Upload model and tokenizer
Browse files- modeling_gpt.py +200 -0
- tokenizer_config.json +1 -1
modeling_gpt.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model/model.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import inspect
|
| 5 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 6 |
+
|
| 7 |
+
# Define hyperparameters and constants
|
| 8 |
+
BATCH_SIZE = 16
|
| 9 |
+
BLOCK_SIZE = 1024
|
| 10 |
+
MAX_ITERS = 5
|
| 11 |
+
EVAL_INTERVAL = 500
|
| 12 |
+
LEARNING_RATE = 6e-4
|
| 13 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 14 |
+
EVAL_ITERS = 200
|
| 15 |
+
N_EMBD = 768
|
| 16 |
+
N_HEAD = 12
|
| 17 |
+
N_LAYER = 12
|
| 18 |
+
DROPOUT = 0.2
|
| 19 |
+
MODEL_PATH = "Naive_gpt\model_weights_llama" # Where to save weights
|
| 20 |
+
|
| 21 |
+
class CausalSelfAttention(nn.Module):
|
| 22 |
+
|
| 23 |
+
def __init__(self):
|
| 24 |
+
super().__init__()
|
| 25 |
+
assert N_EMBD % N_HEAD == 0
|
| 26 |
+
# key, query, value projections for all heads, but in a batch
|
| 27 |
+
self.c_attn = nn.Linear(N_EMBD, 3 * N_EMBD)
|
| 28 |
+
# output projection
|
| 29 |
+
self.c_proj = nn.Linear(N_EMBD, N_EMBD)
|
| 30 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 31 |
+
# regularization
|
| 32 |
+
self.n_head = N_HEAD
|
| 33 |
+
self.n_embd = N_EMBD
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
| 37 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
| 38 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
| 39 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
| 40 |
+
qkv = self.c_attn(x)
|
| 41 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
| 42 |
+
k = k.view(B, T, self.n_head, C //
|
| 43 |
+
self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 44 |
+
q = q.view(B, T, self.n_head, C //
|
| 45 |
+
self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 46 |
+
v = v.view(B, T, self.n_head, C //
|
| 47 |
+
self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 48 |
+
y = nn.functional.scaled_dot_product_attention(
|
| 49 |
+
q, k, v, is_causal=True) # flash attention
|
| 50 |
+
# re-assemble all head outputs side by side
|
| 51 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 52 |
+
# output projection
|
| 53 |
+
y = self.c_proj(y)
|
| 54 |
+
return y
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class FeedFoward(nn.Module): #yeh MLP hai karpathy wala -> Feed forward hai sebastian wala
|
| 58 |
+
def __init__(self):
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.c_fc = nn.Linear(N_EMBD, 4 * N_EMBD)
|
| 61 |
+
self.gelu = nn.GELU(approximate='tanh')
|
| 62 |
+
self.c_proj = nn.Linear(4 * N_EMBD, N_EMBD)
|
| 63 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 64 |
+
|
| 65 |
+
def forward(self, x):
|
| 66 |
+
x = self.c_fc(x)
|
| 67 |
+
x = self.gelu(x)
|
| 68 |
+
x = self.c_proj(x)
|
| 69 |
+
return x
|
| 70 |
+
""" a simple linear layer followed by a non-linearity """
|
| 71 |
+
|
| 72 |
+
class Block(nn.Module):
|
| 73 |
+
""" Transformer block: communication followed by computation """
|
| 74 |
+
|
| 75 |
+
def __init__(self, n_embd, n_head):
|
| 76 |
+
super().__init__()
|
| 77 |
+
head_size = N_EMBD // n_head
|
| 78 |
+
self.sa = CausalSelfAttention()
|
| 79 |
+
self.ffwd = FeedFoward()
|
| 80 |
+
self.ln1 = nn.LayerNorm(N_EMBD)
|
| 81 |
+
self.ln2 = nn.LayerNorm(N_EMBD)
|
| 82 |
+
|
| 83 |
+
def forward(self, x):
|
| 84 |
+
x = x + self.sa(self.ln1(x))
|
| 85 |
+
x = x + self.ffwd(self.ln2(x))
|
| 86 |
+
return x
|
| 87 |
+
|
| 88 |
+
class GPTLanguageModel(nn.Module, PyTorchModelHubMixin):
|
| 89 |
+
|
| 90 |
+
def __init__(self, vocab_size=20000, block_size=1024, n_embd=768, n_head=12, n_layer=12):
|
| 91 |
+
super().__init__()
|
| 92 |
+
print("This is vocab size:", vocab_size)
|
| 93 |
+
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
|
| 94 |
+
self.position_embedding_table = nn.Embedding(block_size, n_embd)
|
| 95 |
+
self.blocks = nn.Sequential(
|
| 96 |
+
*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]
|
| 97 |
+
)
|
| 98 |
+
self.ln_f = nn.LayerNorm(n_embd)
|
| 99 |
+
self.lm_head = nn.Linear(n_embd, vocab_size)
|
| 100 |
+
|
| 101 |
+
self.token_embedding_table.weight = self.lm_head.weight
|
| 102 |
+
|
| 103 |
+
self.apply(self._init_weights)
|
| 104 |
+
self.config = {"BLOCK_SIZE": block_size, "N_EMBD": n_embd, "N_HEAD":n_head, "N_LAYER": n_layer}
