-310.pyc +0 -0
- Naive_gpt/__pycache__/config.cpython-312.pyc +0 -0
- Naive_gpt/__pycache__/data_loader.cpython-310.pyc +0 -0
- Naive_gpt/__pycache__/data_loader.cpython-312.pyc +0 -0
- Naive_gpt/__pycache__/model.cpython-310.pyc +0 -0
- Naive_gpt/__pycache__/model.cpython-312.pyc +0 -0
- Naive_gpt/__pycache__/train.cpython-310.pyc +0 -0
- Naive_gpt/__pycache__/train.cpython-312.pyc +0 -0
- Naive_gpt/__pycache__/train_autoshardload_ddp.cpython-310.pyc +0 -0
- Naive_gpt/__pycache__/train_ddp.cpython-310.pyc +0 -0
- Naive_gpt/config.py +0 -16
- Naive_gpt/config_1.5B.py +0 -16
- Naive_gpt/config_355.py +0 -16
- Naive_gpt/config_770.py +0 -16
- Naive_gpt/data_loader.py +0 -252
- Naive_gpt/model.py +0 -258
- Naive_gpt/train.py +0 -303
- Naive_gpt/train_autoshardload_ddp.py +0 -307
- Naive_gpt/train_ddp.py +0 -206
Naive_gpt/__init__.py
DELETED
|
File without changes
|
Naive_gpt/__pycache__/__init__.cpython-310.pyc
DELETED
|
Binary file (143 Bytes)
|
|
|
Naive_gpt/__pycache__/__init__.cpython-312.pyc
DELETED
|
Binary file (183 Bytes)
|
|
|
Naive_gpt/__pycache__/config.cpython-310.pyc
DELETED
|
Binary file (489 Bytes)
|
|
|
Naive_gpt/__pycache__/config.cpython-312.pyc
DELETED
|
Binary file (629 Bytes)
|
|
|
Naive_gpt/__pycache__/data_loader.cpython-310.pyc
DELETED
|
Binary file (3.13 kB)
|
|
|
Naive_gpt/__pycache__/data_loader.cpython-312.pyc
DELETED
|
Binary file (5.69 kB)
|
|
|
Naive_gpt/__pycache__/model.cpython-310.pyc
DELETED
|
Binary file (6.99 kB)
|
|
|
Naive_gpt/__pycache__/model.cpython-312.pyc
DELETED
|
Binary file (11.9 kB)
|
|
|
Naive_gpt/__pycache__/train.cpython-310.pyc
DELETED
|
Binary file (3.39 kB)
|
|
|
Naive_gpt/__pycache__/train.cpython-312.pyc
DELETED
|
Binary file (1.9 kB)
|
|
|
Naive_gpt/__pycache__/train_autoshardload_ddp.cpython-310.pyc
DELETED
|
Binary file (5.87 kB)
|
|
|
Naive_gpt/__pycache__/train_ddp.cpython-310.pyc
DELETED
|
Binary file (4.39 kB)
|
|
|
Naive_gpt/config.py
DELETED
|
@@ -1,16 +0,0 @@
|
|
| 1 |
-
# Model/config.py
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
# Define hyperparameters and constants
|
| 5 |
-
BATCH_SIZE = 16
|
| 6 |
-
BLOCK_SIZE = 1024
|
| 7 |
-
MAX_ITERS = 5
|
| 8 |
-
EVAL_INTERVAL = 500
|
| 9 |
-
LEARNING_RATE = 6e-4
|
| 10 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 11 |
-
EVAL_ITERS = 200
|
| 12 |
-
N_EMBD = 768
|
| 13 |
-
N_HEAD = 12
|
| 14 |
-
N_LAYER = 12
|
| 15 |
-
DROPOUT = 0.2
|
| 16 |
-
MODEL_PATH = "Naive_gpt\model_weights_llama" # Where to save weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/config_1.5B.py
DELETED
|
@@ -1,16 +0,0 @@
|
|
| 1 |
-
# Model/config.py
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
# Define hyperparameters and constants
|
| 5 |
-
BATCH_SIZE = 16
|
| 6 |
-
BLOCK_SIZE = 1024
|
| 7 |
-
MAX_ITERS = 5
|
| 8 |
-
EVAL_INTERVAL = 500
|
| 9 |
-
LEARNING_RATE = 6e-4
|
| 10 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 11 |
-
EVAL_ITERS = 200
|
| 12 |
-
N_EMBD = 1600
|
| 13 |
-
N_HEAD = 25
|
| 14 |
-
N_LAYER = 48
|
| 15 |
-
DROPOUT = 0.2
|
| 16 |
-
MODEL_PATH = "Naive_gpt\model_weights_llama" # Where to save weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/config_355.py
DELETED
|
@@ -1,16 +0,0 @@
|
|
| 1 |
-
# Model/config.py
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
# Define hyperparameters and constants
|
| 5 |
-
BATCH_SIZE = 16
|
| 6 |
-
BLOCK_SIZE = 1024
|
| 7 |
-
MAX_ITERS = 5
|
| 8 |
-
EVAL_INTERVAL = 500
|
| 9 |
-
LEARNING_RATE = 6e-4
|
| 10 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 11 |
-
EVAL_ITERS = 200
|
| 12 |
-
N_EMBD = 1024
|
| 13 |
-
N_HEAD = 16
|
| 14 |
-
N_LAYER = 24
|
| 15 |
-
DROPOUT = 0.2
|
| 16 |
-
MODEL_PATH = "Naive_gpt\model_weights_llama" # Where to save weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/config_770.py
DELETED
|
@@ -1,16 +0,0 @@
|
|
| 1 |
-
# Model/config.py
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
# Define hyperparameters and constants
|
| 5 |
-
BATCH_SIZE = 16
|
| 6 |
-
BLOCK_SIZE = 1024
|
| 7 |
-
MAX_ITERS = 5
|
| 8 |
-
EVAL_INTERVAL = 500
|
| 9 |
-
LEARNING_RATE = 6e-4
|
| 10 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 11 |
-
EVAL_ITERS = 200
|
| 12 |
-
N_EMBD = 1280
|
| 13 |
-
N_HEAD = 20
|
| 14 |
-
N_LAYER = 36
|
| 15 |
-
DROPOUT = 0.2
|
| 16 |
-
MODEL_PATH = "Naive_gpt\model_weights_llama" # Where to save weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/data_loader.py
DELETED
|
@@ -1,252 +0,0 @@
|
|
| 1 |
-
# Model/data_loader.py
|
| 2 |
-
import torch
|
| 3 |
-
import os
|
| 4 |
-
import logging
|
| 5 |
-
|
| 6 |
-
# Set up logging
|
| 7 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 8 |
-
|
| 9 |
-
class TextDataLoader:
|
| 10 |
-
def __init__(self, file_path, batch_size, block_size, tokenizer, chunk_size=10**4):
|
| 11 |
-
self.file_path = file_path
|
| 12 |
-
self.batch_size = batch_size
|
| 13 |
-
self.block_size = block_size
|
| 14 |
-
self.tokenizer = tokenizer
|
| 15 |
-
self.chunk_size = chunk_size
|
| 16 |
-
self.file = open(self.file_path, 'r', encoding='utf-8')
|
| 17 |
-
self.data = None
|
| 18 |
-
self.end_of_file = False
|
| 19 |
-
|
| 20 |
-
# Load the initial chunk of data
|
| 21 |
-
self.load_chunk()
|
| 22 |
-
|
| 23 |
-
def load_chunk(self):
|
| 24 |
-
"""Load a chunk from the file, encode it, and handle end-of-file conditions."""
|
| 25 |
-
text = self.file.read()
|
| 26 |
-
if not text:
|
| 27 |
-
self.end_of_file = True
|
| 28 |
-
logging.info("End of file reached.")
|
| 29 |
-
else:
|
| 30 |
-
try:
|
| 31 |
-
# Encode the text using the tokenizer
|
| 32 |
-
encoded = self.tokenizer.encode(text)
|
| 33 |
-
if len(encoded) > 0:
|
| 34 |
-
self.data = torch.tensor(encoded, dtype=torch.long)
|
| 35 |
-
logging.info(f"Loaded new data chunk of size: {len(self.data)} tokens.")
|
| 36 |
-
# save the encoded data to a file
|
| 37 |
-
torch.save(self.data, "encoded_data.pth")
|
| 38 |
-
except Exception as e:
|
| 39 |
-
logging.error(f"Error encoding text chunk: {e}")
|
| 40 |
-
self.end_of_file = True
|
| 41 |
-
|
| 42 |
-
def num_batches(self):
|
| 43 |
-
"""Calculate the total number of batches in the current chunk."""
|
| 44 |
-
if self.data is not None:
|
| 45 |
-
return (len(self.data) - 1) // self.block_size # Total batches in the current chunk
|
| 46 |
-
return 0
|
| 47 |
-
|
| 48 |
-
def get_batch(self):
|
| 49 |
-
"""Retrieve a batch of data from the current chunk or load a new chunk if needed."""
|
| 50 |
-
if self.end_of_file:
|
| 51 |
-
return None, None # Return None when no data is left
|
| 52 |
-
|
| 53 |
-
# Generate a batch of data
|
| 54 |
-
ix = torch.randint(len(self.data) - self.block_size, (self.batch_size,))
|
| 55 |
-
x = torch.stack([self.data[i:i+self.block_size] for i in ix])
|
| 56 |
-
y = torch.stack([self.data[i+1:i+self.block_size+1] for i in ix])
|
| 57 |
-
return x, y
|
| 58 |
-
|
| 59 |
-
def reset(self):
|
| 60 |
-
"""Reset the file and flags for a new epoch."""
|
| 61 |
-
self.file.seek(0)
|
| 62 |
-
self.end_of_file = False
|
| 63 |
-
logging.info("Resetting file for a new epoch.")
|
| 64 |
-
self.load_chunk()
|
| 65 |
-
|
| 66 |
-
def close(self):
|
| 67 |
-
"""Clean up file resources when done."""
|
| 68 |
-
self.file.close()
|
| 69 |
-
logging.info("File closed.")
