AlexHung29629 commited on
Commit
4335708
1 Parent(s): 1c6bcd4

Upload 13 files

Browse files
audio_processing_mllama.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Dict, List, Optional, Union
3
+ import numpy as np
4
+ import torch
5
+ from transformers.tokenization_utils_base import AudioInput
6
+ from transformers.models.seamless_m4t.feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
7
+ from transformers.utils import TensorType
8
+ from transformers.feature_extraction_utils import BatchFeature
9
+
10
+
11
+
12
+ def make_list_of_audio_clips(audio: AudioInput) -> List[List[Optional[np.ndarray]]]:
13
+ """
14
+ Convert a single audio clip or a list of audio clips to a list of numpy arrays.
15
+
16
+ Args:
17
+ audio (`AudioInput`):
18
+ A single audio or a list of audio clips.
19
+
20
+ Returns:
21
+ A list of numpy arrays.
22
+ """
23
+ # If it's a single audil clip, convert it to a list of lists
24
+ if not isinstance(audio, (list, tuple)):
25
+ output = [[audio]]
26
+
27
+ else:
28
+ if all(isinstance(audio_i, (list, tuple)) for audio_i in audio):
29
+ # If it's a list of batches, it's already in the right format
30
+ output = audio
31
+ else:
32
+ # If it's a list of audio clips, it's a single batch, so convert it to a list of lists
33
+ output = [audio]
34
+
35
+ return output
36
+
37
+ def build_audio_tokens(encoding: Dict, audio_features: List[List[np.ndarray]], audio_token_id: int) -> Dict:
38
+ bs = len(audio_features)
39
+ for i in range(bs):
40
+ for j in range(len(audio_features[i])):
41
+ token_id = -1 - j
42
+ pos = encoding['input_ids'][i].index(audio_token_id)
43
+ encoding['input_ids'][i] = encoding['input_ids'][i][:pos] \
44
+ + [token_id] * get_num_embeddings(audio_features[i][j].size(0)) \
45
+ + encoding['input_ids'][i][pos+1:]
46
+ encoding['attention_mask'][i] = [1] * len(encoding['input_ids'][i])
47
+ return encoding
48
+
49
+ def get_num_embeddings(num_framses, adapter_kernel_size=7, adapter_stride=4) -> int:
50
+ return math.ceil((num_framses - adapter_kernel_size) / adapter_stride) + 1 + 2 # 2 = <|begin_of_audio|>, <|end_of_audio|>
51
+
52
+
53
+ class MllamaAudioFeatureExtractor(SeamlessM4TFeatureExtractor):
54
+
55
+ def __call__(
56
+ self,
57
+ batch_audio_clips: List[List[AudioInput]],
58
+ return_tensors: Optional[Union[str, TensorType]] = None,
59
+ ) -> BatchFeature:
60
+ audio_features = [[ super().__call__(audio_j, return_attention_mask=False)['input_features'][0] for audio_j in audio_i ] for audio_i in batch_audio_clips ]
61
+ packed_audio_features = self.pack_audio_clips(audio_features)
62
+
63
+ encoded_audio_inputs = BatchFeature(
64
+ data={
65
+ "audio_features": packed_audio_features,
66
+ },
67
+ tensor_type=return_tensors,
68
+ )
69
+
70
+ return encoded_audio_inputs
71
+
72
+ def pack_audio_clips(batch_audio_clips: List[List[np.ndarray]]) -> np.ndarray:
73
+ assert batch_audio_clips[0][0].ndim == 2 # sequence length x feature dimension
74
+ # Determine output shape: (batch_size, max_num_clips, max_frames, feature_dim)
75
+ batch_size = len(batch_audio_clips)
76
+ max_num_clips = max([len(clips) for clips in batch_audio_clips])
77
+ max_frames = max([clip.size(0) for clips in batch_audio_clips for clip in clips])
78
+ feature_dim = batch_audio_clips[0][0].size(1)
79
+
80
+ stacked_audio_clips = np.zeros((batch_size, max_num_clips, max_frames, feature_dim), dtype=np.float32)
81
+ for i, clips in enumerate(batch_audio_clips):
82
+ for j, clip in enumerate(clips):
83
+ stacked_audio_clips[i, j, :clip.shape[0], :] = clip
84
+
85
+ return stacked_audio_clips
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n{%- endfor %}\n\n{#- Error out if there are images and system message #}\n{%- if image_ns.has_images and not system_message == \"\" %}\n {{- raise_exception(\"Prompting with images is incompatible with system messages.\") }}\n{%- endif %}\n\n{#- System message if there are no images #}\n{%- if not image_ns.has_images %}\n {{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n {%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n {%- endif %}\n {{- \"Cutting Knowledge Date: December 2023\\n\" }}\n {{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n {%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- \"<|eot_id|>\" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n"
3
+ }
config.json ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": ["Llama3ForConditionalGeneration"],
3
+ "audio_config": {
4
+ "activation_dropout": 0.0,
5
+ "adapter_act": "relu",
6
+ "adapter_kernel_size": 7,
7
+ "adapter_stride": 4,
8
+ "add_adapter": true,
9
+ "apply_spec_augment": false,
10
+ "architectures": ["Wav2Vec2BertModel"],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 768,
14
+ "codevector_dim": 768,
15
+ "conformer_conv_dropout": 0.1,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_depthwise_kernel_size": 31,
18
+ "ctc_loss_reduction": "sum",
19
+ "ctc_zero_infinity": false,
20
+ "diversity_loss_weight": 0.1,
21
+ "eos_token_id": 2,
22
+ "feat_proj_dropout": 0.0,
23
+ "feat_quantizer_dropout": 0.0,
24
+ "feature_projection_input_dim": 160,
25
+ "final_dropout": 0.1,
26
+ "hidden_act": "swish",
27
+ "hidden_dropout": 0.0,
28
+ "hidden_size": 1024,
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 4096,
31
+ "layer_norm_eps": 1e-5,
32
+ "layerdrop": 0.1,
33
+ "left_max_position_embeddings": 64,
34
+ "mask_feature_length": 10,
35
+ "mask_feature_min_masks": 0,
36
+ "mask_feature_prob": 0.0,
37
+ "mask_time_length": 10,
38
+ "mask_time_min_masks": 2,
39
+ "mask_time_prob": 0.05,
40
+ "max_source_positions": 5000,
41
+ "model_type": "wav2vec2-bert",
42
+ "num_adapter_layers": 1,
43
+ "num_attention_heads": 16,
44
+ "num_codevector_groups": 2,
45
+ "num_codevectors_per_group": 320,
46
+ "num_hidden_layers": 24,
47
+ "num_negatives": 100,
48
+ "output_hidden_size": 4096,
49
+ "pad_token_id": 0,
50
+ "position_embeddings_type": "relative_key",
51
+ "proj_codevector_dim": 768,
52
+ "right_max_position_embeddings": 8,
53
+ "rotary_embedding_base": 10000,
54
+ "tdnn_dilation": [1, 2, 3, 1, 1],
55
+ "tdnn_dim": [512, 512, 512, 512, 1500],
56
+ "tdnn_kernel": [5, 3, 3, 1, 1],
57
+ "torch_dtype": "float16",
58
+ "transformers_version": "4.37.0.dev0",
59
+ "use_intermediate_ffn_before_adapter": false,
60
+ "use_weighted_layer_sum": false,
61
+ "vocab_size": null,
62
+ "xvector_output_dim": 512,
63
+ "attn_implementation": "eager"
64
+ },
65
+ "auto_map": {
66
+ "AutoConfig": "configuration_llama3.Llama3Config",
67
+ "AutoModel": "modeling_llama3.Llama3ForConditionalGeneration"
68
+ },
69
+ "image_token_index": 128256,
70
+ "model_type": "llama3",
71
+ "text_config": {
72
+ "_name_or_path": "",
73
+ "add_cross_attention": false,
74
+ "architectures": null,
75
+ "bad_words_ids": null,
76
+ "begin_suppress_tokens": null,
77
+ "bos_token_id": 128000,
78
+ "chunk_size_feed_forward": 0,
79
+ "cross_attention_hidden_size": null,
80
+ "cross_attention_layers": [3, 8, 13, 18, 23, 28, 33, 38],
81
+ "decoder_start_token_id": null,
82
+ "diversity_penalty": 0.0,
83
+ "do_sample": false,
84
+ "dropout": 0,
85
+ "early_stopping": false,
86
+ "encoder_no_repeat_ngram_size": 0,
87
+ "eos_token_id": [128001, 128008, 128009],
88
+ "exponential_decay_length_penalty": null,
89
+ "finetuning_task": null,
90
+ "forced_bos_token_id": null,
91
+ "forced_eos_token_id": null,
92
+ "hidden_act": "silu",
93
+ "hidden_size": 4096,
94
+ "id2label": {
95
+ "0": "LABEL_0",
96
+ "1": "LABEL_1"
97
+ },
98
+ "initializer_range": 0.02,
99
+ "intermediate_size": 14336,
100
+ "is_decoder": false,
101
+ "is_encoder_decoder": false,
102
+ "label2id": {
103
+ "LABEL_0": 0,
104
+ "LABEL_1": 1
105
+ },
106
+ "length_penalty": 1.0,
107
+ "max_length": 20,
108
+ "max_position_embeddings": 131072,
109
+ "min_length": 0,
110
+ "model_type": "mllama_text_model",
111
+ "no_repeat_ngram_size": 0,
112
+ "num_attention_heads": 32,
113
+ "num_beam_groups": 1,
114
+ "num_beams": 1,
115
+ "num_hidden_layers": 40,
116
+ "num_key_value_heads": 8,
117
+ "num_return_sequences": 1,
118
+ "output_attentions": false,
119
+ "output_hidden_states": false,
120
+ "output_scores": false,
121
+ "pad_token_id": 128004,
122
+ "prefix": null,
123
+ "problem_type": null,
124
+ "pruned_heads": {},
125
+ "remove_invalid_values": false,
126
+ "repetition_penalty": 1.0,
127
+ "return_dict": true,
128
+ "return_dict_in_generate": false,
129
+ "rms_norm_eps": 1e-5,
130
+ "rope_scaling": {
131
+ "factor": 8.0,
132
+ "high_freq_factor": 4.0,
133
+ "low_freq_factor": 1.0,
134
+ "original_max_position_embeddings": 8192,
135
+ "rope_type": "llama3"
136
+ },
137
+ "rope_theta": 500000.0,
138
+ "sep_token_id": null,
139
+ "suppress_tokens": null,
140
+ "task_specific_params": null,
141
+ "temperature": 1.0,
142
+ "tf_legacy_loss": false,
143
+ "tie_encoder_decoder": false,
144
+ "tie_word_embeddings": false,
145
+ "tokenizer_class": null,
146
+ "top_k": 50,
147
+ "top_p": 1.0,
148
+ "torch_dtype": "float16",
149
+ "torchscript": false,
150
+ "typical_p": 1.0,
151
+ "use_bfloat16": false,
152
+ "use_cache": true,
153
+ "vocab_size": 128256
154
+ },
155
+ "torch_dtype": "float16",
156
+ "transformers_version": "4.45.0.dev0",
157
+ "vision_config": {
158
+ "_name_or_path": "",
159
+ "add_cross_attention": false,
160
+ "architectures": null,
161
+ "attention_heads": 16,
162
+ "bad_words_ids": null,
163
+ "begin_suppress_tokens": null,
164
+ "bos_token_id": null,
165
+ "chunk_size_feed_forward": 0,
166
+ "cross_attention_hidden_size": null,
167
+ "decoder_start_token_id": null,
168
+ "diversity_penalty": 0.0,
169
+ "do_sample": false,
170
+ "early_stopping": false,
171
+ "encoder_no_repeat_ngram_size": 0,
172
+ "eos_token_id": null,
173
+ "exponential_decay_length_penalty": null,
174
+ "finetuning_task": null,
175
+ "forced_bos_token_id": null,
176
+ "forced_eos_token_id": null,
177
+ "hidden_act": "gelu",
178
+ "hidden_size": 1280,
179
+ "id2label": {
180
+ "0": "LABEL_0",
181
+ "1": "LABEL_1"
182
+ },
183
+ "image_size": 560,
184
+ "intermediate_layers_indices": [3, 7, 15, 23, 30],
185
+ "intermediate_size": 5120,
186
+ "is_decoder": false,
187
+ "is_encoder_decoder": false,
188
+ "label2id": {
189
+ "LABEL_0": 0,
190
+ "LABEL_1": 1
191
+ },
192
+ "length_penalty": 1.0,
193
+ "max_length": 20,
194
+ "max_num_tiles": 4,
195
+ "min_length": 0,
196
+ "model_type": "mllama_vision_model",
197
+ "no_repeat_ngram_size": 0,
198
+ "norm_eps": 1e-5,
199
+ "num_beam_groups": 1,
200
+ "num_beams": 1,
201
+ "num_channels": 3,
202
+ "num_global_layers": 8,
203
+ "num_hidden_layers": 32,
204
+ "num_return_sequences": 1,
205
+ "output_attentions": false,
206
+ "output_hidden_states": false,
207
+ "output_scores": false,
208
+ "pad_token_id": null,
209
+ "patch_size": 14,
210
+ "prefix": null,
211
+ "problem_type": null,
212
+ "pruned_heads": {},
213
+ "remove_invalid_values": false,
214
+ "repetition_penalty": 1.0,
215
+ "return_dict": true,
216
+ "return_dict_in_generate": false,
217
+ "sep_token_id": null,
218
+ "supported_aspect_ratios": [
219
+ [1, 1],
220
+ [1, 2],
221
+ [1, 3],
222
+ [1, 4],
223
+ [2, 1],
224
+ [2, 2],
225
+ [3, 1],
226
+ [4, 1]
227
+ ],
228
+ "suppress_tokens": null,
229
+ "task_specific_params": null,
230
+ "temperature": 1.0,
231
+ "tf_legacy_loss": false,
232
+ "tie_encoder_decoder": false,
233
+ "tie_word_embeddings": true,
234
+ "tokenizer_class": null,
235
+ "top_k": 50,
236
+ "top_p": 1.0,
237
+ "torch_dtype": "float16",
238
+ "torchscript": false,
239
+ "typical_p": 1.0,
240
+ "use_bfloat16": false,
241
+ "vision_output_dim": 7680
242
+ }
243
+ }
configuration_llama3.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Mllama model configuration"""
15
+
16
+ import os
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.modeling_rope_utils import rope_config_validation
21
+ from transformers.utils import logging
22
+ from transformers import Wav2Vec2BertConfig
23
+ from transformers.models.mllama.configuration_mllama import MllamaVisionConfig, MllamaTextConfig
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ class MllamaAudioConfig(Wav2Vec2BertConfig):
28
+ def __init__(self, filler_token_id: int = 128004, **kwargs):
29
+ super().__init__(**kwargs)
30
+ self.filler_token_id = filler_token_id
31
+
32
+ class Llama3Config(PretrainedConfig):
33
+ r"""
34
+ This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
35
+ Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
36
+ with the defaults will yield a similar configuration to that of the Mllama-9B.
