AlexHung29629
commited on
Commit
•
4335708
1
Parent(s):
1c6bcd4
Upload 13 files
Browse files- audio_processing_mllama.py +85 -0
- chat_template.json +3 -0
- config.json +243 -0
- configuration_llama3.py +112 -0
- generation_config.json +13 -0
- mllama_audio_model.py +51 -0
- model.safetensors.index.json +913 -0
- modeling_llama3.py +287 -0
- preprocessor_config.json +25 -0
- processing_mllama.py +365 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2079 -0
audio_processing_mllama.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Dict, List, Optional, Union
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers.tokenization_utils_base import AudioInput
|
6 |
+
from transformers.models.seamless_m4t.feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
|
7 |
+
from transformers.utils import TensorType
|
8 |
+
from transformers.feature_extraction_utils import BatchFeature
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def make_list_of_audio_clips(audio: AudioInput) -> List[List[Optional[np.ndarray]]]:
|
13 |
+
"""
|
14 |
+
Convert a single audio clip or a list of audio clips to a list of numpy arrays.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
audio (`AudioInput`):
|
18 |
+
A single audio or a list of audio clips.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
A list of numpy arrays.
|
22 |
+
"""
|
23 |
+
# If it's a single audil clip, convert it to a list of lists
|
24 |
+
if not isinstance(audio, (list, tuple)):
|
25 |
+
output = [[audio]]
|
26 |
+
|
27 |
+
else:
|
28 |
+
if all(isinstance(audio_i, (list, tuple)) for audio_i in audio):
|
29 |
+
# If it's a list of batches, it's already in the right format
|
30 |
+
output = audio
|
31 |
+
else:
|
32 |
+
# If it's a list of audio clips, it's a single batch, so convert it to a list of lists
|
33 |
+
output = [audio]
|
34 |
+
|
35 |
+
return output
|
36 |
+
|
37 |
+
def build_audio_tokens(encoding: Dict, audio_features: List[List[np.ndarray]], audio_token_id: int) -> Dict:
|
38 |
+
bs = len(audio_features)
|
39 |
+
for i in range(bs):
|
40 |
+
for j in range(len(audio_features[i])):
|
41 |
+
token_id = -1 - j
|
42 |
+
pos = encoding['input_ids'][i].index(audio_token_id)
|
43 |
+
encoding['input_ids'][i] = encoding['input_ids'][i][:pos] \
|
44 |
+
+ [token_id] * get_num_embeddings(audio_features[i][j].size(0)) \
|
45 |
+
+ encoding['input_ids'][i][pos+1:]
|
46 |
+
encoding['attention_mask'][i] = [1] * len(encoding['input_ids'][i])
|
47 |
+
return encoding
|
48 |
+
|
49 |
+
def get_num_embeddings(num_framses, adapter_kernel_size=7, adapter_stride=4) -> int:
|
50 |
+
return math.ceil((num_framses - adapter_kernel_size) / adapter_stride) + 1 + 2 # 2 = <|begin_of_audio|>, <|end_of_audio|>
|
51 |
+
|
52 |
+
|
53 |
+
class MllamaAudioFeatureExtractor(SeamlessM4TFeatureExtractor):
|
54 |
+
|
55 |
+
def __call__(
|
56 |
+
self,
|
57 |
+
batch_audio_clips: List[List[AudioInput]],
|
58 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
59 |
+
) -> BatchFeature:
|
60 |
+
audio_features = [[ super().__call__(audio_j, return_attention_mask=False)['input_features'][0] for audio_j in audio_i ] for audio_i in batch_audio_clips ]
|
61 |
+
packed_audio_features = self.pack_audio_clips(audio_features)
|
62 |
+
|
63 |
+
encoded_audio_inputs = BatchFeature(
|
64 |
+
data={
|
65 |
+
"audio_features": packed_audio_features,
|
66 |
+
},
|
67 |
+
tensor_type=return_tensors,
|
68 |
+
)
|
69 |
+
|
70 |
+
return encoded_audio_inputs
|
71 |
+
|
72 |
+
def pack_audio_clips(batch_audio_clips: List[List[np.ndarray]]) -> np.ndarray:
|
73 |
+
assert batch_audio_clips[0][0].ndim == 2 # sequence length x feature dimension
|
74 |
+
# Determine output shape: (batch_size, max_num_clips, max_frames, feature_dim)
|
75 |
+
batch_size = len(batch_audio_clips)
|
76 |
+
max_num_clips = max([len(clips) for clips in batch_audio_clips])
|
77 |
+
max_frames = max([clip.size(0) for clips in batch_audio_clips for clip in clips])
|
78 |
+
feature_dim = batch_audio_clips[0][0].size(1)
|
79 |
+
|
80 |
+
stacked_audio_clips = np.zeros((batch_size, max_num_clips, max_frames, feature_dim), dtype=np.float32)
|
81 |
+
for i, clips in enumerate(batch_audio_clips):
|
82 |
+
for j, clip in enumerate(clips):
|
83 |
+
stacked_audio_clips[i, j, :clip.shape[0], :] = clip
|
84 |
+
|
85 |
+
return stacked_audio_clips