|
| 70 |
-
|
| 71 |
-
def __iter__(self):
|
| 72 |
-
"""Make the data loader iterable so it can be used in a loop."""
|
| 73 |
-
while not self.end_of_file:
|
| 74 |
-
x, y = self.get_batch()
|
| 75 |
-
if x is None or y is None:
|
| 76 |
-
break # Stop iteration if there's no more data
|
| 77 |
-
|
| 78 |
-
yield x, y # Yield a batch of data
|
| 79 |
-
|
| 80 |
-
# Once iteration is done, close the file
|
| 81 |
-
self.close()
|
| 82 |
-
|
| 83 |
-
#before parallelizing
|
| 84 |
-
# Set up logging
|
| 85 |
-
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 86 |
-
|
| 87 |
-
# class TextDataLoader:
|
| 88 |
-
# def __init__(self, file_path, batch_size, block_size, tokenizer, device='cpu', chunk_size=10**4):
|
| 89 |
-
# self.file_path = file_path
|
| 90 |
-
# self.batch_size = batch_size
|
| 91 |
-
# self.block_size = block_size
|
| 92 |
-
# self.tokenizer = tokenizer
|
| 93 |
-
# self.device = device
|
| 94 |
-
# self.chunk_size = chunk_size
|
| 95 |
-
# self.file = open(self.file_path, 'r', encoding='utf-8')
|
| 96 |
-
# self.data = None
|
| 97 |
-
# self.end_of_file = False
|
| 98 |
-
|
| 99 |
-
# # Load the initial chunk of data
|
| 100 |
-
# self.load_chunk()
|
| 101 |
-
|
| 102 |
-
# def load_chunk(self):
|
| 103 |
-
# """Load a chunk from the file, encode it, and handle end-of-file conditions."""
|
| 104 |
-
# text = self.file.read()
|
| 105 |
-
# if not text:
|
| 106 |
-
# self.end_of_file = True
|
| 107 |
-
# logging.info("End of file reached.")
|
| 108 |
-
# else:
|
| 109 |
-
# try:
|
| 110 |
-
# # Encode the text using the tokenizer
|
| 111 |
-
# encoded = self.tokenizer.encode(text)
|
| 112 |
-
# if len(encoded) > 0:
|
| 113 |
-
# self.data = torch.tensor(encoded, dtype=torch.long).to(self.device)
|
| 114 |
-
# logging.info(f"Loaded new data chunk of size: {len(self.data)} tokens.")
|
| 115 |
-
# except Exception as e:
|
| 116 |
-
# logging.error(f"Error encoding text chunk: {e}")
|
| 117 |
-
# self.end_of_file = True
|
| 118 |
-
|
| 119 |
-
# def num_batches(self):
|
| 120 |
-
# """Calculate the total number of batches in the current chunk."""
|
| 121 |
-
# if self.data is not None:
|
| 122 |
-
# return (len(self.data) - 1) // self.block_size # Total batches in the current chunk
|
| 123 |
-
# return 0
|
| 124 |
-
|
| 125 |
-
# def get_batch(self):
|
| 126 |
-
# """Retrieve a batch of data from the current chunk or load a new chunk if needed."""
|
| 127 |
-
# if self.end_of_file:
|
| 128 |
-
# return None, None # Return None when no data is left
|
| 129 |
-
|
| 130 |
-
# # Generate a batch of data
|
| 131 |
-
# ix = torch.randint(len(self.data) - self.block_size, (self.batch_size,))
|
| 132 |
-
# x = torch.stack([self.data[i:i+self.block_size] for i in ix])
|
| 133 |
-
# y = torch.stack([self.data[i+1:i+self.block_size+1] for i in ix])
|
| 134 |
-
# return x, y
|
| 135 |
-
|
| 136 |
-
# def reset(self):
|
| 137 |
-
# """Reset the file and flags for a new epoch."""
|
| 138 |
-
# self.file.seek(0)
|
| 139 |
-
# self.end_of_file = False
|
| 140 |
-
# logging.info("Resetting file for a new epoch.")
|
| 141 |
-
# self.load_chunk()
|
| 142 |
-
|
| 143 |
-
# def close(self):
|
| 144 |
-
# """Clean up file resources when done."""
|
| 145 |
-
# self.file.close()
|
| 146 |
-
# logging.info("File closed.")
|
| 147 |
-
|
| 148 |
-
# def __iter__(self):
|
| 149 |
-
# """Make the data loader iterable so it can be used in a loop."""
|
| 150 |
-
# while not self.end_of_file:
|
| 151 |
-
# x, y = self.get_batch()
|
| 152 |
-
# if x is None or y is None:
|
| 153 |
-
# break # Stop iteration if there's no more data
|
| 154 |
-
|
| 155 |
-
# yield x, y # Yield a batch of data
|
| 156 |
-
|
| 157 |
-
# # Once iteration is done, close the file
|
| 158 |
-
# self.close()
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# # Set up logging
|
| 162 |
-
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 163 |
-
|
| 164 |
-
# class TextDataLoader:
|
| 165 |
-
# def __init__(self, file_path, batch_size, block_size, tokenizer, device='cpu', chunk_size=10**4):
|
| 166 |
-
# self.file_path = file_path
|
| 167 |
-
# self.batch_size = batch_size
|
| 168 |
-
# self.block_size = block_size
|
| 169 |
-
# self.tokenizer = tokenizer
|
| 170 |
-
# self.device = device
|
| 171 |
-
# self.chunk_size = chunk_size
|
| 172 |
-
# self.file = open(self.file_path, 'r', encoding='utf-8')
|
| 173 |
-
# self.data = None
|
| 174 |
-
# self.end_of_file = False
|
| 175 |
-
|
| 176 |
-
# # Print a preview of the file
|
| 177 |
-
# # self.print_file_preview()
|
| 178 |
-
|
| 179 |
-
# # Initial chunk loading
|
| 180 |
-
# self.load_chunk()
|
| 181 |
-
|
| 182 |
-
# def print_file_preview(self):
|
| 183 |
-
# """Prints the first few lines of the text file for preview"""
|
| 184 |
-
# self.file.seek(0) # Go to the beginning of the file
|
| 185 |
-
# lines = [self.file.readline() for _ in range(5)]
|
| 186 |
-
# preview_text = ''.join(lines)
|
| 187 |
-
# print("File preview:\n", preview_text)
|
| 188 |
-
# self.file.seek(0) # Reset to the start of the file for chunk reading
|
| 189 |
-
|
| 190 |
-
# def load_chunk(self):
|
| 191 |
-
# """Load a chunk from the file, encode it, and handle end-of-file conditions."""
|
| 192 |
-
# text = self.file.read()
|
| 193 |
-
# if not text:
|
| 194 |
-
# self.end_of_file = True
|
| 195 |
-
# logging.info("End of file reached.")
|
| 196 |
-
# else:
|
| 197 |
-
# try:
|
| 198 |
-
# # Log the first 100 characters of the text chunk to verify Urdu content
|
| 199 |
-
# # logging.info(f"First 100 characters of the chunk: {text[:100]}")
|
| 200 |
-
# # print("This is the chunk:", text)
|
| 201 |
-
|
| 202 |
-
# # Encode the text using the tokenizer
|
| 203 |
-
# # print("Tokenizer:", self.tokenizer)
|
| 204 |
-
# encoded = self.tokenizer.encode(text)
|
| 205 |
-
# print(len(encoded))
|
| 206 |
-
# print("encoded data: ")
|
| 207 |
-
|
| 208 |
-
# # Log the encoded output length to confirm successful encoding
|
| 209 |
-
# logging.info(f"Encoded data length: {len(encoded)} tokens")
|
| 210 |
-
|
| 211 |
-
# # if len(encoded) < self.block_size:
|
| 212 |
-
# # # Only stop if there's absolutely no usable data left
|
| 213 |
-
# # self.end_of_file = len(encoded) == 0
|
| 214 |
-
# # if self.end_of_file:
|
| 215 |
-
# # logging.warning("Insufficient data in chunk; stopping further loading.")
|
| 216 |
-
# # else:
|
| 217 |
-
# # logging.warning("Data chunk smaller than block size loaded; may limit training batch size.")
|
| 218 |
-
|
| 219 |
-
# if len(encoded) > 0:
|
| 220 |
-
# self.data = torch.tensor(encoded, dtype=torch.long).to(self.device)
|
| 221 |
-
# logging.info(f"Loaded new data chunk of size: {len(self.data)} tokens.")
|
| 222 |
-
# except Exception as e:
|
| 223 |
-
# logging.error(f"Error encoding text chunk: {e}")
|
| 224 |
-
# self.end_of_file = True
|
| 225 |
-
|
| 226 |
-
# def get_batch(self):
|
| 227 |
-
# """Retrieve a batch of data from the current chunk or load a new chunk if needed."""
|
| 228 |
-
# # if self.end_of_file:
|
| 229 |
-
# # return None, None # Return None when no data is left
|
| 230 |
-
|
| 231 |
-
# # if self.data is None or len(self.data) <= self.block_size:
|
| 232 |
-
# # self.load_chunk()
|
| 233 |
-
# # if self.end_of_file or self.data is None or len(self.data) < self.block_size:
|
| 234 |
-
# # return None, None # Stop if there’s insufficient data
|
| 235 |
-
|
| 236 |
-
# # Generate a batch of data
|
| 237 |
-
# ix = torch.randint(len(self.data) - self.block_size, (self.batch_size,))
|
| 238 |
-
# x = torch.stack([self.data[i:i+self.block_size] for i in ix])
|
| 239 |
-
# y = torch.stack([self.data[i+1:i+self.block_size+1] for i in ix])
|
| 240 |
-
# return x, y
|
| 241 |
-
|
| 242 |
-
# def reset(self):
|
| 243 |
-
# """Reset the file and flags for a new epoch."""
|
| 244 |
-
# self.file.seek(0)
|
| 245 |
-
# self.end_of_file = False
|
| 246 |
-
# logging.info("Resetting file for a new epoch.")
|
| 247 |
-
# self.load_chunk()
|
| 248 |
-
|
| 249 |
-
# def close(self):
|
| 250 |
-