37
+
38
+ e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
39
+
40
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
41
+ documentation from [`PretrainedConfig`] for more information.
42
+
43
+ Args:
44
+ vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
45
+ The config object or dictionary of the vision backbone.
46
+ text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
47
+ The config object or dictionary of the text backbone.
48
+ image_token_index (`int`, *optional*, defaults to 128256):
49
+ The image token index to encode the image prompt.
50
+
51
+ Example:
52
+
53
+ ```python
54
+ >>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig
55
+
56
+ >>> # Initializing a CLIP-vision config
57
+ >>> vision_config = MllamaVisionConfig()
58
+
59
+ >>> # Initializing a Llama config
60
+ >>> text_config = MllamaTextConfig()
61
+
62
+ >>> # Initializing a mllama-11b style configuration
63
+ >>> configuration = MllamaConfig(vision_config, text_config)
64
+
65
+ >>> # Initializing a model from the mllama-11b style configuration
66
+ >>> model = MllamaForConditionalGeneration(configuration)
67
+
68
+ >>> # Accessing the model configuration
69
+ >>> configuration = model.config
70
+ ```"""
71
+
72
+ model_type = "llama3"
73
+ is_composition = True
74
+
75
+ def __init__(
76
+ self,
77
+ vision_config=None,
78
+ text_config=None,
79
+ audio_config=None,
80
+ image_token_index=128256,
81
+ audio_token_index=128257,
82
+ **kwargs,
83
+ ):
84
+ if vision_config is None:
85
+ self.vision_config = MllamaVisionConfig()
86
+ logger.info("vision_config is None, using default mllama vision config")
87
+ elif isinstance(vision_config, dict):
88
+ self.vision_config = MllamaVisionConfig(**vision_config)
89
+ elif isinstance(vision_config, MllamaVisionConfig):
90
+ self.vision_config = vision_config
91
+
92
+ self.image_token_index = image_token_index
93
+
94
+ if audio_config is None:
95
+ self.audio_config = MllamaAudioConfig()
96
+ logger.info("audio_config is None, using default mllama audio config")
97
+ elif isinstance(audio_config, dict):
98
+ self.audio_config = MllamaAudioConfig(**audio_config)
99
+ elif isinstance(audio_config, MllamaAudioConfig):
100
+ self.audio_config = audio_config
101
+
102
+ self.audio_token_index = audio_token_index
103
+
104
+ if text_config is None:
105
+ self.text_config = MllamaTextConfig()
106
+ logger.info("text_config is None, using default mllama text config")
107
+ elif isinstance(text_config, dict):
108
+ self.text_config = MllamaTextConfig(**text_config)
109
+ elif isinstance(text_config, MllamaTextConfig):
110
+ self.text_config = text_config
111
+
112
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "pad_token_id": 128004,
10
+ "temperature": 0.6,
11
+ "top_p": 0.9,
12
+ "transformers_version": "4.45.0.dev0"
13
+ }
mllama_audio_model.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+
3
+ from typing import List, Optional, Tuple, Union
4
+ import torch
5
+ from torch import nn
6
+ from transformers.modeling_outputs import BaseModelOutput
7
+ from transformers import Wav2Vec2BertModel
8
+ from configuration_llama3 import MllamaAudioConfig
9
+ from modeling_llama3 import MllamaPreTrainedModel
10
+
11
+ def split_list(lst, val):
12
+ return [list(group) for k,
13
+ group in
14
+ itertools.groupby(lst, lambda x: x==val) if not k]
15
+
16
+
17
+ class MllamaAudioModel(MllamaPreTrainedModel):
18
+ config_class = MllamaAudioConfig
19
+ base_model_prefix = "audio_model"
20
+ def __init__(self, config: MllamaAudioConfig, text_embedding: nn.Embedding):
21
+ super().__init__(config)
22
+ assert config.add_adapter is True, f'{type(self).__name__} requires add adapter to be true.'
23
+ assert config.output_hidden_size == text_embedding.weight.shape[1], f'Output hidden size({config.output_hidden_size}) of audio model and text embedding({text_embedding.weight.shape[1]}) must match!'
24
+ self.text_embedding = text_embedding
25
+ self.audio_embedding = Wav2Vec2BertModel(config)
26
+ self.start_of_audio = nn.Parameter(data=torch.mean(text_embedding.weight, dim=0).unsqueeze(0), requires_grad=True)
27
+ self.end_of_audio = nn.Parameter(data=torch.mean(text_embedding.weight, dim=0).unsqueeze(0), requires_grad=True)
28
+ self.filler_token_id = config.filler_token_id
29
+
30
+ def forward(
31
+ self,
32
+ audio_features: torch.Tensor = None,
33
+ input_ids: torch.LongTensor = None,
34
+ return_dict: Optional[bool] = None,
35
+ ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
36
+ input_embeddings = self.text_embedding(torch.clamp(input_ids, min=0))
37
+ bs, max_num_img, _, _ = audio_features.shape
38
+
39
+ for i in range(bs):
40
+ for j in range(max_num_img):
41
+ audio_id = -1 - j
42
+ idx = torch.where(input_ids[i] == audio_id)
43
+ if idx.numel() > 0:
44
+ input_embeddings[i][idx] = torch.concat([self.start_of_audio, audio_features[i, j][idx], self.end_of_audio])
45
+
46
+ idx = torch.where(input_ids < 0 and input_ids >= -max_num_img)
47
+ input_ids[idx].fill_(self.filler_token_id)
48
+
49
+ if return_dict:
50
+ return dict(input_embeddings=input_embeddings)
51
+ return input_embeddings
model.safetensors.index.json ADDED
@@ -0,0 +1,913 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 21340441670
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "language_model.model.layers.13.cross_attn.k_norm.weight": "model-00002-of-00005.safetensors",
54
+ "language_model.model.layers.13.cross_attn.k_proj.weight": "model-00002-of-00005.safetensors",
55
+ "language_model.model.layers.13.cross_attn.o_proj.weight": "model-00002-of-00005.safetensors",
56
+ "language_model.model.layers.13.cross_attn.q_norm.weight": "model-00002-of-00005.safetensors",
57
+ "language_model.model.layers.13.cross_attn.q_proj.weight": "model-00002-of-00005.safetensors",
58
+ "language_model.model.layers.13.cross_attn.v_proj.weight": "model-00002-of-00005.safetensors",
59
+ "language_model.model.layers.13.cross_attn_attn_gate": "model-00002-of-00005.safetensors",
60
+ "language_model.model.layers.13.cross_attn_mlp_gate": "model-00002-of-00005.safetensors",
61
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
62
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
63
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
64
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
65
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
66
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
68
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
69
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
70
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
71
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
72
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
73
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
74
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
75
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
76
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
77
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
78
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
79
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
80
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
81
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
82
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
83
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
84
+ "language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
86
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
87
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
88
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
89
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
90
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
91
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
92
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
93
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
95
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
96
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
97
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
98
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
99
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
100
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
101
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
102
+ "language_model.model.layers.18.cross_attn.k_norm.weight": "model-00003-of-00005.safetensors",
103
+ "language_model.model.layers.18.cross_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "language_model.model.layers.18.cross_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "language_model.model.layers.18.cross_attn.q_norm.weight": "model-00003-of-00005.safetensors",
106
+ "language_model.model.layers.18.cross_attn.q_proj.weight": "model-00003-of-00005.safetensors",
107
+ "language_model.model.layers.18.cross_attn.v_proj.weight": "model-00003-of-00005.safetensors",
108
+ "language_model.model.layers.18.cross_attn_attn_gate": "model-00003-of-00005.safetensors",
109
+ "language_model.model.layers.18.cross_attn_mlp_gate": "model-00003-of-00005.safetensors",
110
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
111
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
112
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
113
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
114
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
115
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
116
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
117
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
118
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
119
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
120
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
121
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
122
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
123
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
124
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
125
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
126
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
127
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
128
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
129
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
130
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
131
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
132
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
133
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
134
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
135
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
136
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
137
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
138
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
139
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
140
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
141
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
142
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
143
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
144
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
145
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
146
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
147
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
148
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
149
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
150
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
151
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
152
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
153
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
154
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
155
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
156
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
157
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
158
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
159
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
160
+ "language_model.model.layers.23.cross_attn.k_norm.weight": "model-00003-of-00005.safetensors",
161
+ "language_model.model.layers.23.cross_attn.k_proj.weight": "model-00003-of-00005.safetensors",
162
+ "language_model.model.layers.23.cross_attn.o_proj.weight": "model-00003-of-00005.safetensors",
163
+ "language_model.model.layers.23.cross_attn.q_norm.weight": "model-00003-of-00005.safetensors",
164
+ "language_model.model.layers.23.cross_attn.q_proj.weight": "model-00003-of-00005.safetensors",
165
+ "language_model.model.layers.23.cross_attn.v_proj.weight": "model-00003-of-00005.safetensors",
166
+ "language_model.model.layers.23.cross_attn_attn_gate": "model-00003-of-00005.safetensors",
167
+ "language_model.model.layers.23.cross_attn_mlp_gate": "model-00003-of-00005.safetensors",
168
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
169
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
170
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
171
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
172
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
173
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00005.safetensors",
174
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
175
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
176
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
177
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
178
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
179
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
180
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
181
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
182
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00005.safetensors",
183
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
184
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
185
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
186
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
187
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
188
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
189
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
190
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
191
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00005.safetensors",
192
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
193
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
194
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
195
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
196
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
197
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
198
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
199
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
200
+ "language_model.model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
201
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
202
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
203
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
204
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
205
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
206
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
207
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
208
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
209
+ "language_model.model.layers.28.cross_attn.k_norm.weight": "model-00004-of-00005.safetensors",
210
+ "language_model.model.layers.28.cross_attn.k_proj.weight": "model-00004-of-00005.safetensors",
211
+ "language_model.model.layers.28.cross_attn.o_proj.weight": "model-00004-of-00005.safetensors",
212
+ "language_model.model.layers.28.cross_attn.q_norm.weight": "model-00004-of-00005.safetensors",
213
