Upload PPO LunarLander-v2 trained agent v2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value:
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: 278.76 +/- 23.10
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d4a405870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d4a405900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d4a405990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d4a405a20>", "_build": "<function ActorCriticPolicy._build at 0x7f2d4a405ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d4a405b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2d4a405bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d4a405c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d4a405cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d4a405d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d4a405e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d4a405ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2d4a414dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687072793873444538, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrhQztci2u6HiKzNk0KlTGt2Jo6Qx/VtQAAgD8AAIA/gO4zvXvAgrrqg9M1sfazMIIuLTsjYPm0AACAPwAAgD9NRnA98YuTP1j4eT70EOe+nBvGPR1EMT4AAAAAAAAAAICzsb1cMwa6wsAxuRVjRLQvO2m6/KhLOAAAgD8AAIA/Uyg6PsAasT9zAOo+vES3vqUXjD69KPI9AAAAAAAAAADG4VU+FEaEP23ShL21Arm+fCQaPiO0ob0AAAAAAAAAAM2rybwUdJm6VRWeufONNrVT/No5xt22OAAAgD8AAIA/M5tIvWBG3D4Xh5o93/imvgXiazs0zqK7AAAAAAAAAACwUXG+y7d0P6agYr5vu+++VAuAvuoEtj0AAAAAAAAAADAilz5H/0o/EpMGvvVbpL4Sddg9JlJTvQAAAAAAAAAATeaTvVJZzLvbwaI9twAJPFqIHr1asPI8AAAAAAAAgD/NTKc84ViJuqLPFDr3EXA29jH+uaZTLbkAAIA/AACAP8UHr77vnzU/J+6wvk6oA7+JxqW+PbjQPQAAAAAAAAAAGpMHPZyIqz+cozA+NzDRvsgpwT2W3Tk9AAAAAAAAAABmGnu8tAuqvJ4Hb71guBS94ksGPnSRkD4AAIA/AACAP2YdBb4FFpS7VwkdvSQZZLukJNc8SxFDPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMxTMNc4YKMAWyUTVsBjAF0lEdAkwDI9LYf4nV9lChoBkdAcWwP8yeqaWgHTREBaAhHQJMA8unMt9R1fZQoaAZHQG5SsqSX+l1oB01UAWgIR0CTAS0mMOwxdX2UKGgGR0BwLo5T6zmfaAdNEwFoCEdAkwFf/m1YyXV9lChoBkdActw+az/p+2gHTUYBaAhHQJMBp88cMmZ1fZQoaAZHQHFqXryDqW1oB00HAWgIR0CTAdhje9BbdX2UKGgGR0ByK1HpbD/EaAdNjAFoCEdAkwPdOEdvKnV9lChoBkdAcWbDOC5Et2gHTTwBaAhHQJMENmWdEst1fZQoaAZHQG95Qc5sCT5oB00XAWgIR0CTBIC6pYLcdX2UKGgGR0BRiSBkI5YHaAdLvWgIR0CTBXC4jKPodX2UKGgGR0Bs6KTyJ9ApaAdNSQFoCEdAkwZY6nzg/HV9lChoBkdAcCi/zasZHmgHTRwBaAhHQJMGl2KVII51fZQoaAZHQHAUobOu7pVoB00+AWgIR0CTBrjGT9sKdX2UKGgGR0ByZABCD28JaAdNTAFoCEdAkwjK+WWyDHV9lChoBkdAbNXdrO7g9GgHTSQBaAhHQJMKBpztCzF1fZQoaAZHQHG1jC53C9BoB00UAWgIR0CTC7ag2606dX2UKGgGR0BwepHNHH3laAdNOAFoCEdAkwwN+b3GoHV9lChoBkdAbOYAAAAAAGgHTakBaAhHQJMMjRzBAOd1fZQoaAZHQG/DQT238XNoB01OAWgIR0CTDL+so2GZdX2UKGgGR0BvWpXfZVXFaAdNUgFoCEdAkw3M4T9KmXV9lChoBkdAcG16STyJ9GgHTW0BaAhHQJMOdXfZVXF1fZQoaAZHQHADTFyaNMpoB00OAWgIR0CTDo+pfhMrdX2UKGgGR0Byy+ZiNKh+aAdNfgFoCEdAkw7WkJrtV3V9lChoBkdAcqLxeLNwBGgHTTQBaAhHQJMPX8baRIV1fZQoaAZHQHA0VlCkXUJoB007AWgIR0CTECy3Td+HdX2UKGgGR0BvDWIl+mWMaAdNHgFoCEdAkxCd/jKgZnV9lChoBkdAcGxphWo3rGgHTRgBaAhHQJMR3Zbpu/F1fZQoaAZHQHC/MuFpPARoB00vAWgIR0CTEnGiYb84dX2UKGgGR0BxARzV+Zw5aAdNBgFoCEdAkxVqCHymRHV9lChoBkdAbyUwDeTFEWgHTTwBaAhHQJMWn9XLeRB1fZQoaAZHQHJikqUeMhpoB02VAWgIR0CTGCX1rZandX2UKGgGR0BxFtndweeWaAdNIQFoCEdAkxkv4EfT1HV9lChoBkdATsmDzyz5XWgHS8RoCEdAkxlOOOsDGXV9lChoBkdAb0PafSQYDWgHTSMBaAhHQJMZu7jDKo11fZQoaAZHQHKqB0uDjBFoB00xAWgIR0CTGyYlY2bYdX2UKGgGR0BuiYlyBClaaAdNCwFoCEdAkxv3ww0wanV9lChoBkdAcuQK7ZnL72gHTSkBaAhHQJMcl5cC5mR1fZQoaAZHQHMZ2puMuOFoB00UAWgIR0CTHQP+XJHRdX2UKGgGR0A8raLn9vS/aAdLyWgIR0CTHTk2gnMMdX2UKGgGR0BxDQDuBtk4aAdNWAFoCEdAkx1890RvnHV9lChoBkdAcEuSAYpDu2gHTSkBaAhHQJMdpHww0wd1fZQoaAZHQHAQUGzKLbZoB00xAWgIR0CTIBEvCdjHdX2UKGgGR0Bwn+xVyWAxaAdNIgFoCEdAkyC3KnvUjXV9lChoBkdAcqBHv+fh/GgHTQoBaAhHQJMkUyeqaPV1fZQoaAZHQG+q6sQumJpoB02uAWgIR0CTJXtBv73xdX2UKGgGR0BwwZ/4IrvtaAdNGwFoCEdAkybO5e7cwnV9lChoBkdAcARlFtsN2GgHTQEBaAhHQJMnKTEBKcx1fZQoaAZHQHDASemNzbNoB01sAWgIR0CTJ1+fh/AkdX2UKGgGR0BvPl/J/5LzaAdNOQFoCEdAkzjBgRbr1XV9lChoBkdAcVT/IKc/dWgHTU8BaAhHQJM5PYywfQt1fZQoaAZHQHLRsHKOktVoB01oAWgIR0CTOYUuctoSdX2UKGgGR0BymmFN+LFXaAdNFAFoCEdAkzo3EETxonV9lChoBkdAbtHanrIHT2gHTToBaAhHQJM6ZxzaK1p1fZQoaAZHQHAesHfMwDhoB00+AWgIR0CTOvk1/DtPdX2UKGgGR0BwKRiUgSvlaAdNPwFoCEdAkztnuuzQeHV9lChoBkdAbqaPgeii7GgHTU4BaAhHQJM7u6J66at1fZQoaAZHQHDSmBas6q9oB00wAWgIR0CTPONXYDkmdX2UKGgGR0Bwos5yU9pzaAdNLQFoCEdAkz08E/0NBnV9lChoBkdAbv2l3yI552gHTY4BaAhHQJM+E5+6RQt1fZQoaAZHQHFqpI+W4VhoB0vzaAhHQJM+nl6qsEJ1fZQoaAZHQHG4VqrR0EJoB00sAWgIR0CTP4Z8a4tpdX2UKGgGR0Bwvyl3yI56aAdNKgFoCEdAk0JMr7O3UnV9lChoBkdAclWnOjZcs2gHTTgBaAhHQJNCVyGSIP91fZQoaAZHQHANN7jT8YRoB01OAWgIR0CTQ3JO32EkdX2UKGgGR0BxMawQlKK6aAdNMgFoCEdAk0OC1AqusHV9lChoBkdAc0Kmois4k2gHTQ4BaAhHQJNDutW+49Z1fZQoaAZHQHHNEbkwN9ZoB00wAWgIR0CTQ9ubqhUSdX2UKGgGR0BvkWc4HX2/aAdNGQFoCEdAk0V5s9B8hXV9lChoBkdAcY/Ryfcvd2gHTV0BaAhHQJNFpVrAP/d1fZQoaAZHQHEeFoYekpJoB01WAWgIR0CTRf/yGzrvdX2UKGgGR0BxP1RwZOzqaAdNPwFoCEdAk0ZYod+5OXV9lChoBkdAcFhbGm1pkGgHTXUBaAhHQJNHr4AS39d1fZQoaAZHQHEJzNQj2SNoB005AWgIR0CTR7SwnpjddX2UKGgGR0ByITXf642CaAdNIQFoCEdAk0i76UJOWXV9lChoBkdAbeKEpy6tkmgHTT8BaAhHQJNJIxgy/K11fZQoaAZHQG8YiI1tO21oB00mAWgIR0CTScUuctoSdX2UKGgGR0BxdTH2h7E6aAdNjgFoCEdAk0rauwHJLnV9lChoBkdAcgmYzzmOl2gHS/loCEdAk0wGpQ1rI3V9lChoBkdAcf3x/NJOFmgHTTIBaAhHQJNOvDJlrdp1fZQoaAZHQHJTqFdszl9oB00vAWgIR0CTTzva11GLdX2UKGgGR0BwW1MTN+spaAdNQgFoCEdAk0+1Da4+bHV9lChoBkdAcRylMh5gPWgHTRgBaAhHQJNQwovzvql1fZQoaAZHQHFEUGJN0vJoB00YAWgIR0CTUe8AJb+tdX2UKGgGR0Bt3t+w1R+CaAdNjAFoCEdAk1HxEv0yxnV9lChoBkdAcmgRoysS02gHTToBaAhHQJNSSw5eZ5R1fZQoaAZHQHFAyKWLP2RoB00vAWgIR0CTUokCFK02dX2UKGgGR0Bt5tme18b8aAdNEwFoCEdAk1OoUahpQHV9lChoBkdAcWIsSCe2/mgHTcEBaAhHQJNUaKk2xY91fZQoaAZHQHETKSLZSNxoB01DAWgIR0CTVgxB3RoidX2UKGgGR0Byl4XHim2taAdNGwFoCEdAk1Y1hb4agnV9lChoBkdAb2wl2vB7/mgHTSsBaAhHQJNWa6vq1PZ1fZQoaAZHQGz4cinpB5ZoB0v7aAhHQJNXK6f8Mux1fZQoaAZHQHJBnHmzSkVoB00pAWgIR0CTWymPo3aSdX2UKGgGR0BxJXWBjFyaaAdNHwFoCEdAk11iT2WY4XV9lChoBkdAcjGMnJDE32gHTQsBaAhHQJNecwM6RyR1fZQoaAZHQHM8K5CngpBoB01EAWgIR0CTYBHeaa1DdX2UKGgGR0BwrLZGrjo7aAdNDwFoCEdAk2BlXRw6yXV9lChoBkdAca6No8IRiGgHTRwBaAhHQJNhPsMRYih1fZQoaAZHQG+tGSpzcRFoB03kAWgIR0CTYbyiEg4fdX2UKGgGR0BxNwnBtUGWaAdNYQFoCEdAk2HS7Ciyp3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2b4954280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2b4954310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2b49543a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2b4954430>", "_build": "<function ActorCriticPolicy._build at 0x7fd2b49544c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd2b4954550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd2b49545e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2b4954670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd2b4954700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2b4954790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2b4954820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2b49548b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd2b4943440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687103479916522519, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbJK75CclA+XRbdPixsnL6Zhji9e1vXPgAAAAAAAAAAzcl6vY/OfboqwOazOgwBL8smqTrUtLozAACAPwAAgD9mjtI7iLimvDUSAb0G6wS9aGEWvnXy0L0AAIA/AACAP81K5r0lb7c/HJ4tv6p++L2rZza9p62qvgAAAAAAAAAA5vGZvQXEvrs07YK791OFPFZ7IT2TkGK9AACAPwAAgD+asge9yOLgPpDWgj0q+qq+Z9AWPdpgjT0AAAAAAAAAADNrZrscK1S80H7fvRqf7jz+Frg9qiu/vQAAgD8AAIA/M2SqvaS5Vj7/N0E9P7OrvlR0ET2aQi49AAAAAAAAAACa8Ce9cb4gPMlKGj5V+Da+mkF0PW3rjzwAAAAAAAAAADN4Qj3BupQ/ss1fPkOqHr+hCrs9MoypPQAAAAAAAAAAZhK3vfsYmD8Q+16+bIIgv0N8IL7Afl+9AAAAAAAAAABNMxU+FMInP3C09L22tdy+Jmc8PebAC74AAAAAAAAAAJogm73gxK4/SOd/vjFo474Ybdq9vmTUvQAAAAAAAAAAmkOMPAMGCj18CAy+mdBQvlVImLzAl+o8AAAAAAAAAAAtYRg+Sn87P7Q6oz3mHvC+N+E2PgtohL0AAAAAAAAAAKbOrL32uFm6K3+Otne8E7IRCoI7ntamNQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNG69oN/fCMAWyUS++MAXSUR0CliB0LUkOadX2UKGgGR0Bwl4xEfDDTaAdL52gIR0CliDCiyprDdX2UKGgGR0BxDRFpfx+baAdL+GgIR0CliNVfeDWcdX2UKGgGR0BzXbI3irDJaAdL72gIR0CliOwAMlTndX2UKGgGR0Bx5Ng0CRwIaAdNEQFoCEdApYkL9Q40dnV9lChoBkdAULHkS26TXGgHS8loCEdApYkSWPcSG3V9lChoBkdAcJEFN+LFXWgHS89oCEdApYlVHFxXGXV9lChoBkdAce7z6rNnoWgHS/loCEdApYlehbnoxHV9lChoBkdAc1OIznA6+2gHS/hoCEdApYlsv4/NaHV9lChoBkdAcaZZh8Yyf2gHS+ZoCEdApYsvLkjop3V9lChoBkdAcI3kSElE7WgHS/hoCEdApYu4xBVuJnV9lChoBkdAc4Up4KQaJmgHS+VoCEdApYv9beMyanV9lChoBkdAcv7UvwmVq2gHS+RoCEdApYxKWNWEK3V9lChoBkdAcO2mAskIHGgHS+FoCEdApYxQv8IiT3V9lChoBkdAc9qT2nKnvWgHTREBaAhHQKWMYF6iTMd1fZQoaAZHQHEiEc81XNloB0vraAhHQKWMcZTho/R1fZQoaAZHQG0rz9bX6IpoB00NAWgIR0CljHcZk079dX2UKGgGR0B0JMLApKBeaAdLx2gIR0CljJDohY/3dX2UKGgGR0BycC01IiC8aAdNHgFoCEdApYzLundfs3V9lChoBkdAb7DzqbBoEmgHS9NoCEdApY1j/+85CHV9lChoBkdAcjhtITXarWgHS+VoCEdApY2oDYAbQ3V9lChoBkdAct7WpqASWmgHTQIBaAhHQKWNuALApKB1fZQoaAZHQHFQaUzKs+5oB0vyaAhHQKWN3d30PH11fZQoaAZHQHOY9v4ubqhoB00aAWgIR0CljlHK4hECdX2UKGgGR0BS4U2P1ct5aAdLpGgIR0CljtC5EtuldX2UKGgGR0Bu2kwN9YwJaAdNPwFoCEdApY78XgtOEnV9lChoBkdAVnqoKlYU4GgHS69oCEdApY+PdEb5unV9lChoBkdAcdK/+sHSnmgHS+hoCEdApZBzst03fnV9lChoBkdAcfeOEug6EWgHTRYBaAhHQKWQnN/vv0B1fZQoaAZHQHFeV4HHFP1oB0vjaAhHQKWQyk43m3h1fZQoaAZHQHLLUdzXBgxoB0vwaAhHQKWRLo4+8oR1fZQoaAZHQHDfSOq//NtoB0v8aAhHQKWRPKPGQ0Z1fZQoaAZHQHCjiu6mO2loB0v5aAhHQKWRQutfXwt1fZQoaAZHQHF6ccIZ62RoB0vqaAhHQKWRUvZh8Y11fZQoaAZHQHNIreANG3FoB00WAWgIR0ClmkV5jYqYdX2UKGgGR0BygpIGyHEdaAdL6WgIR0Clmqbv5P/JdX2UKGgGR0By2AwIt16maAdL/GgIR0Clmqr7fpEAdX2UKGgGR0BxUH8rI5o5aAdL8WgIR0ClmrUs4DLbdX2UKGgGR0BwBXRMN+b3aAdL/WgIR0Clm0d0aIepdX2UKGgGR0Bw/e8Zk079aAdNJwFoCEdApZuCE+Pik3V9lChoBkdAcczFrl/6PGgHS/BoCEdApZuTAckt3HV9lChoBkdAc3dgtvn8sWgHTRQBaAhHQKWb8Y1pCa91fZQoaAZHQHEievdM0xdoB0v3aAhHQKWcFn8Kohp1fZQoaAZHQHDsJtix3V1oB0vlaAhHQKWcjGhmGud1fZQoaAZHQHB6vgFX7tRoB0v2aAhHQKWcsIrOJLx1fZQoaAZHQHDU4N/e+EhoB0vzaAhHQKWc4i48U211fZQoaAZHQHDQ7BKtga5oB0vgaAhHQKWc/PE87p51fZQoaAZHQHMUH/Pw/gRoB0v1aAhHQKWdLygf2bp1fZQoaAZHQHEZmW2PT5RoB00DAWgIR0ClnWuTA31jdX2UKGgGR0BucUgQpWmxaAdL2WgIR0ClnZhisny/dX2UKGgGR0Bukd0gbIcSaAdNEgFoCEdApZ2a6z3RHHV9lChoBkdAQge6kIomX2gHS6loCEdApZ2koKD02HV9lChoBkdAbSFVLi++NGgHS/RoCEdApZ39n5BToHV9lChoBkdAc3H5NoJzDGgHTRkBaAhHQKWd/SuQp4N1fZQoaAZHQHCov/WDpTxoB00FAWgIR0ClniJrLyMDdX2UKGgGR0BwWTX05EMLaAdL0WgIR0ClnsJ17pmmdX2UKGgGR0BwwaN3np0PaAdNBQFoCEdApZ8W4/eLvXV9lChoBkdAcexZkTYdyWgHTQ8BaAhHQKWfJ3yI55t1fZQoaAZHQHHkraRISUVoB0vraAhHQKWfPm29cr11fZQoaAZHQHIrcTzundhoB0vtaAhHQKWfx+z+m3x1fZQoaAZHQHHQyLqD9O1oB00AAWgIR0Cln+6B7NSqdX2UKGgGR0BueDAUL2HtaAdL/2gIR0CloDfbTMJQdX2UKGgGR0BtdnfqHGjsaAdL+WgIR0CloD1x82JjdX2UKGgGR0Bx8gkxASnMaAdLz2gIR0CloEcLBsQ/dX2UKGgGR0Bs/SydFvycaAdL2WgIR0CloG3ztkWidX2UKGgGR0BwJ7uuzQeFaAdL7mgIR0CloHr2YfGNdX2UKGgGR0Bx3Xi704BFaAdNAQFoCEdApaCBD1Gsm3V9lChoBkdAcgatMPBi1GgHTQoBaAhHQKWg7nU2DQJ1fZQoaAZHQHD8npW3jMpoB00SAWgIR0CloWvM8ox6dX2UKGgGR0ByvCHxjJ+2aAdNDAFoCEdApaGBVsDW9XV9lChoBkdAc8BARkEs8WgHS9loCEdApaGBItlI3HV9lChoBkdASwpywOe8PGgHS75oCEdApaGIUN8VpXV9lChoBkdAcmNU83dbgWgHTRwBaAhHQKWhjGIbfgt1fZQoaAZHQE9GWcBltj1oB0u4aAhHQKWiBUsFt9B1fZQoaAZHQHAyjKPn0TVoB0v6aAhHQKWiLA1vVEx1fZQoaAZHQHEvH+ZPVNJoB00MAWgIR0ClooZzHS4OdX2UKGgGR0BzAqAG0NSZaAdL62gIR0Clow4A80UHdX2UKGgGR0Bx4X0RODaoaAdL8GgIR0ClozJUPxx2dX2UKGgGR0BxlkTg2qDLaAdNDQFoCEdApaM9yWAwwnV9lChoBkdAcWmSCvovBmgHS/ZoCEdApaM8052hZnV9lChoBkdActB2SdOIqWgHS/ZoCEdApaNthCtzS3V9lChoBkdAcCdoo/iYLWgHS/loCEdApaOJrcj7h3V9lChoBkdAcowrSVnmJWgHTQUBaAhHQKWjp05EMLF1fZQoaAZHQHH5+ZkTYd1oB0vpaAhHQKWjzjkuHvd1fZQoaAZHQHLZPvOQhfVoB0vqaAhHQKWkVQgLZzx1fZQoaAZHQG9clSS/0uloB0vkaAhHQKWkX7u2JBR1fZQoaAZHQHCqyn5zo2ZoB0v3aAhHQKWkqE12q1h1fZQoaAZHQHHp7Ysd1dRoB0v+aAhHQKWks3XI2fl1fZQoaAZHQHN5mrKeTV5oB00JAWgIR0ClpNfl6qsEdX2UKGgGR0BwdBlEqlP8aAdL3mgIR0ClpQIuXeFddX2UKGgGR0BwrYhpxm03aAdL9GgIR0ClpR3Dej20dX2UKGgGR0Bx9mPeYUnHaAdL72gIR0ClpaUUwi7kdX2UKGgGR0BwT+kl/pdKaAdL3mgIR0ClphWac7QtdX2UKGgGR0Byb2NCJGe+aAdL3GgIR0Clpkl1SwW4dX2UKGgGR0BxTpiqhlDnaAdL5GgIR0Clpm0PH1e0dX2UKGgGR0BwuTdpItlJaAdL/mgIR0ClptdTHbRGdX2UKGgGR0BxHgNYr8R+aAdL4mgIR0Clp0SiVSn+dX2UKGgGR0ByoUqXnhbXaAdL+GgIR0Clp3BV2icodX2UKGgGR0BPM+1Bt1p1aAdLzmgIR0Clp6B2GIsRdX2UKGgGR0Bxn3WUbDMvaAdNEQFoCEdApae0p/gBLnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c8c2f8078d16cffca3d65864b328eefbaff7f21031da4025cc0f1bc697a07c0
|
| 3 |
+
size 146663
|
ppo-LunarLander-v2/data
CHANGED
|
@@ -4,20 +4,20 @@
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
| 8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
| 9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
| 10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
| 11 |
-
"_build": "<function ActorCriticPolicy._build at
|
| 12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
| 13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
| 14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
| 15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
| 16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
| 17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
| 18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
-
"_abc_impl": "<_abc._abc_data object at
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
|
@@ -26,12 +26,12 @@
|
|
| 26 |