# """Clean up file resources when done."""
|
| 251 |
-
# self.file.close()
|
| 252 |
-
# logging.info("File closed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/model.py
DELETED
|
@@ -1,258 +0,0 @@
|
|
| 1 |
-
# Model/model.py
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
from .config import *
|
| 5 |
-
import inspect
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class CausalSelfAttention(nn.Module):
|
| 9 |
-
|
| 10 |
-
def __init__(self):
|
| 11 |
-
super().__init__()
|
| 12 |
-
assert N_EMBD % N_HEAD == 0
|
| 13 |
-
# key, query, value projections for all heads, but in a batch
|
| 14 |
-
self.c_attn = nn.Linear(N_EMBD, 3 * N_EMBD)
|
| 15 |
-
# output projection
|
| 16 |
-
self.c_proj = nn.Linear(N_EMBD, N_EMBD)
|
| 17 |
-
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 18 |
-
# regularization
|
| 19 |
-
self.n_head = N_HEAD
|
| 20 |
-
self.n_embd = N_EMBD
|
| 21 |
-
|
| 22 |
-
def forward(self, x):
|
| 23 |
-
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
| 24 |
-
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
| 25 |
-
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
| 26 |
-
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
| 27 |
-
qkv = self.c_attn(x)
|
| 28 |
-
q, k, v = qkv.split(self.n_embd, dim=2)
|
| 29 |
-
k = k.view(B, T, self.n_head, C //
|
| 30 |
-
self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 31 |
-
q = q.view(B, T, self.n_head, C //
|
| 32 |
-
self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 33 |
-
v = v.view(B, T, self.n_head, C //
|
| 34 |
-
self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 35 |
-
y = nn.functional.scaled_dot_product_attention(
|
| 36 |
-
q, k, v, is_causal=True) # flash attention
|
| 37 |
-
# re-assemble all head outputs side by side
|
| 38 |
-
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 39 |
-
# output projection
|
| 40 |
-
y = self.c_proj(y)
|
| 41 |
-
return y
|
| 42 |
-
|
| 43 |
-
# class Head(nn.Module): #this is sebastian's causal attention
|
| 44 |
-
# """ one head of self-attention """
|
| 45 |
-
|
| 46 |
-
# def __init__(self, head_size):
|
| 47 |
-
# super().__init__()
|
| 48 |
-
# self.key = nn.Linear(N_EMBD, head_size, bias=False)
|
| 49 |
-
# self.query = nn.Linear(N_EMBD, head_size, bias=False)
|
| 50 |
-
# self.value = nn.Linear(N_EMBD, head_size, bias=False)
|
| 51 |
-
# self.register_buffer('tril', torch.tril(torch.ones(BLOCK_SIZE, BLOCK_SIZE)))
|
| 52 |
-
# self.dropout = nn.Dropout(DROPOUT)
|
| 53 |
-
|
| 54 |
-
# def forward(self, x):
|
| 55 |
-
# B, T, C = x.shape
|
| 56 |
-
# k = self.key(x) # (B, T, head_size)
|
| 57 |
-
# q = self.query(x) # (B, T, head_size)
|
| 58 |
-
# wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5
|
| 59 |
-
# wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
|
| 60 |
-
# wei = nn.functional.softmax(wei, dim=-1)
|
| 61 |
-
# wei = self.dropout(wei)
|
| 62 |
-
# v = self.value(x)
|
| 63 |
-
# out = wei @ v
|
| 64 |
-
# return out
|
| 65 |
-
|
| 66 |
-
# class MultiHeadAttention(nn.Module):
|
| 67 |
-
# """ multiple heads of self-attention in parallel """
|
| 68 |
-
|
| 69 |
-
# def __init__(self, num_heads, head_size):
|
| 70 |
-
# super().__init__()
|
| 71 |
-
# self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
| 72 |
-
# self.proj = nn.Linear(head_size * num_heads, N_EMBD)
|
| 73 |
-
# self.dropout = nn.Dropout(DROPOUT)
|
| 74 |
-
|
| 75 |
-
# def forward(self, x):
|
| 76 |
-
# out = torch.cat([h(x) for h in self.heads], dim=-1)
|
| 77 |
-
# out = self.dropout(self.proj(out))
|
| 78 |
-
# return out
|
| 79 |
-
|
| 80 |
-
class FeedFoward(nn.Module): #yeh MLP hai karpathy wala -> Feed forward hai sebastian wala
|
| 81 |
-
def __init__(self):
|
| 82 |
-
super().__init__()
|
| 83 |
-
self.c_fc = nn.Linear(N_EMBD, 4 * N_EMBD)
|
| 84 |
-
self.gelu = nn.GELU(approximate='tanh')
|
| 85 |
-
self.c_proj = nn.Linear(4 * N_EMBD, N_EMBD)
|
| 86 |
-
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 87 |
-
|
| 88 |
-
def forward(self, x):
|
| 89 |
-
x = self.c_fc(x)
|
| 90 |
-
x = self.gelu(x)
|
| 91 |
-
x = self.c_proj(x)
|
| 92 |
-
return x
|
| 93 |
-
""" a simple linear layer followed by a non-linearity """
|
| 94 |
-
|
| 95 |
-
# def __init__(self, n_embd):
|
| 96 |
-
# super().__init__()
|
| 97 |
-
# self.net = nn.Sequential(
|
| 98 |
-
# nn.Linear(N_EMBD, 4 * N_EMBD),
|
| 99 |
-
# nn.ReLU(),
|
| 100 |
-
# nn.Linear(4 * N_EMBD, N_EMBD),
|
| 101 |
-
# nn.Dropout(DROPOUT),
|
| 102 |
-
# )
|
| 103 |
-
|
| 104 |
-
# def forward(self, x):
|
| 105 |
-
# return self.net(x)
|
| 106 |
-
|
| 107 |
-
class Block(nn.Module):
|
| 108 |
-
""" Transformer block: communication followed by computation """
|
| 109 |
-
|
| 110 |
-
def __init__(self, n_embd, n_head):
|
| 111 |
-
super().__init__()
|
| 112 |
-
head_size = N_EMBD // n_head
|
| 113 |
-
self.sa = CausalSelfAttention()
|
| 114 |
-
self.ffwd = FeedFoward()
|
| 115 |
-
self.ln1 = nn.LayerNorm(N_EMBD)
|
| 116 |
-
self.ln2 = nn.LayerNorm(N_EMBD)
|
| 117 |
-
|
| 118 |
-
def forward(self, x):
|
| 119 |
-
x = x + self.sa(self.ln1(x))
|
| 120 |
-
x = x + self.ffwd(self.ln2(x))
|
| 121 |
-
return x
|
| 122 |
-
|
| 123 |
-
class GPTLanguageModel(nn.Module):
|
| 124 |
-
|
| 125 |
-
def __init__(self, vocab_size, config):
|
| 126 |
-
super().__init__()
|
| 127 |
-
print("This is vocab size:", vocab_size)
|
| 128 |
-
self.token_embedding_table = nn.Embedding(vocab_size, config.n_embd)
|
| 129 |
-
self.position_embedding_table = nn.Embedding(config.block_size, config.n_embd)
|
| 130 |
-
self.blocks = nn.Sequential(
|
| 131 |
-
*[Block(config.n_embd, n_head=config.n_head) for _ in range(config.n_layer)]
|
| 132 |
-
)
|
| 133 |
-
self.ln_f = nn.LayerNorm(config.n_embd)
|
| 134 |
-
self.lm_head = nn.Linear(config.n_embd, vocab_size)
|
| 135 |
-
|
| 136 |
-
self.token_embedding_table.weight = self.lm_head.weight
|
| 137 |
-
|
| 138 |
-
self.apply(self._init_weights)
|
| 139 |
-
self.config = {"BLOCK_SIZE": config.block_size, "N_EMBD": config.n_embd, "N_HEAD":config.n_head, "N_LAYER": config.n_layer}
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def _init_weights(self, module):
|
| 143 |
-
if isinstance(module, nn.Linear):
|
| 144 |
-
std = 0.02
|
| 145 |
-
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
| 146 |
-
std *= (2 * N_LAYER) ** -0.5
|
| 147 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 148 |
-
if module.bias is not None:
|
| 149 |
-
torch.nn.init.zeros_(module.bias)
|
| 150 |
-
elif isinstance(module, nn.Embedding):
|
| 151 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
# def _init_weights(self, module):
|
| 155 |
-
# if isinstance(module, nn.Linear):
|
| 156 |
-
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 157 |
-
# if module.bias is not None:
|
| 158 |
-
# torch.nn.init.zeros_(module.bias)
|
| 159 |
-
# elif isinstance(module, nn.Embedding):
|
| 160 |
-
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 161 |
-
|
| 162 |
-
def forward(self, idx, targets=None):
|
| 163 |
-
B, T = idx.shape
|
| 164 |
-
assert T <= BLOCK_SIZE, f"Cannot forward sequence of length {T}, block size is only {BLOCK_SIZE}"
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
tok_emb = self.token_embedding_table(idx)
|
| 168 |
-
pos_emb = self.position_embedding_table(torch.arange(0, T, dtype=torch.long, device=idx.device))
|
| 169 |
-
x = tok_emb + pos_emb
|
| 170 |
-
x = self.blocks(x)
|
| 171 |
-
x = self.ln_f(x)
|
| 172 |
-
logits = self.lm_head(x)
|
| 173 |
-
|
| 174 |
-
if targets is None:
|
| 175 |
-
loss = None
|
| 176 |
-
else:
|
| 177 |
-
# B, T, C = logits.shape
|
| 178 |
-
# logits = logits.view(B*T, C)
|
| 179 |
-
# targets = targets.view(B*T)
|
| 180 |
-
# loss = nn.functional.cross_entropy(logits, targets)
|
| 181 |
-
loss = nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
| 182 |
-
|
| 183 |
-
return logits, loss
|
| 184 |
-
|
| 185 |
-
def generate(self, idx, max_new_tokens, temperature=1.0):
|
| 186 |
-
"""
|
| 187 |
-
Generate tokens using the language model.