+ "language_model.model.layers.28.cross_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "language_model.model.layers.28.cross_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "language_model.model.layers.28.cross_attn_attn_gate": "model-00004-of-00005.safetensors",
216
+ "language_model.model.layers.28.cross_attn_mlp_gate": "model-00004-of-00005.safetensors",
217
+ "language_model.model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
218
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
219
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
220
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
221
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
222
+ "language_model.model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
223
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
224
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
225
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
226
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
227
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
228
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
229
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
230
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
231
+ "language_model.model.layers.3.cross_attn.k_norm.weight": "model-00001-of-00005.safetensors",
232
+ "language_model.model.layers.3.cross_attn.k_proj.weight": "model-00001-of-00005.safetensors",
233
+ "language_model.model.layers.3.cross_attn.o_proj.weight": "model-00001-of-00005.safetensors",
234
+ "language_model.model.layers.3.cross_attn.q_norm.weight": "model-00001-of-00005.safetensors",
235
+ "language_model.model.layers.3.cross_attn.q_proj.weight": "model-00001-of-00005.safetensors",
236
+ "language_model.model.layers.3.cross_attn.v_proj.weight": "model-00001-of-00005.safetensors",
237
+ "language_model.model.layers.3.cross_attn_attn_gate": "model-00001-of-00005.safetensors",
238
+ "language_model.model.layers.3.cross_attn_mlp_gate": "model-00001-of-00005.safetensors",
239
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
240
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
241
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
242
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
243
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
244
+ "language_model.model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
245
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
246
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
247
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
248
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
249
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
250
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
251
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
252
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
253
+ "language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
254
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
255
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
256
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
257
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
258
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
259
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
260
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
261
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
262
+ "language_model.model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
263
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
264
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
265
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
266
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
267
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
268
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
269
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
270
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
271
+ "language_model.model.layers.33.cross_attn.k_norm.weight": "model-00004-of-00005.safetensors",
272
+ "language_model.model.layers.33.cross_attn.k_proj.weight": "model-00004-of-00005.safetensors",
273
+ "language_model.model.layers.33.cross_attn.o_proj.weight": "model-00004-of-00005.safetensors",
274
+ "language_model.model.layers.33.cross_attn.q_norm.weight": "model-00004-of-00005.safetensors",
275
+ "language_model.model.layers.33.cross_attn.q_proj.weight": "model-00004-of-00005.safetensors",
276
+ "language_model.model.layers.33.cross_attn.v_proj.weight": "model-00004-of-00005.safetensors",
277
+ "language_model.model.layers.33.cross_attn_attn_gate": "model-00004-of-00005.safetensors",
278
+ "language_model.model.layers.33.cross_attn_mlp_gate": "model-00004-of-00005.safetensors",
279
+ "language_model.model.layers.33.input_layernorm.weight": "model-00004-of-00005.safetensors",
280
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
281
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
282
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
283
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
284
+ "language_model.model.layers.34.input_layernorm.weight": "model-00004-of-00005.safetensors",
285
+ "language_model.model.layers.34.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
286
+ "language_model.model.layers.34.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
287
+ "language_model.model.layers.34.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
288
+ "language_model.model.layers.34.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
289
+ "language_model.model.layers.34.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
290
+ "language_model.model.layers.34.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
291
+ "language_model.model.layers.34.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
292
+ "language_model.model.layers.34.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
293
+ "language_model.model.layers.35.input_layernorm.weight": "model-00004-of-00005.safetensors",
294
+ "language_model.model.layers.35.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
295
+ "language_model.model.layers.35.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
296
+ "language_model.model.layers.35.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
297
+ "language_model.model.layers.35.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
298
+ "language_model.model.layers.35.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
299
+ "language_model.model.layers.35.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
300
+ "language_model.model.layers.35.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
301
+ "language_model.model.layers.35.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
302
+ "language_model.model.layers.36.input_layernorm.weight": "model-00004-of-00005.safetensors",
303
+ "language_model.model.layers.36.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
304
+ "language_model.model.layers.36.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
305
+ "language_model.model.layers.36.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
306
+ "language_model.model.layers.36.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
307
+ "language_model.model.layers.36.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
308
+ "language_model.model.layers.36.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
309
+ "language_model.model.layers.36.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
310
+ "language_model.model.layers.36.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
311
+ "language_model.model.layers.37.input_layernorm.weight": "model-00004-of-00005.safetensors",
312
+ "language_model.model.layers.37.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
313
+ "language_model.model.layers.37.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
314
+ "language_model.model.layers.37.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
315
+ "language_model.model.layers.37.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
316
+ "language_model.model.layers.37.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
317
+ "language_model.model.layers.37.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
318
+ "language_model.model.layers.37.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
319
+ "language_model.model.layers.37.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
320
+ "language_model.model.layers.38.cross_attn.k_norm.weight": "model-00004-of-00005.safetensors",
321
+ "language_model.model.layers.38.cross_attn.k_proj.weight": "model-00004-of-00005.safetensors",
322
+ "language_model.model.layers.38.cross_attn.o_proj.weight": "model-00004-of-00005.safetensors",
323
+ "language_model.model.layers.38.cross_attn.q_norm.weight": "model-00004-of-00005.safetensors",
324
+ "language_model.model.layers.38.cross_attn.q_proj.weight": "model-00004-of-00005.safetensors",
325
+ "language_model.model.layers.38.cross_attn.v_proj.weight": "model-00004-of-00005.safetensors",
326
+ "language_model.model.layers.38.cross_attn_attn_gate": "model-00004-of-00005.safetensors",
327
+ "language_model.model.layers.38.cross_attn_mlp_gate": "model-00004-of-00005.safetensors",
328
+ "language_model.model.layers.38.input_layernorm.weight": "model-00004-of-00005.safetensors",
329
+ "language_model.model.layers.38.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
330
+ "language_model.model.layers.38.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
331
+ "language_model.model.layers.38.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
332
+ "language_model.model.layers.38.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
333
+ "language_model.model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
334
+ "language_model.model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
335
+ "language_model.model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
336
+ "language_model.model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
337
+ "language_model.model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
338
+ "language_model.model.layers.39.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
339
+ "language_model.model.layers.39.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
340
+ "language_model.model.layers.39.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
341
+ "language_model.model.layers.39.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
342
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
343
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
344
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
345
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
346
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
347
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
348
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
349
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
350
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
351
+ "language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00005.safetensors",
352
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
353
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
354
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
355
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
356
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
357
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
358
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
359
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
360
+ "language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
361
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
362
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
363
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
364
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
365
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
366
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
367
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
368
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
369
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
370
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
371
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
372
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
373
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
374
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
375
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
376
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
377
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
378
+ "language_model.model.layers.8.cross_attn.k_norm.weight": "model-00002-of-00005.safetensors",
379
+ "language_model.model.layers.8.cross_attn.k_proj.weight": "model-00002-of-00005.safetensors",
380
+ "language_model.model.layers.8.cross_attn.o_proj.weight": "model-00002-of-00005.safetensors",
381
+ "language_model.model.layers.8.cross_attn.q_norm.weight": "model-00002-of-00005.safetensors",
382
+ "language_model.model.layers.8.cross_attn.q_proj.weight": "model-00002-of-00005.safetensors",
383
+ "language_model.model.layers.8.cross_attn.v_proj.weight": "model-00002-of-00005.safetensors",
384
+ "language_model.model.layers.8.cross_attn_attn_gate": "model-00002-of-00005.safetensors",
385
+ "language_model.model.layers.8.cross_attn_mlp_gate": "model-00002-of-00005.safetensors",
386
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
387
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
388
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
389
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
390
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
391
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
392
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
393
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
394
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
395
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
396
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
397
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
398
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
399
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
400
+ "language_model.model.norm.weight": "model-00005-of-00005.safetensors",
401
+ "multi_modal_projector.bias": "model-00005-of-00005.safetensors",
402
+ "multi_modal_projector.weight": "model-00005-of-00005.safetensors",
403
+ "vision_model.class_embedding": "model-00001-of-00005.safetensors",
404
+ "vision_model.gated_positional_embedding.embedding": "model-00001-of-00005.safetensors",
405
+ "vision_model.gated_positional_embedding.gate": "model-00001-of-00005.safetensors",
406
+ "vision_model.gated_positional_embedding.tile_embedding.weight": "model-00001-of-00005.safetensors",
407
+ "vision_model.global_transformer.layers.0.gate_attn": "model-00001-of-00005.safetensors",
408
+ "vision_model.global_transformer.layers.0.gate_ffn": "model-00001-of-00005.safetensors",
409
+ "vision_model.global_transformer.layers.0.input_layernorm.bias": "model-00001-of-00005.safetensors",
410
+ "vision_model.global_transformer.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
411
+ "vision_model.global_transformer.layers.0.mlp.fc1.bias": "model-00001-of-00005.safetensors",
412
+ "vision_model.global_transformer.layers.0.mlp.fc1.weight": "model-00001-of-00005.safetensors",
413
+ "vision_model.global_transformer.layers.0.mlp.fc2.bias": "model-00001-of-00005.safetensors",
414
+ "vision_model.global_transformer.layers.0.mlp.fc2.weight": "model-00001-of-00005.safetensors",
415
+ "vision_model.global_transformer.layers.0.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
416