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n{%- endfor %}\n\n{#- Error out if there are images and system message #}\n{%- if image_ns.has_images and not system_message == \"\" %}\n {{- raise_exception(\"Prompting with images is incompatible with system messages.\") }}\n{%- endif %}\n\n{#- System message if there are no images #}\n{%- if not image_ns.has_images %}\n {{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n {%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n {%- endif %}\n {{- \"Cutting Knowledge Date: December 2023\\n\" }}\n {{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n {%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- \"<|eot_id|>\" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": ["Llama3ForConditionalGeneration"],
|
3 |
+
"audio_config": {
|
4 |
+
"activation_dropout": 0.0,
|
5 |
+
"adapter_act": "relu",
|
6 |
+
"adapter_kernel_size": 7,
|
7 |
+
"adapter_stride": 4,
|
8 |
+
"add_adapter": true,
|
9 |
+
"apply_spec_augment": false,
|
10 |
+
"architectures": ["Wav2Vec2BertModel"],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 768,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"conformer_conv_dropout": 0.1,
|
16 |
+
"contrastive_logits_temperature": 0.1,
|
17 |
+
"conv_depthwise_kernel_size": 31,
|
18 |
+
"ctc_loss_reduction": "sum",
|
19 |
+
"ctc_zero_infinity": false,
|
20 |
+
"diversity_loss_weight": 0.1,
|
21 |
+
"eos_token_id": 2,
|
22 |
+
"feat_proj_dropout": 0.0,
|
23 |
+
"feat_quantizer_dropout": 0.0,
|
24 |
+
"feature_projection_input_dim": 160,
|
25 |
+
"final_dropout": 0.1,
|
26 |
+
"hidden_act": "swish",
|
27 |
+
"hidden_dropout": 0.0,
|
28 |
+
"hidden_size": 1024,
|
29 |
+
"initializer_range": 0.02,
|
30 |
+
"intermediate_size": 4096,
|
31 |
+
"layer_norm_eps": 1e-5,
|
32 |
+
"layerdrop": 0.1,
|
33 |
+
"left_max_position_embeddings": 64,
|
34 |
+
"mask_feature_length": 10,
|
35 |
+
"mask_feature_min_masks": 0,
|
36 |
+
"mask_feature_prob": 0.0,
|
37 |
+
"mask_time_length": 10,
|
38 |
+
"mask_time_min_masks": 2,
|
39 |
+
"mask_time_prob": 0.05,
|
40 |
+
"max_source_positions": 5000,
|
41 |
+
"model_type": "wav2vec2-bert",
|
42 |
+
"num_adapter_layers": 1,
|
43 |
+
"num_attention_heads": 16,
|
44 |
+
"num_codevector_groups": 2,
|
45 |
+
"num_codevectors_per_group": 320,
|
46 |
+
"num_hidden_layers": 24,
|
47 |
+
"num_negatives": 100,
|
48 |
+
"output_hidden_size": 4096,
|
49 |
+
"pad_token_id": 0,
|
50 |
+
"position_embeddings_type": "relative_key",
|
51 |
+
"proj_codevector_dim": 768,
|
52 |
+
"right_max_position_embeddings": 8,
|
53 |
+
"rotary_embedding_base": 10000,
|
54 |
+
"tdnn_dilation": [1, 2, 3, 1, 1],
|
55 |
+
"tdnn_dim": [512, 512, 512, 512, 1500],
|
56 |
+
"tdnn_kernel": [5, 3, 3, 1, 1],
|
57 |
+
"torch_dtype": "float16",
|
58 |
+
"transformers_version": "4.37.0.dev0",
|
59 |
+
"use_intermediate_ffn_before_adapter": false,
|
60 |
+
"use_weighted_layer_sum": false,
|
61 |
+
"vocab_size": null,
|
62 |
+
"xvector_output_dim": 512,
|
63 |
+
"attn_implementation": "eager"
|
64 |
+
},
|
65 |
+
"auto_map": {
|
66 |
+
"AutoConfig": "configuration_llama3.Llama3Config",
|
67 |
+
"AutoModel": "modeling_llama3.Llama3ForConditionalGeneration"
|
68 |
+
},
|
69 |
+
"image_token_index": 128256,
|
70 |
+
"model_type": "llama3",
|
71 |
+
"text_config": {
|
72 |
+
"_name_or_path": "",
|
73 |
+
"add_cross_attention": false,
|
74 |
+
"architectures": null,
|
75 |
+
"bad_words_ids": null,
|
76 |
+
"begin_suppress_tokens": null,
|
77 |
+
"bos_token_id": 128000,
|
78 |
+
"chunk_size_feed_forward": 0,
|
79 |
+
"cross_attention_hidden_size": null,
|
80 |
+
"cross_attention_layers": [3, 8, 13, 18, 23, 28, 33, 38],
|
81 |
+
"decoder_start_token_id": null,
|
82 |
+
"diversity_penalty": 0.0,
|
83 |
+
"do_sample": false,
|
84 |
+
"dropout": 0,
|
85 |
+
"early_stopping": false,
|
86 |
+
"encoder_no_repeat_ngram_size": 0,
|
87 |
+
"eos_token_id": [128001, 128008, 128009],
|
88 |
+
"exponential_decay_length_penalty": null,
|
89 |
+
"finetuning_task": null,
|
90 |
+
"forced_bos_token_id": null,
|
91 |
+
"forced_eos_token_id": null,
|
92 |
+
"hidden_act": "silu",
|
93 |
+
"hidden_size": 4096,
|
94 |
+
"id2label": {
|
95 |
+
"0": "LABEL_0",
|
96 |
+
"1": "LABEL_1"
|
97 |
+
},
|
98 |
+
"initializer_range": 0.02,
|
99 |
+
"intermediate_size": 14336,
|
100 |
+
"is_decoder": false,
|
101 |
+
"is_encoder_decoder": false,
|
102 |
+
"label2id": {
|
103 |
+
"LABEL_0": 0,
|
104 |
+
"LABEL_1": 1
|
105 |
+
},
|
106 |
+
"length_penalty": 1.0,
|
107 |
+
"max_length": 20,
|
108 |
+
"max_position_embeddings": 131072,
|
109 |
+
"min_length": 0,
|
110 |
+
"model_type": "mllama_text_model",
|
111 |
+
"no_repeat_ngram_size": 0,
|
112 |
+
"num_attention_heads": 32,
|
113 |
+
"num_beam_groups": 1,
|
114 |
+