|
| 188 |
-
Args:
|
| 189 |
-
idx: Input token indices
|
| 190 |
-
max_new_tokens: Number of tokens to generate
|
| 191 |
-
temperature: Controls randomness in generation
|
| 192 |
-
- temperature > 1.0 increases randomness
|
| 193 |
-
- temperature < 1.0 decreases randomness
|
| 194 |
-
- temperature = 0 makes it deterministic (always picks highest probability)
|
| 195 |
-
"""
|
| 196 |
-
for _ in range(max_new_tokens):
|
| 197 |
-
# Truncate the sequence to the last BLOCK_SIZE tokens
|
| 198 |
-
idx_cond = idx[:, -BLOCK_SIZE:]
|
| 199 |
-
# Get logits from the model
|
| 200 |
-
logits, _ = self(idx_cond)
|
| 201 |
-
# Focus only on the last time step
|
| 202 |
-
logits = logits[:, -1, :]
|
| 203 |
-
|
| 204 |
-
if temperature == 0.0:
|
| 205 |
-
# For temperature = 0, simply take the argmax
|
| 206 |
-
idx_next = torch.argmax(logits, dim=-1, keepdim=True)
|
| 207 |
-
else:
|
| 208 |
-
# Apply temperature scaling
|
| 209 |
-
logits = logits / temperature
|
| 210 |
-
# Convert to probabilities
|
| 211 |
-
probs = torch.softmax(logits, dim=-1)
|
| 212 |
-
# Sample from the distribution
|
| 213 |
-
idx_next = torch.multinomial(probs, num_samples=1)
|
| 214 |
-
|
| 215 |
-
# Append the new token to the sequence
|
| 216 |
-
idx = torch.cat((idx, idx_next), dim=1)
|
| 217 |
-
return idx
|
| 218 |
-
|
| 219 |
-
# def save(self, path=MODEL_PATH):
|
| 220 |
-
# torch.save(self.state_dict(), path)
|
| 221 |
-
|
| 222 |
-
# def load(self, path=MODEL_PATH):
|
| 223 |
-
# self.load_state_dict(torch.load(path,map_location=torch.device('cpu')))
|
| 224 |
-
|
| 225 |
-
def save(self, path=MODEL_PATH):
|
| 226 |
-
torch.save(self.state_dict(), path)
|
| 227 |
-
|
| 228 |
-
# def load(self, path=MODEL_PATH):
|
| 229 |
-
# self.load_state_dict(torch.load(path))
|
| 230 |
-
|
| 231 |
-
def load(self, path=MODEL_PATH):
|
| 232 |
-
# Load the state dict
|
| 233 |
-
state_dict = torch.load(path)["model"]
|
| 234 |
-
|
| 235 |
-
# Rename the keys to match the expected ones (remove "orig_mod." prefix)
|
| 236 |
-
new_state_dict = {}
|
| 237 |
-
for key, value in state_dict.items():
|
| 238 |
-
new_key = key.replace('_orig_mod.', '') # Remove 'orig_mod.' prefix
|
| 239 |
-
new_state_dict[new_key] = value
|
| 240 |
-
|
| 241 |
-
# Load the renamed state dict into the model
|
| 242 |
-
self.load_state_dict(new_state_dict)
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
def configure_optimizers(self, weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE):
|
| 246 |
-
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 247 |
-
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
| 248 |
-
|
| 249 |
-
decay_parameters = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 250 |
-
nodecay_parameters = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 251 |
-
optim_groups = [
|
| 252 |
-
{"params": decay_parameters, "weight_decay": weight_decay},
|
| 253 |
-
{"params": nodecay_parameters, "weight_decay": 0.0},
|
| 254 |
-
]
|
| 255 |
-
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 256 |
-
use_fused = fused_available and device == "cuda"
|
| 257 |
-
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused = use_fused)
|
| 258 |
-
return optimizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/train.py
DELETED
|
@@ -1,303 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from tqdm import tqdm
|
| 3 |
-
from .config import *
|
| 4 |
-
from .data_loader import TextDataLoader
|
| 5 |
-
from .model import GPTLanguageModel
|
| 6 |
-
import math
|
| 7 |
-
|
| 8 |
-
max_lr = 6e-4
|
| 9 |
-
min_lr = max_lr * 0.1
|
| 10 |
-
warmup_steps = 715
|
| 11 |
-
max_steps = 19073
|
| 12 |
-
|
| 13 |
-
def get_lr(it):
|
| 14 |
-
if it < warmup_steps:
|
| 15 |
-
return max_lr * (it+1) / warmup_steps
|
| 16 |
-
|
| 17 |
-
if it > max_steps:
|
| 18 |
-
return min_lr
|
| 19 |
-
|
| 20 |
-
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
| 21 |
-
assert 0 <= decay_ratio <= 1
|
| 22 |
-
coeff = 0.5 * (1.0 +math.cos(math.pi * decay_ratio))
|
| 23 |
-
return min_lr + coeff * (max_lr - min_lr)
|
| 24 |
-
|
| 25 |
-
total_batch_size = 524288
|
| 26 |
-
assert total_batch_size % (BATCH_SIZE * BLOCK_SIZE) == 0, "make sure total_batch_size is divisible by BATCH_SIZE * BLOCK_SIZE"
|
| 27 |
-
grad_accumulation_steps = total_batch_size // (BATCH_SIZE * BLOCK_SIZE)
|
| 28 |
-
print(f"grad_accumulation_steps: {grad_accumulation_steps}")
|
| 29 |
-
print(f"total_batch_size: {total_batch_size}")
|
| 30 |
-
|
| 31 |
-
import sys
|
| 32 |
-
import os
|
| 33 |
-
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/..")
|
| 34 |
-
|
| 35 |
-
from DataLoader import create_dataloader
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def train(folder_path, tokenizer, model=None, optimizer=None, vocab_size=10000, platform='none', checkpoint=None, is_tokenized_data = False):
|
| 40 |
-
|
| 41 |
-
torch.set_float32_matmul_precision('high') #hammad added this line (need to check if it is necessary)
|
| 42 |
-
if model is None:
|
| 43 |
-
model = GPTLanguageModel(vocab_size=vocab_size)
|
| 44 |
-
print("Model Initialised")
|
| 45 |
-
if checkpoint != None:
|
| 46 |
-
print("loading checkpoint........")
|
| 47 |
-
model.load(checkpoint)
|
| 48 |
-
print("Model loaded from checkpoint", checkpoint)
|
| 49 |
-
|
| 50 |
-
if platform == 'kaggle':
|
| 51 |
-
model = torch.nn.DataParallel(model, device_ids=[0, 1])
|
| 52 |
-
model = model.to(DEVICE)
|
| 53 |
-
optimizer = model.module.configure_optimizers(weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE) #hammad added this line
|
| 54 |
-
else:
|
| 55 |
-
model = model.to(DEVICE)
|
| 56 |
-
model = torch.compile(model) #hammad added this line
|
| 57 |
-
optimizer = model.configure_optimizers(weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE)
|
| 58 |
-
# optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE, betas = (0.9, 0.95), eps = 1e-8)
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
# # Initialize the data loader
|
| 62 |
-
# loader = TextDataLoader(file_path, BATCH_SIZE, BLOCK_SIZE, tokenizer)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# Set up a tqdm progress bar for the epoch
|
| 66 |
-
for epoch in range(MAX_ITERS):
|
| 67 |
-
print(f"Epoch {epoch}")
|
| 68 |
-
epoch_loss = None # Track loss for the epoch
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
for i in range(len(os.listdir(folder_path))):
|
| 72 |
-
file_path = os.path.join(folder_path, os.listdir(folder_path)[i])
|
| 73 |
-
print(f"loading file: {file_path}")
|
| 74 |
-
loader = create_dataloader(tokenizer, file_path, BATCH_SIZE, BLOCK_SIZE, BLOCK_SIZE, tokenized_data = is_tokenized_data, filename = os.listdir(folder_path)[i]) #hammad added this line
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# Create a progress bar for batch processing
|
| 78 |
-
batch_progress_bar = tqdm(loader, desc=f"Epoch {epoch+1} Batch Progress", unit="batch", ncols=100)
|
| 79 |
-
count = 0
|
| 80 |
-
loss_accum = 0
|
| 81 |
-
for xb, yb in batch_progress_bar:
|
| 82 |
-
if xb is None:
|
| 83 |
-
break # No more batches, stop the epoch
|
| 84 |
-
optimizer.zero_grad()
|
| 85 |
-
|
| 86 |
-
# Forward pass and loss computation
|
| 87 |
-
xb = xb.to(DEVICE)
|
| 88 |
-
yb = yb.to(DEVICE)
|
| 89 |
-
#with torch.autocast(DEVICE, dtype=torch.bfloat16): #hammad added this line
|
| 90 |
-
logits, loss = model(xb, yb)
|
| 91 |
-
loss = loss / grad_accumulation_steps
|
| 92 |
-
if platform == 'kaggle':
|
| 93 |
-
loss_accum += loss.mean().detach()
|
| 94 |
-
loss.mean().backward()
|
| 95 |
-
else:
|
| 96 |
-
loss_accum += loss.detach()
|
| 97 |
-
loss.backward() # Backpropagate the loss
|
| 98 |
-
# for micro_batch in range(grad_accumulation_steps):
|
| 99 |
-
if count % grad_accumulation_steps == 0:
|
| 100 |
-
print("one batch completed at (xb,yb):", count)
|
| 101 |
-
loss_accum = 0
|
| 102 |
-
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) #hammad added this line
|
| 103 |
-
lr = get_lr(count) #need to check if this is correct
|
| 104 |
-
for param_group in optimizer.param_groups:
|
| 105 |
-
param_group['lr'] = lr
|
| 106 |
-
optimizer.step() # Update model parameters
|
| 107 |
-
torch.cuda.synchronize() #wait for the computation to finish before moving to the next iteration
|
| 108 |
-
|
| 109 |
-
# Update epoch_loss to the most recent loss value
|
| 110 |
-
if platform == 'kaggle':
|
| 111 |
-
epoch_loss = loss.mean().item()
|
| 112 |
-
else:
|
| 113 |
-
epoch_loss = loss.item()
|
| 114 |
-
|
| 115 |
-
# Update tqdm with the latest loss value
|
| 116 |
-
batch_progress_bar.set_postfix(loss=epoch_loss)
|
| 117 |
-
|
| 118 |
-
count+=1
|
| 119 |
-
if count%5000 == 0:
|
| 120 |
-
if platform == 'kaggle':
|
| 121 |
-
torch.save(model.module.state_dict(), f"model_weights_checkpoint_{count}.pth")
|
| 122 |
-
else:
|
| 123 |
-
torch.save(model.state_dict(), f"model_weights_checkpoint_{count}.pth")
|
| 124 |
-
print(f"Model weights saved at checkpoint {count}")
|
| 125 |
-
|
| 126 |
-
# Save model weights after each chunk or epoch
|
| 127 |
-
if platform == 'kaggle':
|
| 128 |
-
torch.save(model.module.state_dict(),
|
| 129 |
-
f"model_weights_epoch_{epoch}_{file_path[-6:-4]}.pth")
|
| 130 |
-
else:
|
| 131 |
-
torch.save(model.state_dict(),
|
| 132 |
-
f"model_weights_epoch_{epoch}_{file_path[-6:-4]}.pth")
|
| 133 |
-
print(f"Model weights saved at epoch {epoch}")
|
| 134 |
-
|
| 135 |
-
# Print the loss at the end of the epoch
|
| 136 |
-
if epoch_loss is not None:
|
| 137 |
-
print(f"Epoch {epoch}, Loss: {epoch_loss}")
|
| 138 |
-
else:
|
| 139 |
-
print(f"Epoch {epoch}, No data available for loss calculation.")