+ "vision_model.global_transformer.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
417
+ "vision_model.global_transformer.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
418
+ "vision_model.global_transformer.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
419
+ "vision_model.global_transformer.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
420
+ "vision_model.global_transformer.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
421
+ "vision_model.global_transformer.layers.1.gate_attn": "model-00001-of-00005.safetensors",
422
+ "vision_model.global_transformer.layers.1.gate_ffn": "model-00001-of-00005.safetensors",
423
+ "vision_model.global_transformer.layers.1.input_layernorm.bias": "model-00001-of-00005.safetensors",
424
+ "vision_model.global_transformer.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
425
+ "vision_model.global_transformer.layers.1.mlp.fc1.bias": "model-00001-of-00005.safetensors",
426
+ "vision_model.global_transformer.layers.1.mlp.fc1.weight": "model-00001-of-00005.safetensors",
427
+ "vision_model.global_transformer.layers.1.mlp.fc2.bias": "model-00001-of-00005.safetensors",
428
+ "vision_model.global_transformer.layers.1.mlp.fc2.weight": "model-00001-of-00005.safetensors",
429
+ "vision_model.global_transformer.layers.1.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
430
+ "vision_model.global_transformer.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
431
+ "vision_model.global_transformer.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
432
+ "vision_model.global_transformer.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
433
+ "vision_model.global_transformer.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
434
+ "vision_model.global_transformer.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
435
+ "vision_model.global_transformer.layers.2.gate_attn": "model-00001-of-00005.safetensors",
436
+ "vision_model.global_transformer.layers.2.gate_ffn": "model-00001-of-00005.safetensors",
437
+ "vision_model.global_transformer.layers.2.input_layernorm.bias": "model-00001-of-00005.safetensors",
438
+ "vision_model.global_transformer.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
439
+ "vision_model.global_transformer.layers.2.mlp.fc1.bias": "model-00001-of-00005.safetensors",
440
+ "vision_model.global_transformer.layers.2.mlp.fc1.weight": "model-00001-of-00005.safetensors",
441
+ "vision_model.global_transformer.layers.2.mlp.fc2.bias": "model-00001-of-00005.safetensors",
442
+ "vision_model.global_transformer.layers.2.mlp.fc2.weight": "model-00001-of-00005.safetensors",
443
+ "vision_model.global_transformer.layers.2.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
444
+ "vision_model.global_transformer.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
445
+ "vision_model.global_transformer.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
446
+ "vision_model.global_transformer.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
447
+ "vision_model.global_transformer.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
448
+ "vision_model.global_transformer.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
449
+ "vision_model.global_transformer.layers.3.gate_attn": "model-00001-of-00005.safetensors",
450
+ "vision_model.global_transformer.layers.3.gate_ffn": "model-00001-of-00005.safetensors",
451
+ "vision_model.global_transformer.layers.3.input_layernorm.bias": "model-00001-of-00005.safetensors",
452
+ "vision_model.global_transformer.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
453
+ "vision_model.global_transformer.layers.3.mlp.fc1.bias": "model-00001-of-00005.safetensors",
454
+ "vision_model.global_transformer.layers.3.mlp.fc1.weight": "model-00001-of-00005.safetensors",
455
+ "vision_model.global_transformer.layers.3.mlp.fc2.bias": "model-00001-of-00005.safetensors",
456
+ "vision_model.global_transformer.layers.3.mlp.fc2.weight": "model-00001-of-00005.safetensors",
457
+ "vision_model.global_transformer.layers.3.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
458
+ "vision_model.global_transformer.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
459
+ "vision_model.global_transformer.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
460
+ "vision_model.global_transformer.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
461
+ "vision_model.global_transformer.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
462
+ "vision_model.global_transformer.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
463
+ "vision_model.global_transformer.layers.4.gate_attn": "model-00001-of-00005.safetensors",
464
+ "vision_model.global_transformer.layers.4.gate_ffn": "model-00001-of-00005.safetensors",
465
+ "vision_model.global_transformer.layers.4.input_layernorm.bias": "model-00001-of-00005.safetensors",
466
+ "vision_model.global_transformer.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
467
+ "vision_model.global_transformer.layers.4.mlp.fc1.bias": "model-00001-of-00005.safetensors",
468
+ "vision_model.global_transformer.layers.4.mlp.fc1.weight": "model-00001-of-00005.safetensors",
469
+ "vision_model.global_transformer.layers.4.mlp.fc2.bias": "model-00001-of-00005.safetensors",
470
+ "vision_model.global_transformer.layers.4.mlp.fc2.weight": "model-00001-of-00005.safetensors",
471
+ "vision_model.global_transformer.layers.4.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
472
+ "vision_model.global_transformer.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
473
+ "vision_model.global_transformer.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
474
+ "vision_model.global_transformer.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
475
+ "vision_model.global_transformer.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
476
+ "vision_model.global_transformer.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
477
+ "vision_model.global_transformer.layers.5.gate_attn": "model-00001-of-00005.safetensors",
478
+ "vision_model.global_transformer.layers.5.gate_ffn": "model-00001-of-00005.safetensors",
479
+ "vision_model.global_transformer.layers.5.input_layernorm.bias": "model-00001-of-00005.safetensors",
480
+ "vision_model.global_transformer.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
481
+ "vision_model.global_transformer.layers.5.mlp.fc1.bias": "model-00001-of-00005.safetensors",
482
+ "vision_model.global_transformer.layers.5.mlp.fc1.weight": "model-00001-of-00005.safetensors",
483
+ "vision_model.global_transformer.layers.5.mlp.fc2.bias": "model-00001-of-00005.safetensors",
484
+ "vision_model.global_transformer.layers.5.mlp.fc2.weight": "model-00001-of-00005.safetensors",
485
+ "vision_model.global_transformer.layers.5.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
486
+ "vision_model.global_transformer.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
487
+ "vision_model.global_transformer.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
488
+ "vision_model.global_transformer.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
489
+ "vision_model.global_transformer.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
490
+ "vision_model.global_transformer.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
491
+ "vision_model.global_transformer.layers.6.gate_attn": "model-00001-of-00005.safetensors",
492
+ "vision_model.global_transformer.layers.6.gate_ffn": "model-00001-of-00005.safetensors",
493
+ "vision_model.global_transformer.layers.6.input_layernorm.bias": "model-00001-of-00005.safetensors",
494
+ "vision_model.global_transformer.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
495
+ "vision_model.global_transformer.layers.6.mlp.fc1.bias": "model-00001-of-00005.safetensors",
496
+ "vision_model.global_transformer.layers.6.mlp.fc1.weight": "model-00001-of-00005.safetensors",
497
+ "vision_model.global_transformer.layers.6.mlp.fc2.bias": "model-00001-of-00005.safetensors",
498
+ "vision_model.global_transformer.layers.6.mlp.fc2.weight": "model-00001-of-00005.safetensors",
499
+ "vision_model.global_transformer.layers.6.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
500
+ "vision_model.global_transformer.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
501
+ "vision_model.global_transformer.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
502
+ "vision_model.global_transformer.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
503
+ "vision_model.global_transformer.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
504
+ "vision_model.global_transformer.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
505
+ "vision_model.global_transformer.layers.7.gate_attn": "model-00001-of-00005.safetensors",
506
+ "vision_model.global_transformer.layers.7.gate_ffn": "model-00001-of-00005.safetensors",
507
+ "vision_model.global_transformer.layers.7.input_layernorm.bias": "model-00001-of-00005.safetensors",
508
+ "vision_model.global_transformer.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
509
+ "vision_model.global_transformer.layers.7.mlp.fc1.bias": "model-00001-of-00005.safetensors",
510
+ "vision_model.global_transformer.layers.7.mlp.fc1.weight": "model-00001-of-00005.safetensors",
511
+ "vision_model.global_transformer.layers.7.mlp.fc2.bias": "model-00001-of-00005.safetensors",
512
+ "vision_model.global_transformer.layers.7.mlp.fc2.weight": "model-00001-of-00005.safetensors",
513
+ "vision_model.global_transformer.layers.7.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
514
+ "vision_model.global_transformer.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
515
+ "vision_model.global_transformer.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
516
+ "vision_model.global_transformer.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
517
+ "vision_model.global_transformer.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
518
+ "vision_model.global_transformer.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
519
+ "vision_model.layernorm_post.bias": "model-00001-of-00005.safetensors",
520
+ "vision_model.layernorm_post.weight": "model-00001-of-00005.safetensors",
521
+ "vision_model.layernorm_pre.bias": "model-00001-of-00005.safetensors",
522
+ "vision_model.layernorm_pre.weight": "model-00001-of-00005.safetensors",
523
+ "vision_model.patch_embedding.weight": "model-00001-of-00005.safetensors",
524
+ "vision_model.post_tile_positional_embedding.embedding.weight": "model-00001-of-00005.safetensors",
525
+ "vision_model.post_tile_positional_embedding.gate": "model-00001-of-00005.safetensors",
526
+ "vision_model.pre_tile_positional_embedding.embedding.weight": "model-00001-of-00005.safetensors",
527
+ "vision_model.pre_tile_positional_embedding.gate": "model-00001-of-00005.safetensors",
528
+ "vision_model.transformer.layers.0.input_layernorm.bias": "model-00001-of-00005.safetensors",
529
+ "vision_model.transformer.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
530
+ "vision_model.transformer.layers.0.mlp.fc1.bias": "model-00001-of-00005.safetensors",
531
+ "vision_model.transformer.layers.0.mlp.fc1.weight": "model-00001-of-00005.safetensors",
532
+ "vision_model.transformer.layers.0.mlp.fc2.bias": "model-00001-of-00005.safetensors",
533
+ "vision_model.transformer.layers.0.mlp.fc2.weight": "model-00001-of-00005.safetensors",
534
+ "vision_model.transformer.layers.0.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
535
+ "vision_model.transformer.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
536
+ "vision_model.transformer.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
537
+ "vision_model.transformer.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
538
+ "vision_model.transformer.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
539
+ "vision_model.transformer.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
540
+ "vision_model.transformer.layers.1.input_layernorm.bias": "model-00001-of-00005.safetensors",
541
+ "vision_model.transformer.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
542
+ "vision_model.transformer.layers.1.mlp.fc1.bias": "model-00001-of-00005.safetensors",
543
+ "vision_model.transformer.layers.1.mlp.fc1.weight": "model-00001-of-00005.safetensors",
544
+ "vision_model.transformer.layers.1.mlp.fc2.bias": "model-00001-of-00005.safetensors",
545
+ "vision_model.transformer.layers.1.mlp.fc2.weight": "model-00001-of-00005.safetensors",
546
+ "vision_model.transformer.layers.1.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
547
+ "vision_model.transformer.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
548
+ "vision_model.transformer.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
549
+ "vision_model.transformer.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
550
+ "vision_model.transformer.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
551
+ "vision_model.transformer.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
552
+ "vision_model.transformer.layers.10.input_layernorm.bias": "model-00001-of-00005.safetensors",
553
+ "vision_model.transformer.layers.10.input_layernorm.weight": "model-00001-of-00005.safetensors",
554
+ "vision_model.transformer.layers.10.mlp.fc1.bias": "model-00001-of-00005.safetensors",
555
+ "vision_model.transformer.layers.10.mlp.fc1.weight": "model-00001-of-00005.safetensors",
556
+ "vision_model.transformer.layers.10.mlp.fc2.bias": "model-00001-of-00005.safetensors",
557
+ "vision_model.transformer.layers.10.mlp.fc2.weight": "model-00001-of-00005.safetensors",
558
+ "vision_model.transformer.layers.10.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
559
+ "vision_model.transformer.layers.10.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
560
+ "vision_model.transformer.layers.10.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
561
+ "vision_model.transformer.layers.10.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
562
+ "vision_model.transformer.layers.10.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
563
+ "vision_model.transformer.layers.10.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
564
+ "vision_model.transformer.layers.11.input_layernorm.bias": "model-00001-of-00005.safetensors",
565
+ "vision_model.transformer.layers.11.input_layernorm.weight": "model-00001-of-00005.safetensors",
566
+ "vision_model.transformer.layers.11.mlp.fc1.bias": "model-00001-of-00005.safetensors",
567
+ "vision_model.transformer.layers.11.mlp.fc1.weight": "model-00001-of-00005.safetensors",
568
+ "vision_model.transformer.layers.11.mlp.fc2.bias": "model-00001-of-00005.safetensors",
569
+ "vision_model.transformer.layers.11.mlp.fc2.weight": "model-00001-of-00005.safetensors",
570
+ "vision_model.transformer.layers.11.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
571
+ "vision_model.transformer.layers.11.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
572
+ "vision_model.transformer.layers.11.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
573
+ "vision_model.transformer.layers.11.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
574
+ "vision_model.transformer.layers.11.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
575
+ "vision_model.transformer.layers.11.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
576
+ "vision_model.transformer.layers.12.input_layernorm.bias": "model-00001-of-00005.safetensors",
577
+ "vision_model.transformer.layers.12.input_layernorm.weight": "model-00001-of-00005.safetensors",
578
+ "vision_model.transformer.layers.12.mlp.fc1.bias": "model-00001-of-00005.safetensors",
579
+ "vision_model.transformer.layers.12.mlp.fc1.weight": "model-00001-of-00005.safetensors",
580