"num_beams": 1,
|
115 |
+
"num_hidden_layers": 40,
|
116 |
+
"num_key_value_heads": 8,
|
117 |
+
"num_return_sequences": 1,
|
118 |
+
"output_attentions": false,
|
119 |
+
"output_hidden_states": false,
|
120 |
+
"output_scores": false,
|
121 |
+
"pad_token_id": 128004,
|
122 |
+
"prefix": null,
|
123 |
+
"problem_type": null,
|
124 |
+
"pruned_heads": {},
|
125 |
+
"remove_invalid_values": false,
|
126 |
+
"repetition_penalty": 1.0,
|
127 |
+
"return_dict": true,
|
128 |
+
"return_dict_in_generate": false,
|
129 |
+
"rms_norm_eps": 1e-5,
|
130 |
+
"rope_scaling": {
|
131 |
+
"factor": 8.0,
|
132 |
+
"high_freq_factor": 4.0,
|
133 |
+
"low_freq_factor": 1.0,
|
134 |
+
"original_max_position_embeddings": 8192,
|
135 |
+
"rope_type": "llama3"
|
136 |
+
},
|
137 |
+
"rope_theta": 500000.0,
|
138 |
+
"sep_token_id": null,
|
139 |
+
"suppress_tokens": null,
|
140 |
+
"task_specific_params": null,
|
141 |
+
"temperature": 1.0,
|
142 |
+
"tf_legacy_loss": false,
|
143 |
+
"tie_encoder_decoder": false,
|
144 |
+
"tie_word_embeddings": false,
|
145 |
+
"tokenizer_class": null,
|
146 |
+
"top_k": 50,
|
147 |
+
"top_p": 1.0,
|
148 |
+
"torch_dtype": "float16",
|
149 |
+
"torchscript": false,
|
150 |
+
"typical_p": 1.0,
|
151 |
+
"use_bfloat16": false,
|
152 |
+
"use_cache": true,
|
153 |
+
"vocab_size": 128256
|
154 |
+
},
|
155 |
+
"torch_dtype": "float16",
|
156 |
+
"transformers_version": "4.45.0.dev0",
|
157 |
+
"vision_config": {
|
158 |
+
"_name_or_path": "",
|
159 |
+
"add_cross_attention": false,
|
160 |
+
"architectures": null,
|
161 |
+
"attention_heads": 16,
|
162 |
+
"bad_words_ids": null,
|
163 |
+
"begin_suppress_tokens": null,
|
164 |
+
"bos_token_id": null,
|
165 |
+
"chunk_size_feed_forward": 0,
|
166 |
+
"cross_attention_hidden_size": null,
|
167 |
+
"decoder_start_token_id": null,
|
168 |
+
"diversity_penalty": 0.0,
|
169 |
+
"do_sample": false,
|
170 |
+
"early_stopping": false,
|
171 |
+
"encoder_no_repeat_ngram_size": 0,
|
172 |
+
"eos_token_id": null,
|
173 |
+
"exponential_decay_length_penalty": null,
|
174 |
+
"finetuning_task": null,
|
175 |
+
"forced_bos_token_id": null,
|
176 |
+
"forced_eos_token_id": null,
|
177 |
+
"hidden_act": "gelu",
|
178 |
+
"hidden_size": 1280,
|
179 |
+
"id2label": {
|
180 |
+
"0": "LABEL_0",
|
181 |
+
"1": "LABEL_1"
|
182 |
+
},
|
183 |
+
"image_size": 560,
|
184 |
+
"intermediate_layers_indices": [3, 7, 15, 23, 30],
|
185 |
+
"intermediate_size": 5120,
|
186 |
+
"is_decoder": false,
|
187 |
+
"is_encoder_decoder": false,
|
188 |
+
"label2id": {
|
189 |
+
"LABEL_0": 0,
|
190 |
+
"LABEL_1": 1
|
191 |
+
},
|
192 |
+
"length_penalty": 1.0,
|
193 |
+
"max_length": 20,
|
194 |
+
"max_num_tiles": 4,
|
195 |
+
"min_length": 0,
|
196 |
+
"model_type": "mllama_vision_model",
|
197 |
+
"no_repeat_ngram_size": 0,
|
198 |
+
"norm_eps": 1e-5,
|
199 |
+
"num_beam_groups": 1,
|
200 |
+
"num_beams": 1,
|
201 |
+
"num_channels": 3,
|
202 |
+
"num_global_layers": 8,
|
203 |
+
"num_hidden_layers": 32,
|
204 |
+
"num_return_sequences": 1,
|
205 |
+
"output_attentions": false,
|
206 |
+
"output_hidden_states": false,
|
207 |
+
"output_scores": false,
|
208 |
+
"pad_token_id": null,
|
209 |
+
"patch_size": 14,
|
210 |
+
"prefix": null,
|
211 |
+
"problem_type": null,
|
212 |
+
"pruned_heads": {},
|
213 |
+
"remove_invalid_values": false,
|
214 |
+
"repetition_penalty": 1.0,
|
215 |
+
"return_dict": true,
|
216 |
+
"return_dict_in_generate": false,
|
217 |
+
"sep_token_id": null,
|
218 |
+
"supported_aspect_ratios": [
|
219 |
+
[1, 1],
|
220 |
+
[1, 2],
|
221 |
+
[1, 3],
|
222 |
+
[1, 4],
|
223 |
+
[2, 1],
|
224 |
+
[2, 2],
|
225 |
+
[3, 1],
|
226 |
+
[4, 1]
|
227 |
+
],
|
228 |
+
"suppress_tokens": null,
|
229 |
+
"task_specific_params": null,
|
230 |
+
"temperature": 1.0,
|
231 |
+
"tf_legacy_loss": false,
|
232 |
+
"tie_encoder_decoder": false,
|
233 |
+
"tie_word_embeddings": true,
|
234 |
+
"tokenizer_class": null,
|
235 |
+
"top_k": 50,
|
236 |
+
"top_p": 1.0,
|
237 |
+
"torch_dtype": "float16",
|
238 |
+
"torchscript": false,
|
239 |
+
"typical_p": 1.0,
|
240 |
+
"use_bfloat16": false,
|
241 |
+
"vision_output_dim": 7680
|
242 |
+
}
|
243 |
+
}
|
configuration_llama3.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Mllama model configuration"""
|
15 |
+
|
16 |
+
import os
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
21 |
+
from transformers.utils import logging
|
22 |
+
from transformers import Wav2Vec2BertConfig
|
23 |
+
from transformers.models.mllama.configuration_mllama import MllamaVisionConfig, MllamaTextConfig