|
| 140 |
-
|
| 141 |
-
# Reset the loader for a new epoch
|
| 142 |
-
# loader.reset()
|
| 143 |
-
|
| 144 |
-
# loader.close() # Ensure the file is properly closed at the end
|
| 145 |
-
torch.cuda.empty_cache()
|
| 146 |
-
|
| 147 |
-
return model, optimizer
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
#before parallelizing the model
|
| 151 |
-
# def train(file_path, tokenizer, model=None, optimizer=None, vocab_size=10000, platform='none'):
|
| 152 |
-
# if model is None:
|
| 153 |
-
# model = GPTLanguageModel(vocab_size=vocab_size)
|
| 154 |
-
# if platform == 'kaggle':
|
| 155 |
-
# model = torch.nn.DataParallel(model, device_ids=[0, 1]).to(DEVICE)
|
| 156 |
-
# else:
|
| 157 |
-
# model = model.to(DEVICE)
|
| 158 |
-
# optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 159 |
-
|
| 160 |
-
# # Initialize the data loader
|
| 161 |
-
# loader = TextDataLoader(file_path, BATCH_SIZE, BLOCK_SIZE, tokenizer, DEVICE)
|
| 162 |
-
|
| 163 |
-
# # Set up a tqdm progress bar for the epoch
|
| 164 |
-
# for epoch in range(MAX_ITERS):
|
| 165 |
-
# print(f"Epoch {epoch}")
|
| 166 |
-
# epoch_loss = None # Track loss for the epoch
|
| 167 |
-
|
| 168 |
-
# # Create a progress bar for batch processing
|
| 169 |
-
# batch_progress_bar = tqdm(loader, total=loader.num_batches(), desc=f"Epoch {epoch+1} Batch Progress", unit="batch", ncols=100)
|
| 170 |
-
|
| 171 |
-
# for xb, yb in batch_progress_bar:
|
| 172 |
-
# if xb is None:
|
| 173 |
-
# break # No more batches, stop the epoch
|
| 174 |
-
|
| 175 |
-
# # Forward pass and loss computation
|
| 176 |
-
# logits, loss = model(xb, yb)
|
| 177 |
-
# optimizer.zero_grad()
|
| 178 |
-
# loss.backward() # Backpropagate the loss
|
| 179 |
-
# optimizer.step() # Update model parameters
|
| 180 |
-
|
| 181 |
-
# # Update epoch_loss to the most recent loss value
|
| 182 |
-
# epoch_loss = loss.item()
|
| 183 |
-
|
| 184 |
-
# # Update tqdm with the latest loss value
|
| 185 |
-
# batch_progress_bar.set_postfix(loss=epoch_loss)
|
| 186 |
-
|
| 187 |
-
# # Save model weights after each chunk or epoch
|
| 188 |
-
# model.save(f"model_weights_epoch_{epoch}.pth")
|
| 189 |
-
# print(f"Model weights saved at epoch {epoch}")
|
| 190 |
-
|
| 191 |
-
# # Print the loss at the end of the epoch
|
| 192 |
-
# if epoch_loss is not None:
|
| 193 |
-
# print(f"Epoch {epoch}, Loss: {epoch_loss}")
|
| 194 |
-
# else:
|
| 195 |
-
# print(f"Epoch {epoch}, No data available for loss calculation.")
|
| 196 |
-
|
| 197 |
-
# # Reset the loader for a new epoch
|
| 198 |
-
# loader.reset()
|
| 199 |
-
|
| 200 |
-
# loader.close() # Ensure the file is properly closed at the end
|
| 201 |
-
|
| 202 |
-
# return model, optimizer
|
| 203 |
-
|
| 204 |
-
# def train(file_path, tokenizer, model = None, optimizer = None, vocab_size=10000, platform='none'):
|
| 205 |
-
# if model is None:
|
| 206 |
-
# model = GPTLanguageModel(vocab_size=vocab_size)
|
| 207 |
-
# if platform == 'kaggle':
|
| 208 |
-
# model = torch.nn.DataParallel(model, device_ids=[0, 1]).to(DEVICE)
|
| 209 |
-
# else:
|
| 210 |
-
# model = model.to(DEVICE)
|
| 211 |
-
# optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 212 |
-
# loader = TextDataLoader(file_path, BATCH_SIZE, BLOCK_SIZE, tokenizer, DEVICE)
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
# for epoch in range(MAX_ITERS): # Iterate over the file chunks
|
| 216 |
-
# print(f"Epoch {epoch}")
|
| 217 |
-
# epoch_loss = None # Track loss for the epoch
|
| 218 |
-
# while not loader.end_of_file:
|
| 219 |
-
# xb, yb = loader.get_batch()
|
| 220 |
-
# if xb is None:
|
| 221 |
-
# break # No more batches, stop the epoch
|
| 222 |
-
|
| 223 |
-
# # Forward pass and loss computation
|
| 224 |
-
# # print("This is xb", xb)
|
| 225 |
-
# # print("This is yb", yb)
|
| 226 |
-
# logits, loss = model(xb, yb)
|
| 227 |
-
# optimizer.zero_grad()
|
| 228 |
-
# loss.backward() #2 gpus pe masla kr rraha (krna for n gpus hai)
|
| 229 |
-
# optimizer.step()
|
| 230 |
-
|
| 231 |
-
# # Update epoch_loss to the most recent loss value
|
| 232 |
-
# epoch_loss = loss.item()
|
| 233 |
-
|
| 234 |
-
# # Save model weights after each chunk or epoch
|
| 235 |
-
# model.save(f"model_weights_epoch_{epoch}.pth")
|
| 236 |
-
# print(f"Model weights saved at epoch {epoch}")
|
| 237 |
-
|
| 238 |
-
# # Print the loss only if it was computed
|
| 239 |
-
# if epoch_loss is not None:
|
| 240 |
-
# print(f"Epoch {epoch}, Loss: {epoch_loss}")
|
| 241 |
-
# else:
|
| 242 |
-
# print(f"Epoch {epoch}, No data available for loss calculation.")
|
| 243 |
-
|
| 244 |
-
# # Reset the loader for a new epoch
|
| 245 |
-
# loader.reset()
|
| 246 |
-
|
| 247 |
-
# loader.close() # Ensure file is properly closed at the end
|
| 248 |
-
|
| 249 |
-
# return model, optimizer
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
# def train(file_path, tokenizer, model=None, optimizer=None, vocab_size=10000):
|
| 253 |
-
# # Check if multiple GPUs are available
|
| 254 |
-
# device = DEVICE
|
| 255 |
-
# if model is None:
|
| 256 |
-
# if torch.cuda.is_available() and torch.cuda.device_count() > 1:
|
| 257 |
-
# print(f"Training on {torch.cuda.device_count()} GPUs")
|
| 258 |
-
# model = GPTLanguageModel(vocab_size=vocab_size).to(device)
|
| 259 |
-
# model = torch.nn.DataParallel(model, device_ids=[0, 1]) # Wrap the model for multi-GPU training
|
| 260 |
-
# else:
|
| 261 |
-
# print("Training on a single GPU or CPU.")
|
| 262 |
-
|
| 263 |
-
# model = GPTLanguageModel(vocab_size=vocab_size).to(device)
|
| 264 |
-
|
| 265 |
-
# if optimizer is None:
|
| 266 |
-
# optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 267 |
-
|
| 268 |
-
# loader = TextDataLoader(file_path, BATCH_SIZE, BLOCK_SIZE, tokenizer, device)
|
| 269 |
-
|
| 270 |
-
# for epoch in range(MAX_ITERS): # Iterate over the file chunks
|
| 271 |
-
# print(f"Epoch {epoch}")
|
| 272 |
-
# epoch_loss = None # Track loss for the epoch
|
| 273 |
-
|
| 274 |
-
# xb, yb = loader.get_batch()
|
| 275 |
-
# if xb is None:
|
| 276 |
-
# break # No more batches, stop the epoch
|
| 277 |
-
|
| 278 |
-
# # Forward pass and loss computation
|
| 279 |
-
# logits, loss = model(xb, yb)
|
| 280 |
-
# optimizer.zero_grad()
|
| 281 |
-
# loss.backward()
|
| 282 |
-
# optimizer.step()
|
| 283 |
-
|
| 284 |
-
# # Update epoch_loss to the most recent loss value
|
| 285 |
-
# epoch_loss = loss.item()
|
| 286 |
-
|
| 287 |
-
# # Save model weights after each chunk or epoch
|
| 288 |
-
# model_to_save = model.module if isinstance(model, torch.nn.DataParallel) else model # Get the underlying model if using DataParallel