+ "vision_model.transformer.layers.12.mlp.fc2.bias": "model-00001-of-00005.safetensors",
581
+ "vision_model.transformer.layers.12.mlp.fc2.weight": "model-00001-of-00005.safetensors",
582
+ "vision_model.transformer.layers.12.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
583
+ "vision_model.transformer.layers.12.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
584
+ "vision_model.transformer.layers.12.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
585
+ "vision_model.transformer.layers.12.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
586
+ "vision_model.transformer.layers.12.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
587
+ "vision_model.transformer.layers.12.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
588
+ "vision_model.transformer.layers.13.input_layernorm.bias": "model-00001-of-00005.safetensors",
589
+ "vision_model.transformer.layers.13.input_layernorm.weight": "model-00001-of-00005.safetensors",
590
+ "vision_model.transformer.layers.13.mlp.fc1.bias": "model-00001-of-00005.safetensors",
591
+ "vision_model.transformer.layers.13.mlp.fc1.weight": "model-00001-of-00005.safetensors",
592
+ "vision_model.transformer.layers.13.mlp.fc2.bias": "model-00001-of-00005.safetensors",
593
+ "vision_model.transformer.layers.13.mlp.fc2.weight": "model-00001-of-00005.safetensors",
594
+ "vision_model.transformer.layers.13.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
595
+ "vision_model.transformer.layers.13.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
596
+ "vision_model.transformer.layers.13.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
597
+ "vision_model.transformer.layers.13.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
598
+ "vision_model.transformer.layers.13.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
599
+ "vision_model.transformer.layers.13.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
600
+ "vision_model.transformer.layers.14.input_layernorm.bias": "model-00001-of-00005.safetensors",
601
+ "vision_model.transformer.layers.14.input_layernorm.weight": "model-00001-of-00005.safetensors",
602
+ "vision_model.transformer.layers.14.mlp.fc1.bias": "model-00001-of-00005.safetensors",
603
+ "vision_model.transformer.layers.14.mlp.fc1.weight": "model-00001-of-00005.safetensors",
604
+ "vision_model.transformer.layers.14.mlp.fc2.bias": "model-00001-of-00005.safetensors",
605
+ "vision_model.transformer.layers.14.mlp.fc2.weight": "model-00001-of-00005.safetensors",
606
+ "vision_model.transformer.layers.14.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
607
+ "vision_model.transformer.layers.14.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
608
+ "vision_model.transformer.layers.14.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
609
+ "vision_model.transformer.layers.14.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
610
+ "vision_model.transformer.layers.14.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
611
+ "vision_model.transformer.layers.14.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
612
+ "vision_model.transformer.layers.15.input_layernorm.bias": "model-00001-of-00005.safetensors",
613
+ "vision_model.transformer.layers.15.input_layernorm.weight": "model-00001-of-00005.safetensors",
614
+ "vision_model.transformer.layers.15.mlp.fc1.bias": "model-00001-of-00005.safetensors",
615
+ "vision_model.transformer.layers.15.mlp.fc1.weight": "model-00001-of-00005.safetensors",
616
+ "vision_model.transformer.layers.15.mlp.fc2.bias": "model-00001-of-00005.safetensors",
617
+ "vision_model.transformer.layers.15.mlp.fc2.weight": "model-00001-of-00005.safetensors",
618
+ "vision_model.transformer.layers.15.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
619
+ "vision_model.transformer.layers.15.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
620
+ "vision_model.transformer.layers.15.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
621
+ "vision_model.transformer.layers.15.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
622
+ "vision_model.transformer.layers.15.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
623
+ "vision_model.transformer.layers.15.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
624
+ "vision_model.transformer.layers.16.input_layernorm.bias": "model-00001-of-00005.safetensors",
625
+ "vision_model.transformer.layers.16.input_layernorm.weight": "model-00001-of-00005.safetensors",
626
+ "vision_model.transformer.layers.16.mlp.fc1.bias": "model-00001-of-00005.safetensors",
627
+ "vision_model.transformer.layers.16.mlp.fc1.weight": "model-00001-of-00005.safetensors",
628
+ "vision_model.transformer.layers.16.mlp.fc2.bias": "model-00001-of-00005.safetensors",
629
+ "vision_model.transformer.layers.16.mlp.fc2.weight": "model-00001-of-00005.safetensors",
630
+ "vision_model.transformer.layers.16.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
631
+ "vision_model.transformer.layers.16.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
632
+ "vision_model.transformer.layers.16.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
633
+ "vision_model.transformer.layers.16.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
634
+ "vision_model.transformer.layers.16.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
635
+ "vision_model.transformer.layers.16.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
636
+ "vision_model.transformer.layers.17.input_layernorm.bias": "model-00001-of-00005.safetensors",
637
+ "vision_model.transformer.layers.17.input_layernorm.weight": "model-00001-of-00005.safetensors",
638
+ "vision_model.transformer.layers.17.mlp.fc1.bias": "model-00001-of-00005.safetensors",
639
+ "vision_model.transformer.layers.17.mlp.fc1.weight": "model-00001-of-00005.safetensors",
640
+ "vision_model.transformer.layers.17.mlp.fc2.bias": "model-00001-of-00005.safetensors",
641
+ "vision_model.transformer.layers.17.mlp.fc2.weight": "model-00001-of-00005.safetensors",
642
+ "vision_model.transformer.layers.17.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
643
+ "vision_model.transformer.layers.17.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
644
+ "vision_model.transformer.layers.17.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
645
+ "vision_model.transformer.layers.17.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
646
+ "vision_model.transformer.layers.17.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
647
+ "vision_model.transformer.layers.17.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
648
+ "vision_model.transformer.layers.18.input_layernorm.bias": "model-00001-of-00005.safetensors",
649
+ "vision_model.transformer.layers.18.input_layernorm.weight": "model-00001-of-00005.safetensors",
650
+ "vision_model.transformer.layers.18.mlp.fc1.bias": "model-00001-of-00005.safetensors",
651
+ "vision_model.transformer.layers.18.mlp.fc1.weight": "model-00001-of-00005.safetensors",
652
+ "vision_model.transformer.layers.18.mlp.fc2.bias": "model-00001-of-00005.safetensors",
653
+ "vision_model.transformer.layers.18.mlp.fc2.weight": "model-00001-of-00005.safetensors",
654
+ "vision_model.transformer.layers.18.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
655
+ "vision_model.transformer.layers.18.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
656
+ "vision_model.transformer.layers.18.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
657
+ "vision_model.transformer.layers.18.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
658
+ "vision_model.transformer.layers.18.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
659
+ "vision_model.transformer.layers.18.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
660
+ "vision_model.transformer.layers.19.input_layernorm.bias": "model-00001-of-00005.safetensors",
661
+ "vision_model.transformer.layers.19.input_layernorm.weight": "model-00001-of-00005.safetensors",
662
+ "vision_model.transformer.layers.19.mlp.fc1.bias": "model-00001-of-00005.safetensors",
663
+ "vision_model.transformer.layers.19.mlp.fc1.weight": "model-00001-of-00005.safetensors",
664
+ "vision_model.transformer.layers.19.mlp.fc2.bias": "model-00001-of-00005.safetensors",
665
+ "vision_model.transformer.layers.19.mlp.fc2.weight": "model-00001-of-00005.safetensors",
666
+ "vision_model.transformer.layers.19.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
667
+ "vision_model.transformer.layers.19.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
668
+ "vision_model.transformer.layers.19.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
669
+ "vision_model.transformer.layers.19.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
670
+ "vision_model.transformer.layers.19.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
671
+ "vision_model.transformer.layers.19.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
672
+ "vision_model.transformer.layers.2.input_layernorm.bias": "model-00001-of-00005.safetensors",
673
+ "vision_model.transformer.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
674
+ "vision_model.transformer.layers.2.mlp.fc1.bias": "model-00001-of-00005.safetensors",
675
+ "vision_model.transformer.layers.2.mlp.fc1.weight": "model-00001-of-00005.safetensors",
676
+ "vision_model.transformer.layers.2.mlp.fc2.bias": "model-00001-of-00005.safetensors",
677
+ "vision_model.transformer.layers.2.mlp.fc2.weight": "model-00001-of-00005.safetensors",
678
+ "vision_model.transformer.layers.2.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
679
+ "vision_model.transformer.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
680
+ "vision_model.transformer.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
681
+ "vision_model.transformer.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
682
+ "vision_model.transformer.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
683
+ "vision_model.transformer.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
684
+ "vision_model.transformer.layers.20.input_layernorm.bias": "model-00001-of-00005.safetensors",
685
+ "vision_model.transformer.layers.20.input_layernorm.weight": "model-00001-of-00005.safetensors",
686
+ "vision_model.transformer.layers.20.mlp.fc1.bias": "model-00001-of-00005.safetensors",
687
+ "vision_model.transformer.layers.20.mlp.fc1.weight": "model-00001-of-00005.safetensors",
688
+ "vision_model.transformer.layers.20.mlp.fc2.bias": "model-00001-of-00005.safetensors",
689
+ "vision_model.transformer.layers.20.mlp.fc2.weight": "model-00001-of-00005.safetensors",
690
+ "vision_model.transformer.layers.20.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
691
+ "vision_model.transformer.layers.20.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
692
+ "vision_model.transformer.layers.20.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
693
+ "vision_model.transformer.layers.20.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
694
+ "vision_model.transformer.layers.20.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
695
+ "vision_model.transformer.layers.20.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
696
+ "vision_model.transformer.layers.21.input_layernorm.bias": "model-00001-of-00005.safetensors",
697
+ "vision_model.transformer.layers.21.input_layernorm.weight": "model-00001-of-00005.safetensors",
698
+ "vision_model.transformer.layers.21.mlp.fc1.bias": "model-00001-of-00005.safetensors",
699
+ "vision_model.transformer.layers.21.mlp.fc1.weight": "model-00001-of-00005.safetensors",
700
+ "vision_model.transformer.layers.21.mlp.fc2.bias": "model-00001-of-00005.safetensors",
701
+ "vision_model.transformer.layers.21.mlp.fc2.weight": "model-00001-of-00005.safetensors",
702
+ "vision_model.transformer.layers.21.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
703
+ "vision_model.transformer.layers.21.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
704
+ "vision_model.transformer.layers.21.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
705
+ "vision_model.transformer.layers.21.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
706
+ "vision_model.transformer.layers.21.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
707
+ "vision_model.transformer.layers.21.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
708
+ "vision_model.transformer.layers.22.input_layernorm.bias": "model-00001-of-00005.safetensors",
709
+ "vision_model.transformer.layers.22.input_layernorm.weight": "model-00001-of-00005.safetensors",
710
+ "vision_model.transformer.layers.22.mlp.fc1.bias": "model-00001-of-00005.safetensors",
711
+ "vision_model.transformer.layers.22.mlp.fc1.weight": "model-00001-of-00005.safetensors",
712
+ "vision_model.transformer.layers.22.mlp.fc2.bias": "model-00001-of-00005.safetensors",
713
+ "vision_model.transformer.layers.22.mlp.fc2.weight": "model-00001-of-00005.safetensors",
714
+ "vision_model.transformer.layers.22.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
715
+ "vision_model.transformer.layers.22.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
716
+ "vision_model.transformer.layers.22.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
717
+ "vision_model.transformer.layers.22.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
718
+ "vision_model.transformer.layers.22.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
719
+ "vision_model.transformer.layers.22.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
720
+ "vision_model.transformer.layers.23.input_layernorm.bias": "model-00001-of-00005.safetensors",
721
+ "vision_model.transformer.layers.23.input_layernorm.weight": "model-00001-of-00005.safetensors",
722
+ "vision_model.transformer.layers.23.mlp.fc1.bias": "model-00001-of-00005.safetensors",
723
+ "vision_model.transformer.layers.23.mlp.fc1.weight": "model-00001-of-00005.safetensors",
724
+ "vision_model.transformer.layers.23.mlp.fc2.bias": "model-00001-of-00005.safetensors",
725
+ "vision_model.transformer.layers.23.mlp.fc2.weight": "model-00001-of-00005.safetensors",
726
+ "vision_model.transformer.layers.23.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
727
+ "vision_model.transformer.layers.23.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
728
+ "vision_model.transformer.layers.23.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
729
+ "vision_model.transformer.layers.23.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
730
+ "vision_model.transformer.layers.23.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
731
+ "vision_model.transformer.layers.23.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
732
+ "vision_model.transformer.layers.24.input_layernorm.bias": "model-00001-of-00005.safetensors",
733
+ "vision_model.transformer.layers.24.input_layernorm.weight": "model-00001-of-00005.safetensors",
734
+ "vision_model.transformer.layers.24.mlp.fc1.bias": "model-00001-of-00005.safetensors",
735
+ "vision_model.transformer.layers.24.mlp.fc1.weight": "model-00001-of-00005.safetensors",
736
+ "vision_model.transformer.layers.24.mlp.fc2.bias": "model-00001-of-00005.safetensors",
737
+ "vision_model.transformer.layers.24.mlp.fc2.weight": "model-00001-of-00005.safetensors",
738
+ "vision_model.transformer.layers.24.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
739
+ "vision_model.transformer.layers.24.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
740
+ "vision_model.transformer.layers.24.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
741
+ "vision_model.transformer.layers.24.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
742
+ "vision_model.transformer.layers.24.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
743