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
class MllamaAudioConfig(Wav2Vec2BertConfig):
|
28 |
+
def __init__(self, filler_token_id: int = 128004, **kwargs):
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
self.filler_token_id = filler_token_id
|
31 |
+
|
32 |
+
class Llama3Config(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
|
35 |
+
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
36 |
+
with the defaults will yield a similar configuration to that of the Mllama-9B.
|
37 |
+
|
38 |
+
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
|
45 |
+
The config object or dictionary of the vision backbone.
|
46 |
+
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
|
47 |
+
The config object or dictionary of the text backbone.
|
48 |
+
image_token_index (`int`, *optional*, defaults to 128256):
|
49 |
+
The image token index to encode the image prompt.
|
50 |
+
|
51 |
+
Example:
|
52 |
+
|
53 |
+
```python
|
54 |
+
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig
|
55 |
+
|
56 |
+
>>> # Initializing a CLIP-vision config
|
57 |
+
>>> vision_config = MllamaVisionConfig()
|
58 |
+
|
59 |
+
>>> # Initializing a Llama config
|
60 |
+
>>> text_config = MllamaTextConfig()
|
61 |
+
|
62 |
+
>>> # Initializing a mllama-11b style configuration
|
63 |
+
>>> configuration = MllamaConfig(vision_config, text_config)
|
64 |
+
|
65 |
+
>>> # Initializing a model from the mllama-11b style configuration
|
66 |
+
>>> model = MllamaForConditionalGeneration(configuration)
|
67 |
+
|
68 |
+
>>> # Accessing the model configuration
|
69 |
+
>>> configuration = model.config
|
70 |
+
```"""
|
71 |
+
|
72 |
+
model_type = "llama3"
|
73 |
+
is_composition = True
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
vision_config=None,
|
78 |
+
text_config=None,
|
79 |
+
audio_config=None,
|
80 |
+
image_token_index=128256,
|
81 |
+
audio_token_index=128257,
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
if vision_config is None:
|
85 |
+
self.vision_config = MllamaVisionConfig()
|
86 |
+
logger.info("vision_config is None, using default mllama vision config")
|
87 |
+
elif isinstance(vision_config, dict):
|
88 |
+
self.vision_config = MllamaVisionConfig(**vision_config)
|
89 |
+
elif isinstance(vision_config, MllamaVisionConfig):
|
90 |
+
self.vision_config = vision_config
|
91 |
+
|
92 |
+
self.image_token_index = image_token_index
|
93 |
+
|
94 |
+
if audio_config is None:
|
95 |
+
self.audio_config = MllamaAudioConfig()
|
96 |
+
logger.info("audio_config is None, using default mllama audio config")
|
97 |
+
elif isinstance(audio_config, dict):
|
98 |
+
self.audio_config = MllamaAudioConfig(**audio_config)
|
99 |
+
elif isinstance(audio_config, MllamaAudioConfig):
|
100 |
+
self.audio_config = audio_config
|
101 |
+
|
102 |
+
self.audio_token_index = audio_token_index
|
103 |
+
|
104 |
+
if text_config is None:
|
105 |
+
self.text_config = MllamaTextConfig()
|
106 |
+
logger.info("text_config is None, using default mllama text config")
|
107 |
+
elif isinstance(text_config, dict):
|
108 |
+
self.text_config = MllamaTextConfig(**text_config)
|
109 |
+
elif isinstance(text_config, MllamaTextConfig):
|
110 |
+
self.text_config = text_config
|
111 |
+
|
112 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
128001,
|
6 |
+
128008,
|
7 |
+
128009
|
8 |
+
],
|
9 |
+
"pad_token_id": 128004,
|
10 |
+
"temperature": 0.6,
|
11 |
+
"top_p": 0.9,
|
12 |
+
"transformers_version": "4.45.0.dev0"
|
13 |
+
}
|
mllama_audio_model.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from transformers.modeling_outputs import BaseModelOutput
|
7 |
+
from transformers import Wav2Vec2BertModel
|
8 |
+
from configuration_llama3 import MllamaAudioConfig
|
9 |
+
from modeling_llama3 import MllamaPreTrainedModel
|
10 |
+
|
11 |
+
def split_list(lst, val):
|
12 |
+
return [list(group) for k,
|
13 |
+
group in
|
14 |
+
itertools.groupby(lst, lambda x: x==val) if not k]
|
15 |
+
|
16 |
+
|
17 |
+
class MllamaAudioModel(MllamaPreTrainedModel):
|
18 |
+
config_class = MllamaAudioConfig
|
19 |
+
base_model_prefix = "audio_model"
|
20 |
+
def __init__(self, config: MllamaAudioConfig, text_embedding: nn.Embedding):
|
21 |
+
super().__init__(config)
|
22 |
+
assert config.add_adapter is True, f'{type(self).__name__} requires add adapter to be true.'
|
23 |
+
assert config.output_hidden_size == text_embedding.weight.shape[1], f'Output hidden size({config.output_hidden_size}) of audio model and text embedding({text_embedding.weight.shape[1]}) must match!'