|
| 289 |
-
# model_to_save.save(f"model_weights_epoch_{epoch}.pth")
|
| 290 |
-
# print(f"Model weights saved at epoch {epoch}")
|
| 291 |
-
|
| 292 |
-
# # Print the loss only if it was computed
|
| 293 |
-
# if epoch_loss is not None:
|
| 294 |
-
# print(f"Epoch {epoch}, Loss: {epoch_loss}")
|
| 295 |
-
# else:
|
| 296 |
-
# print(f"Epoch {epoch}, No data available for loss calculation.")
|
| 297 |
-
|
| 298 |
-
# # Reset the loader for a new epoch
|
| 299 |
-
# loader.reset()
|
| 300 |
-
|
| 301 |
-
# loader.close() # Ensure file is properly closed at the end
|
| 302 |
-
|
| 303 |
-
# return model, optimizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/train_autoshardload_ddp.py
DELETED
|
@@ -1,307 +0,0 @@
|
|
| 1 |
-
from DataLoader import create_dataloader, create_dataloader_ddp, GPTDatasetDDP
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
-
import torch
|
| 5 |
-
from tqdm import tqdm
|
| 6 |
-
from .config import *
|
| 7 |
-
from .data_loader import TextDataLoader
|
| 8 |
-
from .model import GPTLanguageModel
|
| 9 |
-
import math
|
| 10 |
-
from torch.distributed import init_process_group, destroy_process_group
|
| 11 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 12 |
-
import torch.distributed as dist
|
| 13 |
-
import time
|
| 14 |
-
import gc
|
| 15 |
-
|
| 16 |
-
max_lr = 6e-4
|
| 17 |
-
min_lr = max_lr * 0.1
|
| 18 |
-
|
| 19 |
-
ratio = 715/19073
|
| 20 |
-
|
| 21 |
-
max_steps = 9124 # tokencount / (batchsize*blocksize) = 4Btokens / (524288) i.e 512 batchisze * 1024
|
| 22 |
-
# warmup_steps = 72 # 19073 / 715 is the ratio
|
| 23 |
-
|
| 24 |
-
# max_steps = train_loader.calculate_steps()
|
| 25 |
-
warmup_steps = int(ratio*max_steps)
|
| 26 |
-
|
| 27 |
-
def get_lr(it):
|
| 28 |
-
if it < warmup_steps:
|
| 29 |
-
return max_lr * (it+1) / warmup_steps
|
| 30 |
-
|
| 31 |
-
if it > max_steps:
|
| 32 |
-
return min_lr
|
| 33 |
-
|
| 34 |
-
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
| 35 |
-
assert 0 <= decay_ratio <= 1
|
| 36 |
-
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
| 37 |
-
return min_lr + coeff * (max_lr - min_lr)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
log_dir = "log"
|
| 41 |
-
os.makedirs(log_dir, exist_ok=True)
|
| 42 |
-
log_file = os.path.join(log_dir, f"log.txt")
|
| 43 |
-
with open(log_file, "w") as f: # open for writing to clear the file
|
| 44 |
-
pass
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# set up DDP (distributed data parallel).
|
| 48 |
-
# torchrun command sets the env variables RANK, LOCAL_RANK, and WORLD_SIZE
|
| 49 |
-
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
|
| 50 |
-
if ddp:
|
| 51 |
-
# use of DDP atm demands CUDA, we set the device appropriately according to rank
|
| 52 |
-
assert torch.cuda.is_available(), "for now i think we need CUDA for DDP"
|
| 53 |
-
init_process_group(backend='nccl')
|
| 54 |
-
ddp_rank = int(os.environ['RANK'])
|
| 55 |
-
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
| 56 |
-
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
| 57 |
-
device = f'cuda:{ddp_local_rank}'
|
| 58 |
-
torch.cuda.set_device(device)
|
| 59 |
-
# this process will do logging, checkpointing etc.
|
| 60 |
-
master_process = ddp_rank == 0
|
| 61 |
-
else:
|
| 62 |
-
# vanilla, non-DDP run
|
| 63 |
-
ddp_rank = 0
|
| 64 |
-
ddp_local_rank = 0
|
| 65 |
-
ddp_world_size = 1
|
| 66 |
-
master_process = True
|
| 67 |
-
# attempt to autodetect device
|
| 68 |
-
device = "cpu"
|
| 69 |
-
if torch.cuda.is_available():
|
| 70 |
-
device = "cuda"
|
| 71 |
-
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 72 |
-
device = "mps"
|
| 73 |
-
print(f"using device: {device}")
|
| 74 |
-
|
| 75 |
-
torch.manual_seed(1337)
|
| 76 |
-
if torch.cuda.is_available():
|
| 77 |
-
torch.cuda.manual_seed(1337)
|
| 78 |
-
|
| 79 |
-
print(f"ddp: {ddp}, rank: {ddp_rank}, local_rank: {ddp_local_rank}, world_size: {ddp_world_size}")
|
| 80 |
-
print(f"master_process: {master_process}, device: {device}")
|
| 81 |
-
# sys.exit(0)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
total_batch_size = 524288 # 524288 / 1024 = 512 is the batch size hamari terms mein
|
| 85 |
-
assert total_batch_size % (
|
| 86 |
-
BATCH_SIZE * BLOCK_SIZE * ddp_world_size) == 0, "make sure total_batch_size is divisible by BATCH_SIZE * BLOCK_SIZE"
|
| 87 |
-
grad_accumulation_steps = total_batch_size // (
|
| 88 |
-
BATCH_SIZE * BLOCK_SIZE * ddp_world_size)
|
| 89 |
-
if master_process:
|
| 90 |
-
print(f"grad_accumulation_steps: {grad_accumulation_steps}")
|
| 91 |
-
print(f"total_batch_size: {total_batch_size}")
|
| 92 |
-
|
| 93 |
-
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/..")
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def train(folder_path, tokenizer, model=None, optimizer=None, vocab_size=20000, platform='none', checkpoint=None, is_tokenized_data = False):
|
| 97 |
-
|
| 98 |
-
# hammad added this line (need to check if it is necessary)
|
| 99 |
-
torch.set_float32_matmul_precision('high')
|
| 100 |
-
if model is None:
|
| 101 |
-
model = GPTLanguageModel(vocab_size=vocab_size)
|
| 102 |
-
print("Model Initialised")
|
| 103 |
-
if checkpoint != None:
|
| 104 |
-
print("loading checkpoint........")
|
| 105 |
-
model.load(checkpoint)
|
| 106 |
-
print("Model loaded from checkpoint", checkpoint)
|
| 107 |
-
|
| 108 |
-
# if platform == 'kaggle':
|
| 109 |
-
# model = torch.nn.DataParallel(model, device_ids=[0, 1])
|
| 110 |
-
# model = model.to(DEVICE)
|
| 111 |
-
# optimizer = model.module.configure_optimizers(
|
| 112 |
-
# weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE) # hammad added this line
|
| 113 |
-
# else:
|
| 114 |
-
model = model.to(DEVICE)
|
| 115 |
-
model = torch.compile(model) # hammad added this line
|
| 116 |
-
if ddp:
|
| 117 |
-
model = DDP(model, device_ids=[ddp_local_rank])
|
| 118 |
-
raw_model = model.module if ddp else model
|
| 119 |
-
# optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE, betas = (0.9, 0.95), eps = 1e-8)
|
| 120 |
-
optimizer = raw_model.configure_optimizers(
|
| 121 |
-
weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE)
|
| 122 |
-
|
| 123 |
-
# # Initialize the data loader
|
| 124 |
-
# loader = TextDataLoader(file_path, BATCH_SIZE, BLOCK_SIZE, tokenizer)
|
| 125 |
-
train_loader = GPTDatasetDDP(tokenizer, BATCH_SIZE, BLOCK_SIZE, BLOCK_SIZE, folder_path, ddp_rank, ddp_world_size, "train")
|
| 126 |
-
val_loader = GPTDatasetDDP(tokenizer, BATCH_SIZE, BLOCK_SIZE, BLOCK_SIZE, folder_path, ddp_rank, ddp_world_size, "test")
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# Set up a tqdm progress bar for the epoch
|
| 130 |
-
for epoch in range(MAX_ITERS):
|
| 131 |
-
if master_process:
|
| 132 |
-
print(f"Epoch {epoch}")
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
epoch_loss = None # Track loss for the epoch
|
| 136 |
-
train_loader.set_epoch(epoch)
|
| 137 |
-
val_loader.set_epoch(epoch)
|
| 138 |
-
train_loader.reset()
|
| 139 |
-
|
| 140 |
-
# for i in range(len(os.listdir(folder_path))):
|
| 141 |
-
# file_path = os.path.join(folder_path, os.listdir(folder_path)[i])
|
| 142 |
-
# print(f"loading file: {file_path}")
|
| 143 |
-
# loader = create_dataloader_ddp(tokenizer, file_path, BATCH_SIZE, BLOCK_SIZE, BLOCK_SIZE,
|
| 144 |
-
# tokenized_data=is_tokenized_data, process_rank=ddp_rank, num_process=ddp_world_size, filename=os.listdir(folder_path)[i]) # hammad added this line
|
| 145 |
-
|
| 146 |
-
# Create a progress bar for batch processing
|
| 147 |
-
# batch_progress_bar = tqdm(
|
| 148 |
-
# loader, desc=f"Epoch {epoch+1} Batch Progress", unit="batch", ncols=100)
|
| 149 |
-
count = 0
|
| 150 |
-
halt = False
|
| 151 |
-
# for xb, yb in batch_progress_bar:
|
| 152 |
-
while count < max_steps-8:
|
| 153 |
-
t0 = time.time()
|
| 154 |
-
loss_accum = 0
|
| 155 |
-
model.train()
|
| 156 |
-
optimizer.zero_grad()