+ "vision_model.transformer.layers.24.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
744
+ "vision_model.transformer.layers.25.input_layernorm.bias": "model-00001-of-00005.safetensors",
745
+ "vision_model.transformer.layers.25.input_layernorm.weight": "model-00001-of-00005.safetensors",
746
+ "vision_model.transformer.layers.25.mlp.fc1.bias": "model-00001-of-00005.safetensors",
747
+ "vision_model.transformer.layers.25.mlp.fc1.weight": "model-00001-of-00005.safetensors",
748
+ "vision_model.transformer.layers.25.mlp.fc2.bias": "model-00001-of-00005.safetensors",
749
+ "vision_model.transformer.layers.25.mlp.fc2.weight": "model-00001-of-00005.safetensors",
750
+ "vision_model.transformer.layers.25.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
751
+ "vision_model.transformer.layers.25.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
752
+ "vision_model.transformer.layers.25.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
753
+ "vision_model.transformer.layers.25.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
754
+ "vision_model.transformer.layers.25.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
755
+ "vision_model.transformer.layers.25.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
756
+ "vision_model.transformer.layers.26.input_layernorm.bias": "model-00001-of-00005.safetensors",
757
+ "vision_model.transformer.layers.26.input_layernorm.weight": "model-00001-of-00005.safetensors",
758
+ "vision_model.transformer.layers.26.mlp.fc1.bias": "model-00001-of-00005.safetensors",
759
+ "vision_model.transformer.layers.26.mlp.fc1.weight": "model-00001-of-00005.safetensors",
760
+ "vision_model.transformer.layers.26.mlp.fc2.bias": "model-00001-of-00005.safetensors",
761
+ "vision_model.transformer.layers.26.mlp.fc2.weight": "model-00001-of-00005.safetensors",
762
+ "vision_model.transformer.layers.26.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
763
+ "vision_model.transformer.layers.26.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
764
+ "vision_model.transformer.layers.26.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
765
+ "vision_model.transformer.layers.26.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
766
+ "vision_model.transformer.layers.26.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
767
+ "vision_model.transformer.layers.26.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
768
+ "vision_model.transformer.layers.27.input_layernorm.bias": "model-00001-of-00005.safetensors",
769
+ "vision_model.transformer.layers.27.input_layernorm.weight": "model-00001-of-00005.safetensors",
770
+ "vision_model.transformer.layers.27.mlp.fc1.bias": "model-00001-of-00005.safetensors",
771
+ "vision_model.transformer.layers.27.mlp.fc1.weight": "model-00001-of-00005.safetensors",
772
+ "vision_model.transformer.layers.27.mlp.fc2.bias": "model-00001-of-00005.safetensors",
773
+ "vision_model.transformer.layers.27.mlp.fc2.weight": "model-00001-of-00005.safetensors",
774
+ "vision_model.transformer.layers.27.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
775
+ "vision_model.transformer.layers.27.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
776
+ "vision_model.transformer.layers.27.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
777
+ "vision_model.transformer.layers.27.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
778
+ "vision_model.transformer.layers.27.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
779
+ "vision_model.transformer.layers.27.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
780
+ "vision_model.transformer.layers.28.input_layernorm.bias": "model-00001-of-00005.safetensors",
781
+ "vision_model.transformer.layers.28.input_layernorm.weight": "model-00001-of-00005.safetensors",
782
+ "vision_model.transformer.layers.28.mlp.fc1.bias": "model-00001-of-00005.safetensors",
783
+ "vision_model.transformer.layers.28.mlp.fc1.weight": "model-00001-of-00005.safetensors",
784
+ "vision_model.transformer.layers.28.mlp.fc2.bias": "model-00001-of-00005.safetensors",
785
+ "vision_model.transformer.layers.28.mlp.fc2.weight": "model-00001-of-00005.safetensors",
786
+ "vision_model.transformer.layers.28.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
787
+ "vision_model.transformer.layers.28.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
788
+ "vision_model.transformer.layers.28.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
789
+ "vision_model.transformer.layers.28.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
790
+ "vision_model.transformer.layers.28.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
791
+ "vision_model.transformer.layers.28.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
792
+ "vision_model.transformer.layers.29.input_layernorm.bias": "model-00001-of-00005.safetensors",
793
+ "vision_model.transformer.layers.29.input_layernorm.weight": "model-00001-of-00005.safetensors",
794
+ "vision_model.transformer.layers.29.mlp.fc1.bias": "model-00001-of-00005.safetensors",
795
+ "vision_model.transformer.layers.29.mlp.fc1.weight": "model-00001-of-00005.safetensors",
796
+ "vision_model.transformer.layers.29.mlp.fc2.bias": "model-00001-of-00005.safetensors",
797
+ "vision_model.transformer.layers.29.mlp.fc2.weight": "model-00001-of-00005.safetensors",
798
+ "vision_model.transformer.layers.29.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
799
+ "vision_model.transformer.layers.29.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
800
+ "vision_model.transformer.layers.29.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
801
+ "vision_model.transformer.layers.29.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
802
+ "vision_model.transformer.layers.29.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
803
+ "vision_model.transformer.layers.29.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
804
+ "vision_model.transformer.layers.3.input_layernorm.bias": "model-00001-of-00005.safetensors",
805
+ "vision_model.transformer.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
806
+ "vision_model.transformer.layers.3.mlp.fc1.bias": "model-00001-of-00005.safetensors",
807
+ "vision_model.transformer.layers.3.mlp.fc1.weight": "model-00001-of-00005.safetensors",
808
+ "vision_model.transformer.layers.3.mlp.fc2.bias": "model-00001-of-00005.safetensors",
809
+ "vision_model.transformer.layers.3.mlp.fc2.weight": "model-00001-of-00005.safetensors",
810
+ "vision_model.transformer.layers.3.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
811
+ "vision_model.transformer.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
812
+ "vision_model.transformer.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
813
+ "vision_model.transformer.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
814
+ "vision_model.transformer.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
815
+ "vision_model.transformer.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
816
+ "vision_model.transformer.layers.30.input_layernorm.bias": "model-00001-of-00005.safetensors",
817
+ "vision_model.transformer.layers.30.input_layernorm.weight": "model-00001-of-00005.safetensors",
818
+ "vision_model.transformer.layers.30.mlp.fc1.bias": "model-00001-of-00005.safetensors",
819
+ "vision_model.transformer.layers.30.mlp.fc1.weight": "model-00001-of-00005.safetensors",
820
+ "vision_model.transformer.layers.30.mlp.fc2.bias": "model-00001-of-00005.safetensors",
821
+ "vision_model.transformer.layers.30.mlp.fc2.weight": "model-00001-of-00005.safetensors",
822
+ "vision_model.transformer.layers.30.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
823
+ "vision_model.transformer.layers.30.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
824
+ "vision_model.transformer.layers.30.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
825
+ "vision_model.transformer.layers.30.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
826
+ "vision_model.transformer.layers.30.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
827
+ "vision_model.transformer.layers.30.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
828
+ "vision_model.transformer.layers.31.input_layernorm.bias": "model-00001-of-00005.safetensors",
829
+ "vision_model.transformer.layers.31.input_layernorm.weight": "model-00001-of-00005.safetensors",
830
+ "vision_model.transformer.layers.31.mlp.fc1.bias": "model-00001-of-00005.safetensors",
831
+ "vision_model.transformer.layers.31.mlp.fc1.weight": "model-00001-of-00005.safetensors",
832
+ "vision_model.transformer.layers.31.mlp.fc2.bias": "model-00001-of-00005.safetensors",
833
+ "vision_model.transformer.layers.31.mlp.fc2.weight": "model-00001-of-00005.safetensors",
834
+ "vision_model.transformer.layers.31.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
835
+ "vision_model.transformer.layers.31.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
836
+ "vision_model.transformer.layers.31.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
837
+ "vision_model.transformer.layers.31.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
838
+ "vision_model.transformer.layers.31.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
839
+ "vision_model.transformer.layers.31.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
840
+ "vision_model.transformer.layers.4.input_layernorm.bias": "model-00001-of-00005.safetensors",
841
+ "vision_model.transformer.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
842
+ "vision_model.transformer.layers.4.mlp.fc1.bias": "model-00001-of-00005.safetensors",
843
+ "vision_model.transformer.layers.4.mlp.fc1.weight": "model-00001-of-00005.safetensors",
844
+ "vision_model.transformer.layers.4.mlp.fc2.bias": "model-00001-of-00005.safetensors",
845
+ "vision_model.transformer.layers.4.mlp.fc2.weight": "model-00001-of-00005.safetensors",
846
+ "vision_model.transformer.layers.4.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
847
+ "vision_model.transformer.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
848
+ "vision_model.transformer.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
849
+ "vision_model.transformer.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
850
+ "vision_model.transformer.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
851
+ "vision_model.transformer.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
852
+ "vision_model.transformer.layers.5.input_layernorm.bias": "model-00001-of-00005.safetensors",
853
+ "vision_model.transformer.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
854
+ "vision_model.transformer.layers.5.mlp.fc1.bias": "model-00001-of-00005.safetensors",
855
+ "vision_model.transformer.layers.5.mlp.fc1.weight": "model-00001-of-00005.safetensors",
856
+ "vision_model.transformer.layers.5.mlp.fc2.bias": "model-00001-of-00005.safetensors",
857
+ "vision_model.transformer.layers.5.mlp.fc2.weight": "model-00001-of-00005.safetensors",
858
+ "vision_model.transformer.layers.5.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
859
+ "vision_model.transformer.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
860
+ "vision_model.transformer.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
861
+ "vision_model.transformer.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
862
+ "vision_model.transformer.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
863
+ "vision_model.transformer.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
864
+ "vision_model.transformer.layers.6.input_layernorm.bias": "model-00001-of-00005.safetensors",
865
+ "vision_model.transformer.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
866
+ "vision_model.transformer.layers.6.mlp.fc1.bias": "model-00001-of-00005.safetensors",
867
+ "vision_model.transformer.layers.6.mlp.fc1.weight": "model-00001-of-00005.safetensors",
868
+ "vision_model.transformer.layers.6.mlp.fc2.bias": "model-00001-of-00005.safetensors",
869
+ "vision_model.transformer.layers.6.mlp.fc2.weight": "model-00001-of-00005.safetensors",
870
+ "vision_model.transformer.layers.6.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
871
+ "vision_model.transformer.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
872
+ "vision_model.transformer.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
873
+ "vision_model.transformer.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
874
+ "vision_model.transformer.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
875
+ "vision_model.transformer.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
876
+ "vision_model.transformer.layers.7.input_layernorm.bias": "model-00001-of-00005.safetensors",
877
+ "vision_model.transformer.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
878
+ "vision_model.transformer.layers.7.mlp.fc1.bias": "model-00001-of-00005.safetensors",
879
+ "vision_model.transformer.layers.7.mlp.fc1.weight": "model-00001-of-00005.safetensors",
880
+ "vision_model.transformer.layers.7.mlp.fc2.bias": "model-00001-of-00005.safetensors",
881
+ "vision_model.transformer.layers.7.mlp.fc2.weight": "model-00001-of-00005.safetensors",
882
+ "vision_model.transformer.layers.7.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
883
+ "vision_model.transformer.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
884
+ "vision_model.transformer.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
885
+ "vision_model.transformer.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
886
+ "vision_model.transformer.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
887
+ "vision_model.transformer.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
888
+ "vision_model.transformer.layers.8.input_layernorm.bias": "model-00001-of-00005.safetensors",
889
+ "vision_model.transformer.layers.8.input_layernorm.weight": "model-00001-of-00005.safetensors",
890
+ "vision_model.transformer.layers.8.mlp.fc1.bias": "model-00001-of-00005.safetensors",
891
+ "vision_model.transformer.layers.8.mlp.fc1.weight": "model-00001-of-00005.safetensors",
892
+ "vision_model.transformer.layers.8.mlp.fc2.bias": "model-00001-of-00005.safetensors",
893
+ "vision_model.transformer.layers.8.mlp.fc2.weight": "model-00001-of-00005.safetensors",
894
+ "vision_model.transformer.layers.8.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
895
+ "vision_model.transformer.layers.8.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
896
+ "vision_model.transformer.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
897
+ "vision_model.transformer.layers.8.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
898
+ "vision_model.transformer.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
899
+ "vision_model.transformer.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
900
+ "vision_model.transformer.layers.9.input_layernorm.bias": "model-00001-of-00005.safetensors",
901
+ "vision_model.transformer.layers.9.input_layernorm.weight": "model-00001-of-00005.safetensors",
902
+ "vision_model.transformer.layers.9.mlp.fc1.bias": "model-00001-of-00005.safetensors",
903
+ "vision_model.transformer.layers.9.mlp.fc1.weight": "model-00001-of-00005.safetensors",
904
+ "vision_model.transformer.layers.9.mlp.fc2.bias": "model-00001-of-00005.safetensors",
905
+ "vision_model.transformer.layers.9.mlp.fc2.weight": "model-00001-of-00005.safetensors",
906
+ "vision_model.transformer.layers.9.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
907
+ "vision_model.transformer.layers.9.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
908
+ "vision_model.transformer.layers.9.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
909
+ "vision_model.transformer.layers.9.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