|
24 |
+
self.text_embedding = text_embedding
|
25 |
+
self.audio_embedding = Wav2Vec2BertModel(config)
|
26 |
+
self.start_of_audio = nn.Parameter(data=torch.mean(text_embedding.weight, dim=0).unsqueeze(0), requires_grad=True)
|
27 |
+
self.end_of_audio = nn.Parameter(data=torch.mean(text_embedding.weight, dim=0).unsqueeze(0), requires_grad=True)
|
28 |
+
self.filler_token_id = config.filler_token_id
|
29 |
+
|
30 |
+
def forward(
|
31 |
+
self,
|
32 |
+
audio_features: torch.Tensor = None,
|
33 |
+
input_ids: torch.LongTensor = None,
|
34 |
+
return_dict: Optional[bool] = None,
|
35 |
+
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
|
36 |
+
input_embeddings = self.text_embedding(torch.clamp(input_ids, min=0))
|
37 |
+
bs, max_num_img, _, _ = audio_features.shape
|
38 |
+
|
39 |
+
for i in range(bs):
|
40 |
+
for j in range(max_num_img):
|
41 |
+
audio_id = -1 - j
|
42 |
+
idx = torch.where(input_ids[i] == audio_id)
|
43 |
+
if idx.numel() > 0:
|
44 |
+
input_embeddings[i][idx] = torch.concat([self.start_of_audio, audio_features[i, j][idx], self.end_of_audio])
|
45 |
+
|
46 |
+
idx = torch.where(input_ids < 0 and input_ids >= -max_num_img)
|
47 |
+
input_ids[idx].fill_(self.filler_token_id)
|
48 |
+
|
49 |
+
if return_dict:
|
50 |
+
return dict(input_embeddings=input_embeddings)
|
51 |
+
return input_embeddings
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,913 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 21340441670
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.lm_head.weight": "model-00005-of-00005.safetensors",
|
7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
13 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
16 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
17 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
18 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
19 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
20 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
21 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
22 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
23 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
24 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
25 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
26 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
27 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
28 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
29 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
30 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
31 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
32 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
33 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
34 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
35 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
36 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
37 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
38 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
39 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
40 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
41 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
42 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
43 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
44 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
45 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
46 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
47 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
48 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
49 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
50 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
51 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
52 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
53 |
+
"language_model.model.layers.13.cross_attn.k_norm.weight": "model-00002-of-00005.safetensors",
|
54 |
+
"language_model.model.layers.13.cross_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
55 |
+
"language_model.model.layers.13.cross_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
56 |
+
"language_model.model.layers.13.cross_attn.q_norm.weight": "model-00002-of-00005.safetensors",
|
57 |
+
"language_model.model.layers.13.cross_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
58 |
+
"language_model.model.layers.13.cross_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
59 |
+
"language_model.model.layers.13.cross_attn_attn_gate": "model-00002-of-00005.safetensors",
|
60 |
+
