AlexN commited on
Commit
7132467
1 Parent(s): 6fdde51
Files changed (4) hide show
  1. added_tokens.json +0 -1
  2. eval.py +153 -0
  3. run.sh +4 -4
  4. run_speech_recognition_ctc.py +3 -1
added_tokens.json DELETED
@@ -1 +0,0 @@
1
- {"<s>": 216, "</s>": 217}
 
 
eval.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ import unicodedata
5
+ from typing import Dict
6
+
7
+ import torch
8
+ from datasets import Audio, Dataset, load_dataset, load_metric
9
+
10
+ from transformers import AutoFeatureExtractor, pipeline
11
+
12
+
13
+ def log_results(result: Dataset, args: Dict[str, str]):
14
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
15
+
16
+ log_outputs = args.log_outputs
17
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
18
+
19
+ # load metric
20
+ wer = load_metric("wer")
21
+ cer = load_metric("cer")
22
+
23
+ # compute metrics
24
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
25
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
26
+
27
+ # print & log results
28
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ chars_to_remove_regex = r'[\,\?\.\!\-\_\;\:\"\“\%\‘\”\�\^]'
52
+
53
+ def remove_accents(text):
54
+ nfkd_form = unicodedata.normalize('NFKD', text)
55
+ return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])
56
+
57
+ def remove_special_characters(text):
58
+ text = re.sub(chars_to_remove_regex, '', text).lower()
59
+ text = re.sub("ç", r'[cedille]', text)
60
+ text = re.sub("&", r'et', text)
61
+ text = re.sub("%", r' pourcents', text)
62
+ text = re.sub("([0-9]+)(,|.)([0-9+])", r'\1 virgule \3', text)
63
+ text = re.sub("\$", r'dollar', text)
64
+ text = re.sub("\£", r'livre', text)
65
+ text = re.sub("\€", r'euro', text)
66
+ text = remove_accents(text)
67
+ text = re.sub(r"\[cedille\]", 'ç', text) + " "
68
+ return text
69
+
70
+ def normalize_text(text: str) -> str:
71
+ text = remove_special_characters(text)
72
+
73
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
74
+ # note that order is important here!
75
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
76
+
77
+ for t in token_sequences_to_ignore:
78
+ text = " ".join(text.split(t))
79
+
80
+ return text
81
+
82
+
83
+ def main(args):
84
+ # load dataset
85
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
86
+
87
+ # for testing: only process the first two examples as a test
88
+ dataset = dataset.select(range(20))
89
+
90
+ # load processor
91
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
92
+ sampling_rate = feature_extractor.sampling_rate
93
+
94
+ # resample audio
95
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
96
+
97
+ # load eval pipeline
98
+ if args.device is None:
99
+ args.device = 0 if torch.cuda.is_available() else -1
100
+ asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
101
+
102
+ # map function to decode audio
103
+ def map_to_pred(batch):
104
+ prediction = asr(
105
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s,,skip_special_tokens=True
106
+ )
107
+
108
+ batch["prediction"] = prediction["text"]# "".join(prediction["text"].split("<s>"))
109
+ batch["target"] = normalize_text(batch["sentence"])
110
+ return batch
111
+
112
+ # run inference on all examples
113
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
114
+
115
+ # compute and log_results
116
+ # do not change function below
117
+ log_results(result, args)
118
+
119
+
120
+ if __name__ == "__main__":
121
+ parser = argparse.ArgumentParser()
122
+
123
+ parser.add_argument(
124
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
125
+ )
126
+ parser.add_argument(
127
+ "--dataset",
128
+ type=str,
129
+ required=True,
130
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
131
+ )
132
+ parser.add_argument(
133
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
134
+ )
135
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
136
+ parser.add_argument(
137
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
138
+ )
139
+ parser.add_argument(
140
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
141
+ )
142
+ parser.add_argument(
143
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
144
+ )
145
+ parser.add_argument(
146
+ "--device",
147
+ type=int,
148
+ default=None,
149
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
150
+ )
151
+ args = parser.parse_args()
152
+
153
+ main(args)
run.sh CHANGED
@@ -6,8 +6,8 @@ python run_speech_recognition_ctc.py \
6
  --output_dir="./" \
7
  --overwrite_output_dir \
8
  --num_train_epochs="5" \
9
- --per_device_train_batch_size="32" \
10
- --per_device_eval_batch_size="32" \
11
  --gradient_accumulation_steps="1" \
12
  --learning_rate="7e-5" \
13
  --warmup_steps="1500" \
@@ -22,9 +22,9 @@ python run_speech_recognition_ctc.py \
22
  --save_total_limit="3" \
23
  --freeze_feature_encoder \
24
  --feat_proj_dropout="0.0" \
25
- --mask_time_prob="0.15" \
26
  --mask_time_length="10" \
27
- --mask_feature_prob="0.3" \
28
  --mask_feature_length="10" \
29
  --gradient_checkpointing \
30
  --report_to="wandb" \
 
6
  --output_dir="./" \
7
  --overwrite_output_dir \
8
  --num_train_epochs="5" \
9
+ --per_device_train_batch_size="64" \
10
+ --per_device_eval_batch_size="64" \
11
  --gradient_accumulation_steps="1" \
12
  --learning_rate="7e-5" \
13
  --warmup_steps="1500" \
 
22
  --save_total_limit="3" \
23
  --freeze_feature_encoder \
24
  --feat_proj_dropout="0.0" \
25
+ --mask_time_prob="0.05" \
26
  --mask_time_length="10" \
27
+ --mask_feature_prob="0.33" \
28
  --mask_feature_length="10" \
29
  --gradient_checkpointing \
30
  --report_to="wandb" \
run_speech_recognition_ctc.py CHANGED
@@ -511,6 +511,8 @@ def main():
511
  tokenizer_kwargs = {
512
  "config": config if config.tokenizer_class is not None else None,
513
  "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
 
 
514
  "unk_token": unk_token,
515
  "pad_token": pad_token,
516
  "word_delimiter_token": word_delimiter_token,
@@ -641,7 +643,7 @@ def main():
641
 
642
  pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
643
 
644
- pred_str = tokenizer.batch_decode(pred_ids)
645
  # we do not want to group tokens when computing the metrics
646
  label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
647
 
 
511
  tokenizer_kwargs = {
512
  "config": config if config.tokenizer_class is not None else None,
513
  "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
514
+ "bos_token": None,
515
+ "eos_token": None,
516
  "unk_token": unk_token,
517
  "pad_token": pad_token,
518
  "word_delimiter_token": word_delimiter_token,
 
643
 
644
  pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
645
 
646
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
647
  # we do not want to group tokens when computing the metrics
648
  label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
649