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
# Forward pass and loss computation
|
| 160 |
-
for micro_step in range(grad_accumulation_steps):
|
| 161 |
-
xb, yb = train_loader.next_batch()
|
| 162 |
-
if xb is None:
|
| 163 |
-
halt = True
|
| 164 |
-
if master_process:
|
| 165 |
-
checkpoint = {
|
| 166 |
-
'model': raw_model.state_dict(),
|
| 167 |
-
'optimizer' : optimizer.state_dict(),
|
| 168 |
-
'config': raw_model.config,
|
| 169 |
-
'step': count,
|
| 170 |
-
'val_loss': val_loss_accum.item() }
|
| 171 |
-
# you might also want to add optimizer.state_dict() and
|
| 172 |
-
# rng seeds etc., if you wanted to more exactly resume training
|
| 173 |
-
torch.save(checkpoint, f"model_weights_checkpoint_{count}.pth")
|
| 174 |
-
print(f"Model weights saved at checkpoint {count}")
|
| 175 |
-
print(f"Epoch {epoch} completed")
|
| 176 |
-
torch.cuda.synchronize()
|
| 177 |
-
break # No more batches, stop the epoch
|
| 178 |
-
xb = xb.to(DEVICE)
|
| 179 |
-
yb = yb.to(DEVICE)
|
| 180 |
-
if ddp:
|
| 181 |
-
model.require_backward_grad_sync = (micro_step == grad_accumulation_steps - 1)
|
| 182 |
-
with torch.autocast(DEVICE, dtype=torch.float32):
|
| 183 |
-
logits, loss = model(xb, yb)
|
| 184 |
-
loss = loss / grad_accumulation_steps
|
| 185 |
-
loss_accum += loss.detach()
|
| 186 |
-
loss.backward()
|
| 187 |
-
# if ddp:
|
| 188 |
-
# dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG)
|
| 189 |
-
# norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
| 190 |
-
if halt == True:
|
| 191 |
-
break
|
| 192 |
-
# with torch.autocast(DEVICE, dtype=torch.bfloat16): #hammad added this line
|
| 193 |
-
# logits, loss = model(xb, yb)
|
| 194 |
-
# loss = loss / grad_accumulation_steps
|
| 195 |
-
# # if platform == 'kaggle':
|
| 196 |
-
# # loss_accum += loss.mean().detach()
|
| 197 |
-
# # loss.mean().backward()
|
| 198 |
-
# # else:
|
| 199 |
-
# loss_accum += loss.detach()
|
| 200 |
-
# if ddp:
|
| 201 |
-
# model.require_backward_grad_sync = (
|
| 202 |
-
# (count + 1) % grad_accumulation_steps == 0)
|
| 203 |
-
# loss.backward() # Backpropagate the loss
|
| 204 |
-
|
| 205 |
-
# for micro_batch in range(grad_accumulation_steps):
|
| 206 |
-
if ddp:
|
| 207 |
-
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG)
|
| 208 |
-
norm = torch.nn.utils.clip_grad_norm_(
|
| 209 |
-
model.parameters(), 1.0) # hammad added this line
|
| 210 |
-
lr = get_lr(count) # need to check if this is correct
|
| 211 |
-
for param_group in optimizer.param_groups:
|
| 212 |
-
param_group['lr'] = lr
|
| 213 |
-
optimizer.step() # Update model parameters
|
| 214 |
-
# wait for the computation to finish before moving to the next iteration
|
| 215 |
-
torch.cuda.synchronize()
|
| 216 |
-
t1 = time.time()
|
| 217 |
-
dt = t1 - t0 # time difference in seconds
|
| 218 |
-
tokens_processed = train_loader.batch_size * \
|
| 219 |
-
train_loader.block_size * grad_accumulation_steps * ddp_world_size
|
| 220 |
-
tokens_per_sec = tokens_processed / dt
|
| 221 |
-
if master_process:
|
| 222 |
-
print(f"epoch {epoch:5d} step {count:5d} | loss_accum: {loss_accum.item():.6f} | loss_unacum: {loss} |lr {lr:.4e} | norm: {norm:.4f} | dt: {dt*1000:.2f}ms | tok/sec: {tokens_per_sec:.2f}")
|
| 223 |
-
with open(log_file, "a") as f:
|
| 224 |
-
f.write(f"{epoch} {count} train {loss_accum.item():.6f}\n")
|
| 225 |
-
|
| 226 |
-
# Update epoch_loss to the most recent loss value
|
| 227 |
-
if platform == 'kaggle':
|
| 228 |
-
epoch_loss = loss.mean().item()
|
| 229 |
-
else:
|
| 230 |
-
epoch_loss = loss.item()
|
| 231 |
-
|
| 232 |
-
# Update tqdm with the latest loss value
|
| 233 |
-
# batch_progress_bar.set_postfix(loss=epoch_loss)
|
| 234 |
-
|
| 235 |
-
# if count % 5000 == 0:
|
| 236 |
-
# torch.save(raw_model.state_dict(),
|
| 237 |
-
# f"model_weights_checkpoint_{count}.pth")
|
| 238 |
-
#
|
| 239 |
-
|
| 240 |
-
if count % 50 == 0:
|
| 241 |
-
model.eval()
|
| 242 |
-
val_loader.reset()
|
| 243 |
-
|
| 244 |
-
with torch.no_grad():
|
| 245 |
-
val_loss_accum = 0.0
|
| 246 |
-
val_loss_steps = 20
|
| 247 |
-
for _ in range(val_loss_steps):
|
| 248 |
-
xb, yb = val_loader.next_batch()
|
| 249 |
-
xb = xb.to(DEVICE)
|
| 250 |
-
yb = yb.to(DEVICE)
|
| 251 |
-
with torch.autocast(DEVICE, dtype=torch.float32):
|
| 252 |
-
logits, loss = model(xb, yb)
|
| 253 |
-
loss = loss / val_loss_steps
|
| 254 |
-
val_loss_accum += loss.detach()
|
| 255 |
-
if ddp:
|
| 256 |
-
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
|
| 257 |
-
if master_process:
|
| 258 |
-
print(f"validation loss: {val_loss_accum.item():.4f}")
|
| 259 |
-
with open(log_file, "a") as f:
|
| 260 |
-
f.write(f"{count} val {val_loss_accum.item():.4f}\n")
|
| 261 |
-
if count > 0 and (count % 100 == 0):
|
| 262 |
-
# optionally write model checkpoints
|
| 263 |
-
checkpoint_path = os.path.join(log_dir, f"model_{count:05d}.pt")
|
| 264 |
-
checkpoint = {
|
| 265 |
-
'model': raw_model.state_dict(),
|
| 266 |
-
'optimizer' : optimizer.state_dict(),
|
| 267 |
-
'config': raw_model.config,
|
| 268 |
-
'step': count,
|
| 269 |
-
'val_loss': val_loss_accum.item()
|
| 270 |
-
}
|
| 271 |
-
# you might also want to add optimizer.state_dict() and
|
| 272 |
-
# rng seeds etc., if you wanted to more exactly resume training
|
| 273 |
-
torch.save(
|
| 274 |
-
checkpoint, f"model_weights_checkpoint_{epoch}_{count}.pth")
|
| 275 |
-
print(f"Model weights saved at checkpoint {count}")
|
| 276 |
-
count += 1
|
| 277 |
-
|
| 278 |
-
# Save model weights after each chunk or epoch
|
| 279 |
-
|
| 280 |
-
# Print the loss at the end of the epoch
|
| 281 |
-
if master_process:
|
| 282 |
-
if epoch_loss is not None:
|
| 283 |
-
print(f"Epoch {epoch}, Loss: {epoch_loss}")
|
| 284 |
-
else:
|
| 285 |
-
print(f"Epoch {epoch}, No data available for loss calculation.")
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
train_loader.close() # Ensure the file is properly closed at the end
|
| 289 |
-
val_loader.close()
|
| 290 |
-
if ddp:
|
| 291 |
-
destroy_process_group()
|
| 292 |
-
print("Process group destroyed")
|
| 293 |
-
|
| 294 |
-
# Delete variables, model, and optimizer
|
| 295 |
-
del model
|
| 296 |
-
del optimizer
|
| 297 |
-
torch.cuda.empty_cache() # Clears cached memory but not allocated memory
|
| 298 |
-
|
| 299 |
-
# Force garbage collection
|
| 300 |
-
gc.collect() # Ensures Python garbage collector releases unreferenced memory
|
| 301 |
-
torch.cuda.empty_cache() # Clears freed memory from GPU cache
|
| 302 |
-
|
| 303 |
-
torch.cuda.ipc_collect() # Helps in multi-GPU setups
|
| 304 |
-
return (0,0)
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Naive_gpt/train_ddp.py
DELETED
|
@@ -1,206 +0,0 @@
|
|
| 1 |
-
from DataLoader import create_dataloader, create_dataloader_ddp
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
-
import torch
|
| 5 |
-
from tqdm import tqdm
|
| 6 |
-
from .config import *
|
| 7 |
-
from .data_loader import TextDataLoader
|
| 8 |
-
from .model import GPTLanguageModel
|
| 9 |
-
import math
|
| 10 |
-
from torch.distributed import init_process_group, destroy_process_group
|
| 11 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 12 |
-
import torch.distributed as dist
|
| 13 |
-
|
| 14 |
-
max_lr = 6e-4
|
| 15 |
-
min_lr = max_lr * 0.1
|
| 16 |
-
warmup_steps = 10
|
| 17 |
-
max_steps = 50
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def get_lr(it):
|
| 21 |
-
if it < warmup_steps:
|
| 22 |
-
return max_lr * (it+1) / warmup_steps
|
| 23 |
-
|
| 24 |
-
if it > max_steps:
|
| 25 |
-
return min_lr
|
| 26 |
-
|
| 27 |
-
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
| 28 |
-
assert 0 <= decay_ratio <= 1
|
| 29 |
-
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
| 30 |
-
return min_lr + coeff * (max_lr - min_lr)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# set up DDP (distributed data parallel).