"_num_timesteps_at_start": 0,
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
-
"start_time":
|
| 30 |
"learning_rate": 0.0003,
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
-
":serialized:": "
|
| 35 |
},
|
| 36 |
"_last_episode_starts": {
|
| 37 |
":type:": "<class 'numpy.ndarray'>",
|
|
@@ -45,13 +45,13 @@
|
|
| 45 |
"_stats_window_size": 100,
|
| 46 |
"ep_info_buffer": {
|
| 47 |
":type:": "<class 'collections.deque'>",
|
| 48 |
-
":serialized:": "
|
| 49 |
},
|
| 50 |
"ep_success_buffer": {
|
| 51 |
":type:": "<class 'collections.deque'>",
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
-
"_n_updates":
|
| 55 |
"observation_space": {
|
| 56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2b4954280>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2b4954310>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2b49543a0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2b4954430>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd2b49544c0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd2b4954550>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd2b49545e0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2b4954670>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd2b4954700>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2b4954790>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2b4954820>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2b49548b0>",
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd2b4943440>"
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
|
|
|
| 26 |
"_num_timesteps_at_start": 0,
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
+
"start_time": 1687103479916522519,
|
| 30 |
"learning_rate": 0.0003,
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbJK75CclA+XRbdPixsnL6Zhji9e1vXPgAAAAAAAAAAzcl6vY/OfboqwOazOgwBL8smqTrUtLozAACAPwAAgD9mjtI7iLimvDUSAb0G6wS9aGEWvnXy0L0AAIA/AACAP81K5r0lb7c/HJ4tv6p++L2rZza9p62qvgAAAAAAAAAA5vGZvQXEvrs07YK791OFPFZ7IT2TkGK9AACAPwAAgD+asge9yOLgPpDWgj0q+qq+Z9AWPdpgjT0AAAAAAAAAADNrZrscK1S80H7fvRqf7jz+Frg9qiu/vQAAgD8AAIA/M2SqvaS5Vj7/N0E9P7OrvlR0ET2aQi49AAAAAAAAAACa8Ce9cb4gPMlKGj5V+Da+mkF0PW3rjzwAAAAAAAAAADN4Qj3BupQ/ss1fPkOqHr+hCrs9MoypPQAAAAAAAAAAZhK3vfsYmD8Q+16+bIIgv0N8IL7Afl+9AAAAAAAAAABNMxU+FMInP3C09L22tdy+Jmc8PebAC74AAAAAAAAAAJogm73gxK4/SOd/vjFo474Ybdq9vmTUvQAAAAAAAAAAmkOMPAMGCj18CAy+mdBQvlVImLzAl+o8AAAAAAAAAAAtYRg+Sn87P7Q6oz3mHvC+N+E2PgtohL0AAAAAAAAAAKbOrL32uFm6K3+Otne8E7IRCoI7ntamNQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 35 |
},
|
| 36 |
"_last_episode_starts": {