"language_model.model.layers.13.cross_attn_mlp_gate": "model-00002-of-00005.safetensors",
|
61 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
62 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
63 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
64 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
65 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
66 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
67 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
68 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
69 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
70 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
71 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
72 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
73 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
74 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
75 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
76 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
77 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
78 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
79 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
80 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
81 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
82 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
83 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
84 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
85 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
86 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
87 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
88 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
89 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
90 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
91 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
92 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
93 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
94 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
95 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
96 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
97 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
98 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
99 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
100 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
101 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
102 |
+
"language_model.model.layers.18.cross_attn.k_norm.weight": "model-00003-of-00005.safetensors",
|
103 |
+
"language_model.model.layers.18.cross_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
104 |
+
"language_model.model.layers.18.cross_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
105 |
+
"language_model.model.layers.18.cross_attn.q_norm.weight": "model-00003-of-00005.safetensors",
|
106 |
+
"language_model.model.layers.18.cross_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
107 |
+
"language_model.model.layers.18.cross_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
108 |
+
"language_model.model.layers.18.cross_attn_attn_gate": "model-00003-of-00005.safetensors",
|
109 |
+
"language_model.model.layers.18.cross_attn_mlp_gate": "model-00003-of-00005.safetensors",
|
110 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
111 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
112 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
113 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
114 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
115 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
116 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
117 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
118 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
119 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
120 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
121 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
122 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
123 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
124 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
125 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
126 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
127 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
128 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
129 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
130 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
131 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