|
| 34 |
-
# torchrun command sets the env variables RANK, LOCAL_RANK, and WORLD_SIZE
|
| 35 |
-
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
|
| 36 |
-
if ddp:
|
| 37 |
-
# use of DDP atm demands CUDA, we set the device appropriately according to rank
|
| 38 |
-
assert torch.cuda.is_available(), "for now i think we need CUDA for DDP"
|
| 39 |
-
init_process_group(backend='nccl')
|
| 40 |
-
ddp_rank = int(os.environ['RANK'])
|
| 41 |
-
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
| 42 |
-
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
| 43 |
-
device = f'cuda:{ddp_local_rank}'
|
| 44 |
-
torch.cuda.set_device(device)
|
| 45 |
-
# this process will do logging, checkpointing etc.
|
| 46 |
-
master_process = ddp_rank == 0
|
| 47 |
-
else:
|
| 48 |
-
# vanilla, non-DDP run
|
| 49 |
-
ddp_rank = 0
|
| 50 |
-
ddp_local_rank = 0
|
| 51 |
-
ddp_world_size = 1
|
| 52 |
-
master_process = True
|
| 53 |
-
# attempt to autodetect device
|
| 54 |
-
device = "cpu"
|
| 55 |
-
if torch.cuda.is_available():
|
| 56 |
-
device = "cuda"
|
| 57 |
-
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 58 |
-
device = "mps"
|
| 59 |
-
print(f"using device: {device}")
|
| 60 |
-
|
| 61 |
-
torch.manual_seed(1337)
|
| 62 |
-
if torch.cuda.is_available():
|
| 63 |
-
torch.cuda.manual_seed(1337)
|
| 64 |
-
|
| 65 |
-
print(f"ddp: {ddp}, rank: {ddp_rank}, local_rank: {ddp_local_rank}, world_size: {ddp_world_size}")
|
| 66 |
-
print(f"master_process: {master_process}, device: {device}")
|
| 67 |
-
import sys; sys.exit(0)
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
total_batch_size = 524288 #524288 / 1024 = 512 is the batch size hamari terms mein
|
| 71 |
-
assert total_batch_size % (
|
| 72 |
-
BATCH_SIZE * BLOCK_SIZE * ddp_world_size) == 0, "make sure total_batch_size is divisible by BATCH_SIZE * BLOCK_SIZE"
|
| 73 |
-
grad_accumulation_steps = total_batch_size // (BATCH_SIZE * BLOCK_SIZE * ddp_world_size)
|
| 74 |
-
if master_process:
|
| 75 |
-
print(f"grad_accumulation_steps: {grad_accumulation_steps}")
|
| 76 |
-
print(f"total_batch_size: {total_batch_size}")
|
| 77 |
-
|
| 78 |
-
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/..")
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def train(folder_path, tokenizer, model=None, optimizer=None, vocab_size=10000, platform='none', checkpoint=None, is_tokenized_data=False):
|
| 82 |
-
|
| 83 |
-
# hammad added this line (need to check if it is necessary)
|
| 84 |
-
torch.set_float32_matmul_precision('high')
|
| 85 |
-
if model is None:
|
| 86 |
-
model = GPTLanguageModel(vocab_size=vocab_size)
|
| 87 |
-
print("Model Initialised")
|
| 88 |
-
if checkpoint != None:
|
| 89 |
-
print("loading checkpoint........")
|
| 90 |
-
model.load(checkpoint)
|
| 91 |
-
print("Model loaded from checkpoint", checkpoint)
|
| 92 |
-
|
| 93 |
-
# if platform == 'kaggle':
|
| 94 |
-
# model = torch.nn.DataParallel(model, device_ids=[0, 1])
|
| 95 |
-
# model = model.to(DEVICE)
|
| 96 |
-
# optimizer = model.module.configure_optimizers(
|
| 97 |
-
# weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE) # hammad added this line
|
| 98 |
-
# else:
|
| 99 |
-
model = model.to(DEVICE)
|
| 100 |
-
model = torch.compile(model) # hammad added this line
|
| 101 |
-
if ddp:
|
| 102 |
-
model = DDP(model, device_ids=[ddp_local_rank])
|
| 103 |
-
raw_model = model.module if ddp else model
|
| 104 |
-
# optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE, betas = (0.9, 0.95), eps = 1e-8)
|
| 105 |
-
optimizer = raw_model.configure_optimizers(
|
| 106 |
-
weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE)
|
| 107 |
-
|
| 108 |
-
# # Initialize the data loader
|
| 109 |
-
# loader = TextDataLoader(file_path, BATCH_SIZE, BLOCK_SIZE, tokenizer)
|
| 110 |
-
|
| 111 |
-
# Set up a tqdm progress bar for the epoch
|
| 112 |
-
for epoch in range(MAX_ITERS):
|
| 113 |
-
print(f"Epoch {epoch}")
|
| 114 |
-
epoch_loss = None # Track loss for the epoch
|
| 115 |
-
|
| 116 |
-
# for i in range(len(os.listdir(folder_path))):
|
| 117 |
-
# file_path = os.path.join(folder_path, os.listdir(folder_path)[i])
|
| 118 |
-
# print(f"loading file: {file_path}")
|
| 119 |
-
loader = create_dataloader_ddp(tokenizer, file_path, BATCH_SIZE, BLOCK_SIZE, BLOCK_SIZE,
|
| 120 |
-
tokenized_data=is_tokenized_data, process_rank = ddp_rank, num_process = ddp_world_size, filename=os.listdir(folder_path)[i]) # hammad added this line
|
| 121 |
-
|
| 122 |
-
# Create a progress bar for batch processing
|
| 123 |
-
batch_progress_bar = tqdm(
|
| 124 |
-
loader, desc=f"Epoch {epoch+1} Batch Progress", unit="batch", ncols=100)
|
| 125 |
-
count = 0
|
| 126 |
-
loss_accum = 0
|
| 127 |
-
for xb, yb in batch_progress_bar:
|
| 128 |
-
if xb is None:
|
| 129 |
-
break # No more batches, stop the epoch
|
| 130 |
-
optimizer.zero_grad()
|
| 131 |
-
|
| 132 |
-
# Forward pass and loss computation
|
| 133 |
-
xb = xb.to(DEVICE)
|
| 134 |
-
yb = yb.to(DEVICE)
|
| 135 |
-
# with torch.autocast(DEVICE, dtype=torch.bfloat16): #hammad added this line
|
| 136 |
-
logits, loss = model(xb, yb)
|
| 137 |
-
loss = loss / grad_accumulation_steps
|
| 138 |
-
# if platform == 'kaggle':
|
| 139 |
-
# loss_accum += loss.mean().detach()
|
| 140 |
-
# loss.mean().backward()
|
| 141 |
-
# else:
|
| 142 |
-
loss_accum += loss.detach()
|
| 143 |
-
if ddp:
|
| 144 |
-
model.require_backward_grad_sync = ((count + 1) % grad_accumulation_steps == 0)
|
| 145 |
-
loss.backward() # Backpropagate the loss
|
| 146 |
-
|
| 147 |
-
# for micro_batch in range(grad_accumulation_steps):
|
| 148 |
-
if count % grad_accumulation_steps == 0:
|
| 149 |
-
print("one batch completed at (xb,yb):", count)
|
| 150 |
-
if ddp:
|
| 151 |
-
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG)
|
| 152 |
-
loss_accum = 0
|
| 153 |
-
norm = torch.nn.utils.clip_grad_norm_(
|
| 154 |
-
model.parameters(), 1.0) # hammad added this line
|
| 155 |
-
lr = get_lr(count) # need to check if this is correct
|
| 156 |
-
for param_group in optimizer.param_groups:
|
| 157 |
-
param_group['lr'] = lr
|
| 158 |
-
optimizer.step() # Update model parameters
|
| 159 |
-
# wait for the computation to finish before moving to the next iteration
|
| 160 |
-
torch.cuda.synchronize()
|
| 161 |
-
|
| 162 |
-
# Update epoch_loss to the most recent loss value
|
| 163 |
-
if platform == 'kaggle':
|
| 164 |
-
epoch_loss = loss.mean().item()
|
| 165 |
-
else:
|
| 166 |
-
epoch_loss = loss.item()
|
| 167 |
-
|
| 168 |
-
# Update tqdm with the latest loss value
|
| 169 |
-
batch_progress_bar.set_postfix(loss=epoch_loss)
|
| 170 |
-
|
| 171 |
-
count += 1
|
| 172 |
-
if count % 5000 == 0:
|
| 173 |
-
if platform == 'kaggle':
|
| 174 |
-
torch.save(model.module.state_dict(),
|
| 175 |
-
f"model_weights_checkpoint_{count}.pth")
|
| 176 |
-
else:
|
| 177 |
-
torch.save(model.state_dict(),
|
| 178 |
-
f"model_weights_checkpoint_{count}.pth")
|
| 179 |
-
print(f"Model weights saved at checkpoint {count}")
|
| 180 |
-
|
| 181 |
-
# Save model weights after each chunk or epoch
|
| 182 |
-
if platform == 'kaggle':
|
| 183 |
-
torch.save(model.module.state_dict(),
|
| 184 |
-
f"model_weights_epoch_{epoch}_{file_path[-6:-4]}.pth")
|
| 185 |
-
else:
|
| 186 |
-
torch.save(model.state_dict(),
|
| 187 |
-
f"model_weights_epoch_{epoch}_{file_path[-6:-4]}.pth")
|
| 188 |
-
print(f"Model weights saved at epoch {epoch}")
|
| 189 |
-
|
| 190 |
-
# Print the loss at the end of the epoch
|
| 191 |
-
if epoch_loss is not None:
|
| 192 |
-
print(f"Epoch {epoch}, Loss: {epoch_loss}")
|
| 193 |
-
else:
|
| 194 |
-
print(
|
| 195 |
-
f"Epoch {epoch}, No data available for loss calculation.")
|
| 196 |
-
|
| 197 |
-
# Reset the loader for a new epoch
|
| 198 |
-
# loader.reset()
|
| 199 |
-
|
| 200 |
-
# loader.close() # Ensure the file is properly closed at the end
|
| 201 |
-
|
| 202 |
-
return model, optimizer
|
| 203 |
-
|
| 204 |
-
if ddp:
|
| 205 |
-
destroy_process_group()
|
| 206 |
-
print("Process group destroyed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|