|
| 37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
|
| 45 |
"_stats_window_size": 100,
|
| 46 |
"ep_info_buffer": {
|
| 47 |
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHNG69oN/fCMAWyUS++MAXSUR0CliB0LUkOadX2UKGgGR0Bwl4xEfDDTaAdL52gIR0CliDCiyprDdX2UKGgGR0BxDRFpfx+baAdL+GgIR0CliNVfeDWcdX2UKGgGR0BzXbI3irDJaAdL72gIR0CliOwAMlTndX2UKGgGR0Bx5Ng0CRwIaAdNEQFoCEdApYkL9Q40dnV9lChoBkdAULHkS26TXGgHS8loCEdApYkSWPcSG3V9lChoBkdAcJEFN+LFXWgHS89oCEdApYlVHFxXGXV9lChoBkdAce7z6rNnoWgHS/loCEdApYlehbnoxHV9lChoBkdAc1OIznA6+2gHS/hoCEdApYlsv4/NaHV9lChoBkdAcaZZh8Yyf2gHS+ZoCEdApYsvLkjop3V9lChoBkdAcI3kSElE7WgHS/hoCEdApYu4xBVuJnV9lChoBkdAc4Up4KQaJmgHS+VoCEdApYv9beMyanV9lChoBkdAcv7UvwmVq2gHS+RoCEdApYxKWNWEK3V9lChoBkdAcO2mAskIHGgHS+FoCEdApYxQv8IiT3V9lChoBkdAc9qT2nKnvWgHTREBaAhHQKWMYF6iTMd1fZQoaAZHQHEiEc81XNloB0vraAhHQKWMcZTho/R1fZQoaAZHQG0rz9bX6IpoB00NAWgIR0CljHcZk079dX2UKGgGR0B0JMLApKBeaAdLx2gIR0CljJDohY/3dX2UKGgGR0BycC01IiC8aAdNHgFoCEdApYzLundfs3V9lChoBkdAb7DzqbBoEmgHS9NoCEdApY1j/+85CHV9lChoBkdAcjhtITXarWgHS+VoCEdApY2oDYAbQ3V9lChoBkdAct7WpqASWmgHTQIBaAhHQKWNuALApKB1fZQoaAZHQHFQaUzKs+5oB0vyaAhHQKWN3d30PH11fZQoaAZHQHOY9v4ubqhoB00aAWgIR0CljlHK4hECdX2UKGgGR0BS4U2P1ct5aAdLpGgIR0CljtC5EtuldX2UKGgGR0Bu2kwN9YwJaAdNPwFoCEdApY78XgtOEnV9lChoBkdAVnqoKlYU4GgHS69oCEdApY+PdEb5unV9lChoBkdAcdK/+sHSnmgHS+hoCEdApZBzst03fnV9lChoBkdAcfeOEug6EWgHTRYBaAhHQKWQnN/vv0B1fZQoaAZHQHFeV4HHFP1oB0vjaAhHQKWQyk43m3h1fZQoaAZHQHLLUdzXBgxoB0vwaAhHQKWRLo4+8oR1fZQoaAZHQHDfSOq//NtoB0v8aAhHQKWRPKPGQ0Z1fZQoaAZHQHCjiu6mO2loB0v5aAhHQKWRQutfXwt1fZQoaAZHQHF6ccIZ62RoB0vqaAhHQKWRUvZh8Y11fZQoaAZHQHNIreANG3FoB00WAWgIR0ClmkV5jYqYdX2UKGgGR0BygpIGyHEdaAdL6WgIR0Clmqbv5P/JdX2UKGgGR0By2AwIt16maAdL/GgIR0Clmqr7fpEAdX2UKGgGR0BxUH8rI5o5aAdL8WgIR0ClmrUs4DLbdX2UKGgGR0BwBXRMN+b3aAdL/WgIR0Clm0d0aIepdX2UKGgGR0Bw/e8Zk079aAdNJwFoCEdApZuCE+Pik3V9lChoBkdAcczFrl/6PGgHS/BoCEdApZuTAckt3HV9lChoBkdAc3dgtvn8sWgHTRQBaAhHQKWb8Y1pCa91fZQoaAZHQHEievdM0xdoB0v3aAhHQKWcFn8Kohp1fZQoaAZHQHDsJtix3V1oB0vlaAhHQKWcjGhmGud1fZQoaAZHQHB6vgFX7tRoB0v2aAhHQKWcsIrOJLx1fZQoaAZHQHDU4N/e+EhoB0vzaAhHQKWc4i48U211fZQoaAZHQHDQ7BKtga5oB0vgaAhHQKWc/PE87p51fZQoaAZHQHMUH/Pw/gRoB0v1aAhHQKWdLygf2bp1fZQoaAZHQHEZmW2PT5RoB00DAWgIR0ClnWuTA31jdX2UKGgGR0BucUgQpWmxaAdL2WgIR0ClnZhisny/dX2UKGgGR0Bukd0gbIcSaAdNEgFoCEdApZ2a6z3RHHV9lChoBkdAQge6kIomX2gHS6loCEdApZ2koKD02HV9lChoBkdAbSFVLi++NGgHS/RoCEdApZ39n5BToHV9lChoBkdAc3H5NoJzDGgHTRkBaAhHQKWd/SuQp4N1fZQoaAZHQHCov/WDpTxoB00FAWgIR0ClniJrLyMDdX2UKGgGR0BwWTX05EMLaAdL0WgIR0ClnsJ17pmmdX2UKGgGR0BwwaN3np0PaAdNBQFoCEdApZ8W4/eLvXV9lChoBkdAcexZkTYdyWgHTQ8BaAhHQKWfJ3yI55t1fZQoaAZHQHHkraRISUVoB0vraAhHQKWfPm29cr11fZQoaAZHQHIrcTzundhoB0vtaAhHQKWfx+z+m3x1fZQoaAZHQHHQyLqD9O1oB00AAWgIR0Cln+6B7NSqdX2UKGgGR0BueDAUL2HtaAdL/2gIR0CloDfbTMJQdX2UKGgGR0BtdnfqHGjsaAdL+WgIR0CloD1x82JjdX2UKGgGR0Bx8gkxASnMaAdLz2gIR0CloEcLBsQ/dX2UKGgGR0Bs/SydFvycaAdL2WgIR0CloG3ztkWidX2UKGgGR0BwJ7uuzQeFaAdL7mgIR0CloHr2YfGNdX2UKGgGR0Bx3Xi704BFaAdNAQFoCEdApaCBD1Gsm3V9lChoBkdAcgatMPBi1GgHTQoBaAhHQKWg7nU2DQJ1fZQoaAZHQHD8npW3jMpoB00SAWgIR0CloWvM8ox6dX2UKGgGR0ByvCHxjJ+2aAdNDAFoCEdApaGBVsDW9XV9lChoBkdAc8BARkEs8WgHS9loCEdApaGBItlI3HV9lChoBkdASwpywOe8PGgHS75oCEdApaGIUN8VpXV9lChoBkdAcmNU83dbgWgHTRwBaAhHQKWhjGIbfgt1fZQoaAZHQE9GWcBltj1oB0u4aAhHQKWiBUsFt9B1fZQoaAZHQHAyjKPn0TVoB0v6aAhHQKWiLA1vVEx1fZQoaAZHQHEvH+ZPVNJoB00MAWgIR0ClooZzHS4OdX2UKGgGR0BzAqAG0NSZaAdL62gIR0Clow4A80UHdX2UKGgGR0Bx4X0RODaoaAdL8GgIR0ClozJUPxx2dX2UKGgGR0BxlkTg2qDLaAdNDQFoCEdApaM9yWAwwnV9lChoBkdAcWmSCvovBmgHS/ZoCEdApaM8052hZnV9lChoBkdActB2SdOIqWgHS/ZoCEdApaNthCtzS3V9lChoBkdAcCdoo/iYLWgHS/loCEdApaOJrcj7h3V9lChoBkdAcowrSVnmJWgHTQUBaAhHQKWjp05EMLF1fZQoaAZHQHH5+ZkTYd1oB0vpaAhHQKWjzjkuHvd1fZQoaAZHQHLZPvOQhfVoB0vqaAhHQKWkVQgLZzx1fZQoaAZHQG9clSS/0uloB0vkaAhHQKWkX7u2JBR1fZQoaAZHQHCqyn5zo2ZoB0v3aAhHQKWkqE12q1h1fZQoaAZHQHHp7Ysd1dRoB0v+aAhHQKWks3XI2fl1fZQoaAZHQHN5mrKeTV5oB00JAWgIR0ClpNfl6qsEdX2UKGgGR0BwdBlEqlP8aAdL3mgIR0ClpQIuXeFddX2UKGgGR0BwrYhpxm03aAdL9GgIR0ClpR3Dej20dX2UKGgGR0Bx9mPeYUnHaAdL72gIR0ClpaUUwi7kdX2UKGgGR0BwT+kl/pdKaAdL3mgIR0ClphWac7QtdX2UKGgGR0Byb2NCJGe+aAdL3GgIR0Clpkl1SwW4dX2UKGgGR0BxTpiqhlDnaAdL5GgIR0Clpm0PH1e0dX2UKGgGR0BwuTdpItlJaAdL/mgIR0ClptdTHbRGdX2UKGgGR0BxHgNYr8R+aAdL4mgIR0Clp0SiVSn+dX2UKGgGR0ByoUqXnhbXaAdL+GgIR0Clp3BV2icodX2UKGgGR0BPM+1Bt1p1aAdLzmgIR0Clp6B2GIsRdX2UKGgGR0Bxn3WUbDMvaAdNEQFoCEdApae0p/gBLnVlLg=="
|
| 49 |
},
|
| 50 |
"ep_success_buffer": {
|
| 51 |
":type:": "<class 'collections.deque'>",
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
+
"_n_updates": 496,
|
| 55 |
"observation_space": {
|
| 56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 87929
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f4e9351ab6189be26fb7fcdddfa12889b05177564e802ff7bc95c1fbe95c865
|
| 3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 43329
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00fd268180e64799538c6db59a716fb1380825dc0d1df00cbb2f3eaa6beb693b
|
| 3 |
size 43329
|
replay.mp4
CHANGED
|
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward":
|
|
|
|
| 1 |
+
{"mean_reward": 278.75687292225933, "std_reward": 23.10320847698407, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-18T16:06:25.301658"}
|