910
+ "vision_model.transformer.layers.9.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
911
+ "vision_model.transformer.layers.9.self_attn.v_proj.weight": "model-00001-of-00005.safetensors"
912
+ }
913
+ }
modeling_llama3.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.utils.checkpoint
6
+ from torch import nn
7
+
8
+ from transformers import MllamaPreTrainedModel, MllamaVisionModel, MllamaForCausalLM
9
+ from transformers.generation import GenerationMixin
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+ from transformers.utils import logging
12
+ from transformers.models.mllama.modeling_mllama import _prepare_cross_attention_mask
13
+ from configuration_llama3 import Llama3Config
14
+ from mllama_audio_model import MllamaAudioModel
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+ class Llama3PreTrainedModel(MllamaPreTrainedModel):
19
+ config_class = Llama3Config
20
+ base_model_prefix = "model"
21
+
22
+ class Llama3ForConditionalGeneration(Llama3PreTrainedModel, GenerationMixin):
23
+ _supports_quantized_cache = False # quant cache not supported in encoder-decoder setting
24
+
25
+ def __init__(self, config: Llama3Config):
26
+ super().__init__(config)
27
+ self.vocab_size = config.text_config.vocab_size
28
+ self.hidden_size = config.text_config.hidden_size
29
+ self.max_num_tiles = config.vision_config.max_num_tiles
30
+ self.vision_output_dim = config.vision_config.vision_output_dim
31
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
32
+
33
+ self.vision_model = MllamaVisionModel._from_config(config.vision_config)
34
+ self.language_model = MllamaForCausalLM._from_config(config.text_config)
35
+ self.audio_model = MllamaAudioModel(config.audio_config, self.language_model.get_input_embeddings())
36
+ self.multi_modal_projector = nn.Linear(
37
+ config.vision_config.vision_output_dim,
38
+ config.text_config.hidden_size,
39
+ bias=True,
40
+ )
41
+ self.post_init()
42
+
43
+ def get_input_embeddings(self):
44
+ return self.language_model.get_input_embeddings()
45
+
46
+ def set_input_embeddings(self, value):
47
+ self.language_model.set_input_embeddings(value)
48
+
49
+ def get_output_embeddings(self):
50
+ return self.language_model.get_output_embeddings()
51
+
52
+ def set_output_embeddings(self, new_embeddings):
53
+ self.language_model.set_output_embeddings(new_embeddings)
54
+
55
+ def set_decoder(self, decoder):
56
+ self.language_model.set_decoder(decoder)
57
+
58
+ def get_decoder(self):
59
+ return self.language_model.get_decoder()
60
+
61
+ def tie_weights(self):
62
+ return self.language_model.tie_weights()
63
+
64
+ def forward(
65
+ self,
66
+ input_ids: Optional[torch.LongTensor] = None,
67
+ audio_features: Optional[torch.FloatTensor] = None,
68
+ pixel_values: Optional[torch.FloatTensor] = None,
69
+ aspect_ratio_mask: Optional[torch.Tensor] = None,
70
+ aspect_ratio_ids: Optional[torch.Tensor] = None,
71
+ attention_mask: Optional[torch.Tensor] = None,
72
+ cross_attention_mask: Optional[torch.Tensor] = None,
73
+ cross_attention_states: Optional[torch.Tensor] = None,
74
+ position_ids: Optional[torch.LongTensor] = None,
75
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
76
+ inputs_embeds: Optional[torch.FloatTensor] = None,
77
+ labels: Optional[torch.LongTensor] = None,
78
+ use_cache: Optional[bool] = None,
79
+ output_attentions: Optional[bool] = None,
80
+ output_hidden_states: Optional[bool] = None,
81
+ return_dict: Optional[bool] = None,
82
+ cache_position: Optional[torch.LongTensor] = None,
83
+ num_logits_to_keep: int = 0,
84
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
85
+ r"""
86
+ Args:
87
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
88
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
89
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
90
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
91
+
92
+ num_logits_to_keep (`int`, *optional*):
93
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
94
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
95
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
96
+
97
+
98
+ Returns:
99
+
100
+ Example:
101
+
102
+ ```python
103
+ >>> from PIL import Image
104
+ >>> import requests
105
+ >>> from transformers import AutoProcessor, MllamaForConditionalGeneration
106
+
107
+ >>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
108
+ >>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint)
109
+ >>> processor = AutoProcessor.from_pretrained(checkpoint)
110
+
111
+ >>> prompt = "<|image|>If I had to write a haiku for this one"
112
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
113
+ >>> image = Image.open(requests.get(url, stream=True).raw)
114
+
115
+ >>> inputs = processor(text=prompt, images=image, return_tensors="pt")
116
+
117
+ >>> # Generate
118
+ >>> output = model.generate(**inputs, max_new_tokens=15)
119
+
120
+ >>> prompt_len = inputs.input_ids.shape[-1]
121
+ >>> generated_ids = output[:, prompt_len:]
122
+ >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
123
+ >>> print(generated_text)
124
+ [', it would be:.\\nA stop sign in Chinatown.\\n']
125
+ ```
126
+ """
127
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
128
+ output_hidden_states = (
129
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
130
+ )
131
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
132
+
133
+ if (input_ids is None) ^ (inputs_embeds is not None):
134
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
135
+
136
+ if pixel_values is not None and inputs_embeds is not None:
137
+ raise ValueError(
138
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
139
+ )
140
+
141
+ if pixel_values is not None and cross_attention_states is not None:
142
+ raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")
143
+
144
+ if pixel_values is not None:
145
+ if aspect_ratio_ids is None:
146
+ raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
147
+ # get vision tokens from vision model
148
+ vision_outputs = self.vision_model(
149
+ pixel_values=pixel_values,
150
+ aspect_ratio_ids=aspect_ratio_ids,
151
+ aspect_ratio_mask=aspect_ratio_mask,
152
+ output_hidden_states=output_hidden_states,
153
+ output_attentions=output_attentions,
154
+ return_dict=return_dict,
155
+ )
156
+ cross_attention_states = vision_outputs[0]
157
+ cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape(
158
+ -1, cross_attention_states.shape[-2], self.hidden_size
159
+ )
160
+
161
+ if cross_attention_mask is not None:
162
+ cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask(
163
+ cross_attention_mask,
164
+ num_vision_tokens=self.vision_model.num_patches,
165
+ dtype=self.dtype,
166
+ )
167
+ else:
168
+ full_text_row_masked_out_mask = None
169
+
170
+ if cross_attention_mask is not None and cache_position is not None:
171
+ cross_attention_mask = cross_attention_mask[:, :, cache_position]
172
+ full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
173
+
174
+ if audio_features is not None:
175
+ if input_ids is None:
176
+ raise ValueError("You must provide `input_ids` if you pass `audio_features`.")
177
+
178
+ inputs_embeds = self.audio_model(
179
+ audio_feature=audio_features,
180
+ input_ids=input_ids,
181
+ return_dict=False,
182
+ )
183
+ input_ids = None
184
+
185
+ outputs = self.language_model(
186
+ input_ids=input_ids,
187
+ attention_mask=attention_mask,
188
+ position_ids=position_ids,
189
+ cross_attention_states=cross_attention_states,
190
+ cross_attention_mask=cross_attention_mask,
191
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
192
+ past_key_values=past_key_values,
193
+ use_cache=use_cache,
194
+ inputs_embeds=inputs_embeds,
195
+ labels=labels,
196
+ output_hidden_states=output_hidden_states,
197
+ output_attentions=output_attentions,
198
+ return_dict=return_dict,
199
+ cache_position=cache_position,
200
+ num_logits_to_keep=num_logits_to_keep,
201
+ )
202
+
203
+ return outputs
204
+
205
+ def prepare_inputs_for_generation(
206
+ self,
207
+ input_ids=None,
208
+ inputs_embeds=None,
209
+ attention_mask=None,
210
+ position_ids=None,
211
+ pixel_values=None,
212
+ aspect_ratio_ids=None,
213
+ aspect_ratio_mask=None,
214
+ cross_attention_mask=None,
215
+ past_key_values=None,
216
+ use_cache=False,
217
+ cache_position=None,
218
+ num_logits_to_keep=None,
219
+ **kwargs,
220
+ ):
221
+ # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
222
+
223
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
224
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
225
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
226
+ if past_key_values is not None:
227
+ if inputs_embeds is not None: # Exception 1
228
+ input_ids = input_ids[:, -cache_position.shape[0] :]
229
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
230
+ input_ids = input_ids[:, cache_position]
231
+
232
+ # TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way
233
+ if attention_mask is not None and position_ids is None:
234
+ # create position_ids on the fly for batch generation
235
+ position_ids = attention_mask.long().cumsum(-1) - 1
236
+ position_ids.masked_fill_(attention_mask == 0, 1)
237
+ if past_key_values:
238
+ position_ids = position_ids[:, -input_ids.shape[1] :]
239
+
240
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
241
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
242
+
243
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
244
+ if inputs_embeds is not None and cache_position[0] == 0:
245
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
246
+ else:
247
+ # The clone here is for the same reason as for `position_ids`.
248
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
249
+
250
+ if num_logits_to_keep is not None:
251
+ model_inputs["num_logits_to_keep"] = num_logits_to_keep
252
+
253
+ model_inputs.update(
254
+ {
255
+ "position_ids": position_ids,
256
+ "cache_position": cache_position,
257
+ "past_key_values": past_key_values,
258
+ "use_cache": use_cache,
259
+ "attention_mask": attention_mask,
260
+ "cross_attention_mask": cross_attention_mask,
261
+ }
262
+ )
263
+
264
+ # If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
265
+ # to compute image hidden states, otherwise they are cached within each cross attn layer
266
+ if cache_position[0] == 0:
267
+ model_inputs["pixel_values"] = pixel_values
268
+ model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
269
+ model_inputs["aspect_ratio_mask"] = aspect_ratio_mask
270
+
271
+ return model_inputs
272
+
273
+ def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
274
+ cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
275
+ model_kwargs = super()._update_model_kwargs_for_generation(
276
+ outputs=outputs,
277
+ model_kwargs=model_kwargs,
278
+ is_encoder_decoder=is_encoder_decoder,
279
+ **kwargs,
280
+ )
281
+
282
+ # add cross-attn mask for new token
283
+ if cross_attention_mask_prev is not None:
284
+ model_kwargs["cross_attention_mask"] = torch.cat(
285
+ [cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1
286
+ )
287
+ return model_kwargs
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_pad": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "MllamaImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "max_image_tiles": 4,
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 560,
23
+ "width": 560
24
+ }
25
+ }
processing_mllama.py ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Processor class for Mllama."""
17
+
18
+ from typing import List, Optional, Union
19
+
20
+ import numpy as np
21
+
22
+ from transformers.feature_extraction_utils import BatchFeature
23
+ from transformers.image_utils import ImageInput
24
+ from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, AudioKwargs
25
+ from transformers.tokenization_utils_base import (
26
+ PreTokenizedInput,
27
+ TextInput,
28
+ AudioInput,
29
+ )
30
+
31
+ # TODO: Can we do it that way or its better include as "Copied from ..."
32
+ from transformers.models.mllama.image_processing_mllama import make_list_of_images
33
+ from .audio_processing_mllama import make_list_of_audio_clips, build_audio_tokens, pack_audio_clips
34
+
35
+
36
+ class MllamaImagesKwargs(ImagesKwargs, total=False):
37
+ max_image_tiles: Optional[int]
38
+
39
+ class MllamaProcessorKwargs(ProcessingKwargs, total=False):
40
+ images_kwargs: MllamaImagesKwargs
41
+
42
+ _defaults = {
43
+ "image_kwargs": {
44
+ "max_image_tiles": 4,
45
+ },
46
+ }
47
+
48
+
49
+ def get_cross_attention_token_mask(input_ids: List[int], image_token_id: int) -> List[List[int]]:
50
+ """
51
+ Generate a cross-attention token mask for image tokens in the input sequence.
52
+
53
+ This function identifies the positions of image tokens in the input sequence and creates
54
+ a mask that defines which subsequent tokens each image token should attend to.
55
+
56
+ Args:
57
+ input_ids (List[int]): A list of token ids representing the input sequence.
58
+ image_token_id (int): The id of the token used to represent images in the sequence.
59
+
60
+ Returns:
61
+ List[List[int]]: A list of [start, end] pairs, where each pair represents the range
62
+ of tokens an image token should attend to.
63
+
64
+ Notes:
65
+ - If no image tokens are present, an empty list is returned.
66
+ - For a single image token, it attends to all subsequent tokens until the end of the sequence.
67
+ - For multiple image tokens, each attends to tokens up to the next image token or the end of the sequence.
68
+ - Consecutive image tokens are treated as a group and attend to all subsequent tokens together.
69
+ """
70
+
71
+ image_token_locations = [i for i, token in enumerate(input_ids) if token == image_token_id]
72
+
73
+ if len(image_token_locations) == 0:
74
+ return []
75
+
76
+ # only one image present, unmask until end of sequence
77
+ if len(image_token_locations) == 1:
78
+ return [[image_token_locations[0], -1]]
79
+
80
+ vision_masks = [[loc1, loc2] for loc1, loc2 in zip(image_token_locations[:-1], image_token_locations[1:])]
81
+
82
+ # last image will attend to all subsequent text
83
+ vision_masks.append([image_token_locations[-1], len(input_ids)])
84
+
85
+ # if there are two or more consecutive vision tokens,
86
+ # they should all attend to all subsequent
87
+ # text present
88
+ last_mask_end = vision_masks[-1][1]
89
+ for vision_mask in vision_masks[::-1]:
90
+ if vision_mask[0] == vision_mask[1] - 1:
91
+ vision_mask[1] = last_mask_end
92
+ last_mask_end = vision_mask[1]
93
+
94
+ return vision_masks
95
+
96
+
97
+ def convert_sparse_cross_attention_mask_to_dense(
98
+ cross_attention_token_mask: List[List[List[int]]],
99
+ num_tiles: List[List[int]],
100
+ max_num_tiles: int,
101
+ length: int,
102
+ ) -> np.ndarray:
103
+ """
104
+ Convert the cross attention mask indices to a cross attention mask 4D array.
105
+
106
+ This function takes a sparse representation of cross attention masks and converts it to a dense 4D numpy array.
107
+ The sparse representation is a nested list structure that defines attention ranges for each image in each batch item.
108
+
109
+ Args:
110
+ cross_attention_token_mask (List[List[List[int]]]): A nested list structure where:
111
+ - The outer list represents the batch dimension.
112
+ - The middle list represents different images within each batch item.
113
+ - The inner list contains pairs of integers [start, end] representing token ranges for each image.
114
+ num_tiles (List[List[int]]): A nested list structure specifying the number of tiles for each image in each batch item.
115
+ max_num_tiles (int): The maximum possible number of tiles.
116
+ length (int): The total sequence length of the input.