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _init_weights(self, module):
|
| 108 |
+
if isinstance(module, nn.Linear):
|
| 109 |
+
std = 0.02
|
| 110 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
| 111 |
+
std *= (2 * N_LAYER) ** -0.5
|
| 112 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 113 |
+
if module.bias is not None:
|
| 114 |
+
torch.nn.init.zeros_(module.bias)
|
| 115 |
+
elif isinstance(module, nn.Embedding):
|
| 116 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 117 |
+
|
| 118 |
+
def forward(self, idx, targets=None):
|
| 119 |
+
B, T = idx.shape
|
| 120 |
+
assert T <= BLOCK_SIZE, f"Cannot forward sequence of length {T}, block size is only {BLOCK_SIZE}"
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
tok_emb = self.token_embedding_table(idx)
|
| 124 |
+
pos_emb = self.position_embedding_table(torch.arange(0, T, dtype=torch.long, device=idx.device))
|
| 125 |
+
x = tok_emb + pos_emb
|
| 126 |
+
x = self.blocks(x)
|
| 127 |
+
x = self.ln_f(x)
|
| 128 |
+
logits = self.lm_head(x)
|
| 129 |
+
|
| 130 |
+
if targets is None:
|
| 131 |
+
loss = None
|
| 132 |
+
else:
|
| 133 |
+
loss = nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
| 134 |
+
|
| 135 |
+
return logits, loss
|
| 136 |
+
|
| 137 |
+
def generate(self, idx, max_new_tokens, temperature=1.0):
|
| 138 |
+
"""
|
| 139 |
+
Generate tokens using the language model.
|
| 140 |
+
Args:
|
| 141 |
+
idx: Input token indices
|
| 142 |
+
max_new_tokens: Number of tokens to generate
|
| 143 |
+
temperature: Controls randomness in generation
|
| 144 |
+
- temperature > 1.0 increases randomness
|
| 145 |
+
- temperature < 1.0 decreases randomness
|
| 146 |
+
- temperature = 0 makes it deterministic (always picks highest probability)
|
| 147 |
+
"""
|
| 148 |
+
for _ in range(max_new_tokens):
|
| 149 |
+
# Truncate the sequence to the last BLOCK_SIZE tokens
|
| 150 |
+
idx_cond = idx[:, -BLOCK_SIZE:]
|
| 151 |
+
# Get logits from the model
|
| 152 |
+
logits, _ = self(idx_cond)
|
| 153 |
+
# Focus only on the last time step
|
| 154 |
+
logits = logits[:, -1, :]
|
| 155 |
+
|
| 156 |
+
if temperature == 0.0:
|
| 157 |
+
# For temperature = 0, simply take the argmax
|
| 158 |
+
idx_next = torch.argmax(logits, dim=-1, keepdim=True)
|
| 159 |
+
else:
|
| 160 |
+
# Apply temperature scaling
|
| 161 |
+
logits = logits / temperature
|
| 162 |
+
# Convert to probabilities
|
| 163 |
+
probs = torch.softmax(logits, dim=-1)
|
| 164 |
+
# Sample from the distribution
|
| 165 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 166 |
+
|
| 167 |
+
# Append the new token to the sequence
|
| 168 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 169 |
+
return idx
|
| 170 |
+
|
| 171 |
+
def save(self, path=MODEL_PATH):
|
| 172 |
+
torch.save(self.state_dict(), path)
|
| 173 |
+
|
| 174 |
+
def load(self, path=MODEL_PATH):
|
| 175 |
+
# Load the state dict
|
| 176 |
+
state_dict = torch.load(path)["model"]
|
| 177 |
+
|
| 178 |
+
new_state_dict = {}
|
| 179 |
+
for key, value in state_dict.items():
|
| 180 |
+
new_key = key.replace('_orig_mod.', '') # Remove 'orig_mod.' prefix
|
| 181 |
+
new_state_dict[new_key] = value
|
| 182 |
+
|
| 183 |
+
self.load_state_dict(new_state_dict)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def configure_optimizers(self, weight_decay=0.1, learning_rate=LEARNING_RATE, device=DEVICE):
|
| 187 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 188 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
| 189 |
+
|
| 190 |
+
decay_parameters = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 191 |
+
nodecay_parameters = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 192 |
+
optim_groups = [
|
| 193 |
+
{"params": decay_parameters, "weight_decay": weight_decay},
|
| 194 |
+
{"params": nodecay_parameters, "weight_decay": 0.0},
|
| 195 |
+
]
|
| 196 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 197 |
+
use_fused = fused_available and device == "cuda"
|
| 198 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused = use_fused)
|
| 199 |
+
return optimizer
|
| 200 |
+
MODEL_PATH = "Naive_gpt\model_weights_llama" # Where to save weights
|
tokenizer_config.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
"type": "llama",
|
| 3 |
-
"vocab_size":
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"type": "llama",
|
| 3 |
+
"vocab_size": 20000
|
| 4 |
}
|