117
+
118
+ Returns:
119
+ np.ndarray: A 4D numpy array of shape (batch_size, length, max_num_images, max_num_tiles)
120
+ The array contains `1` where attention is allowed and `0` where it is not.
121
+
122
+ Note:
123
+ - Special handling is done for cases where the end token is -1, which is interpreted as attending to the end of the sequence.
124
+ """
125
+
126
+ batch_size = len(cross_attention_token_mask)
127
+ max_num_images = max([len(masks) for masks in cross_attention_token_mask])
128
+
129
+ cross_attention_mask = np.zeros(
130
+ shape=(batch_size, length, max_num_images, max_num_tiles),
131
+ dtype=np.int64,
132
+ )
133
+
134
+ for sample_idx, (sample_masks, sample_num_tiles) in enumerate(zip(cross_attention_token_mask, num_tiles)):
135
+ for mask_idx, (locations, mask_num_tiles) in enumerate(zip(sample_masks, sample_num_tiles)):
136
+ if len(locations) == 2:
137
+ start, end = locations
138
+ end = min(end, length)
139
+ if end == -1:
140
+ end = length
141
+ cross_attention_mask[sample_idx, start:end, mask_idx, :mask_num_tiles] = 1
142
+ return cross_attention_mask
143
+
144
+
145
+ def build_string_from_input(prompt: str, bos_token: str, image_token: str) -> str:
146
+ """
147
+ Builds a string from the input prompt by adding `bos_token` if not already present.
148
+
149
+ Args:
150
+ prompt (`str`):
151
+ The input prompt string.
152
+ bos_token (`str`):
153
+ The beginning of sentence token to be added.
154
+ image_token (`str`):
155
+ The image token used to identify the start of an image sequence.
156
+
157
+ Returns:
158
+ str: The modified prompt string with the `bos_token` added if necessary.
159
+
160
+ Examples:
161
+ >>> build_string_from_input("Hello world", "<begin_of_text>", "<|image|>")
162
+ '<begin_of_text>Hello world'
163
+
164
+ >>> build_string_from_input("<|image|>Hello world", "<begin_of_text>", "<|image|>")
165
+ '<|image|><begin_of_text>Hello world'
166
+
167
+ >>> build_string_from_input("<begin_of_text>Hello world", "<begin_of_text>", "<|image|>")
168
+ '<begin_of_text>Hello world'
169
+ """
170
+
171
+ if bos_token in prompt:
172
+ return prompt
173
+
174
+ num_image_tokens_on_start = 0
175
+ while prompt.startswith(image_token):
176
+ prompt = prompt[len(image_token) :]
177
+ num_image_tokens_on_start += 1
178
+
179
+ return f"{image_token * num_image_tokens_on_start}{bos_token}{prompt}"
180
+
181
+
182
+ class MllamaProcessor(ProcessorMixin):
183
+ r"""
184
+ Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
185
+ [`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
186
+ tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
187
+ information.
188
+ The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
189
+ ```python
190
+ from transformers import MllamaProcessor
191
+ from PIL import Image
192
+
193
+ processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")
194
+
195
+ processor(
196
+ images=your_pil_image,
197
+ text=["<|image|>If I had to write a haiku for this one"],
198
+ images_kwargs = {"size": {"height": 448, "width": 448}},
199
+ text_kwargs = {"padding": "right"},
200
+ common_kwargs = {"return_tensors": "pt"},
201
+ )
202
+ ```
203
+
204
+ Args:
205
+ image_processor ([`MllamaImageProcessor`]):
206
+ The image processor is a required input.
207
+ tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
208
+ The tokenizer is a required input.
209
+
210
+ """
211
+
212
+ attributes = ["image_processor", "audio_processor", "tokenizer"]
213
+ image_processor_class = "MllamaImageProcessor"
214
+ audio_processor_class = "MllamaAudioFeatureExtractor"
215
+ tokenizer_class = "PreTrainedTokenizerFast"
216
+
217
+ def __init__(self, image_processor, audio_processor, tokenizer):
218
+ self.image_token = "<|image|>"
219
+ self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
220
+ self.audio_token = "<|audio|>"
221
+ self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
222
+ self.python_token = "<|python_tag|>"
223
+ self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
224
+ self.bos_token = tokenizer.bos_token
225
+ self.chat_template = tokenizer.chat_template
226
+ super().__init__(image_processor, audio_processor, tokenizer)
227
+
228
+ def __call__(
229
+ self,
230
+ images: Optional[ImageInput] = None,
231
+ text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
232
+ audio: Optional[AudioInput] = None,
233
+ videos=None,
234
+ **kwargs: Unpack[MllamaProcessorKwargs],
235
+ ) -> BatchFeature:
236
+ """
237
+ Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
238
+ arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
239
+ the text. To prepare the image(s), this method forwards the `images` arguments to
240
+ MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
241
+ to the docstring of the above two methods for more information.
242
+
243
+ Args:
244
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
245
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
246
+ tensor. Both channels-first and channels-last formats are supported.
247
+ text (`str`, `List[str]`, `List[List[str]]`):
248
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
249
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
250
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
251
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
252
+ If set, will return tensors of a particular framework. Acceptable values are:
253
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
254
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
255
+ - `'np'`: Return NumPy `np.ndarray` objects.
256
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
257
+ Returns:
258
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
259
+
260
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
261
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
262
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
263
+ `None`).
264
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
265
+ - **audio_features** -- Audio features extracted using SeamlessM4TFeatureExtractor. Returned when `audio` is not `None`.
266
+ TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
267
+ """
268
+ if text is None:
269
+ raise ValueError("You must specify text.")
270
+
271
+ output_kwargs = self._merge_kwargs(
272
+ MllamaProcessorKwargs,
273
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
274
+ **kwargs,
275
+ )
276
+
277
+ text_kwargs = output_kwargs["text_kwargs"]
278
+ images_kwargs = output_kwargs["images_kwargs"]
279
+ common_kwargs = output_kwargs["common_kwargs"]
280
+
281
+ data = {}
282
+
283
+ if audio is not None:
284
+ audio_batch = make_list_of_audio_clips(audio)
285
+ audio_features = self.audio_processor(audio_batch)
286
+ data.update(audio_features)
287
+
288
+ if isinstance(text, str):
289
+ text = [text]
290
+ elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
291
+ raise ValueError("Invalid input text. Please provide a string, or a list of strings")
292
+ n_images_in_text = [t.count(self.image_token) for t in text]
293
+ text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
294
+ _ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
295
+ encoding = self.tokenizer(text, **text_kwargs)
296
+ if audio is not None:
297
+ encoding = build_audio_tokens(encoding, audio_features, self.audio_token_id)
298
+ data.update(encoding)
299
+
300
+ n_images_in_images = [0]
301
+ if images is not None:
302
+ images = make_list_of_images(images)
303
+ n_images_in_images = [len(sample) for sample in images]
304
+
305
+ if text is not None:
306
+ if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
307
+ batch_img == 0 for batch_img in n_images_in_text
308
+ ):
309
+ raise ValueError(
310
+ "If a batch of text is provided, there should be either no images or at least one image per sample"
311
+ )
312
+ if sum(n_images_in_images) != sum(n_images_in_text):
313
+ if images is None:
314
+ raise ValueError("No image were provided, but there are image tokens in the prompt")
315
+ else:
316
+ raise ValueError(
317
+ f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
318
+ )
319
+
320
+ if images is not None:
321
+ image_features = self.image_processor(images, **images_kwargs)
322
+ num_tiles = image_features.pop("num_tiles")
323
+ data.update(image_features)
324
+
325
+ # Create cross attention mask
326
+ if images is not None and text is not None:
327
+ cross_attention_token_mask = [
328
+ get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
329
+ ]
330
+ cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
331
+ cross_attention_token_mask,
332
+ num_tiles=num_tiles,
333
+ max_num_tiles=self.image_processor.max_image_tiles,
334
+ length=max(len(input_ids) for input_ids in encoding["input_ids"]),
335
+ )
336
+ data["cross_attention_mask"] = cross_attention_mask
337
+
338
+ return_tensors = common_kwargs.pop("return_tensors", None)
339
+ batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
340
+
341
+ return batch_feature
342
+
343
+ def batch_decode(self, *args, **kwargs):
344
+ """
345
+ This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
346
+ refer to the docstring of this method for more information.
347
+ """
348
+ return self.tokenizer.batch_decode(*args, **kwargs)
349
+
350
+ def decode(self, *args, **kwargs):
351
+ """
352
+ This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
353
+ the docstring of this method for more information.
354
+ """
355
+ return self.tokenizer.decode(*args, **kwargs)
356
+
357
+ @property
358
+ def model_input_names(self):
359
+ tokenizer_input_names = self.tokenizer.model_input_names
360
+ image_processor_input_names = self.image_processor.model_input_names
361
+ audio_processor_input_names = self.audio_processor.model_input_names
362
+ return list(tokenizer_input_names +
363
+ image_processor_input_names +
364
+ ["cross_attention_mask"] +
365
+ audio_processor_input_names)
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2079 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|step_id|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_2|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_3|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_4|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_5|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_6|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_7|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_8|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_9|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_10|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_11|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_12|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_13|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_14|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_15|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_16|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_17|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_18|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_19|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_20|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_21|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_22|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_23|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_24|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_25|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_26|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_27|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_28|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_29|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_30|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_31|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_32|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_33|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_34|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_35|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_36|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_37|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_38|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_39|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_40|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_41|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_42|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_43|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_44|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_45|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_46|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_47|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_48|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_49|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_50|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_51|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_52|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_53|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_54|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_55|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_56|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_57|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_58|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_59|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_60|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_61|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_62|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_63|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_64|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_65|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_66|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_67|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_68|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_69|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_70|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_71|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_72|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_73|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_74|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_75|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_76|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_77|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_78|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_79|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_80|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_81|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_82|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_83|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_84|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_85|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_86|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_87|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_88|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_89|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_90|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_91|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_92|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_93|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_94|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_95|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_96|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_97|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_98|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_99|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_100|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_101|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_102|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_103|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_104|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_105|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_106|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_107|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_108|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_109|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_110|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_111|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_112|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_113|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_114|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_115|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_116|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_117|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_118|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_119|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_120|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_121|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_122|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_123|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_124|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_125|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_126|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_127|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_128|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_129|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_130|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_131|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_132|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_133|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_134|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_135|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_136|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_137|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_138|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_139|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_140|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_141|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_142|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_143|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_144|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_145|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_146|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_147|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_148|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_149|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_150|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_151|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_152|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_153|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_154|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_155|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_156|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_157|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_158|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_159|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_160|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_161|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_162|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_163|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_164|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_165|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_166|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_167|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_168|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_169|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_170|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_171|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_172|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_173|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_174|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_175|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_176|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_177|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_178|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_179|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_180|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_181|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_182|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_183|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_184|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_185|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_186|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_187|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_188|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_189|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_190|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_191|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_192|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_193|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_194|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_195|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_196|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_197|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_198|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_199|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_200|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_201|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_202|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_203|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_204|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_205|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_206|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_207|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_208|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_209|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_210|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_211|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_212|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_213|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_214|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_215|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_216|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_217|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_218|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_219|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_220|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_221|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_222|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_223|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_224|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_225|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_226|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_227|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_228|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_229|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_230|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_231|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_232|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_233|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_234|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_235|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_236|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_237|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_238|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_239|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_240|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|begin_of_audio|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|end_of_audio|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_243|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_244|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_245|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_246|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "<|image|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ },
2059
+ "128257": {
2060
+ "content": "<|audio|>",
2061
+ "lstrip": false,
2062
+ "normalized": false,
2063
+ "rstrip": false,
2064
+ "single_word": false,
2065
+ "special": true
2066
+ }
2067
+ },
2068
+ "bos_token": "<|begin_of_text|>",
2069
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n{%- endfor %}\n\n{#- Error out if there are images and system message #}\n{%- if image_ns.has_images and not system_message == \"\" %}\n {{- raise_exception(\"Prompting with images is incompatible with system messages.\") }}\n{%- endif %}\n\n{#- System message if there are no images #}\n{%- if not image_ns.has_images %}\n {{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n {%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n {%- endif %}\n {{- \"Cutting Knowledge Date: December 2023\\n\" }}\n {{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n {%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- \"<|eot_id|>\" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2070
+ "clean_up_tokenization_spaces": true,
2071
+ "eos_token": "<|eot_id|>",
2072
+ "model_input_names": [
2073
+ "input_ids",
2074
+ "attention_mask"
2075
+ ],
2076
+ "model_max_length": 131072,
2077
+ "pad_token": "<|finetune_right_pad_id|>",
2078
+ "tokenizer_class": "PreTrainedTokenizerFast"
2079
+ }