132 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
133 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
134 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
135 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
136 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
137 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
138 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
139 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
140 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
141 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
142 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
143 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
144 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
145 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
146 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
147 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
148 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
149 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
150 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
151 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
152 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
153 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
154 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
155 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
156 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
157 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
158 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
159 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
160 |
+
"language_model.model.layers.23.cross_attn.k_norm.weight": "model-00003-of-00005.safetensors",
|
161 |
+
"language_model.model.layers.23.cross_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
162 |
+
"language_model.model.layers.23.cross_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
163 |
+
"language_model.model.layers.23.cross_attn.q_norm.weight": "model-00003-of-00005.safetensors",
|
164 |
+
"language_model.model.layers.23.cross_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
165 |
+
"language_model.model.layers.23.cross_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
166 |
+
"language_model.model.layers.23.cross_attn_attn_gate": "model-00003-of-00005.safetensors",
|
167 |
+
"language_model.model.layers.23.cross_attn_mlp_gate": "model-00003-of-00005.safetensors",
|
168 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
169 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
170 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
171 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
172 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
173 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
174 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
175 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
176 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
177 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
178 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
179 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
180 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
181 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
182 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
183 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
184 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
185 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
186 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
187 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
188 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
189 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
190 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
191 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
192 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
193 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
194 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
195 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
196 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
197 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
198 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
199 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
200 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
201 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
202 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
203 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
204 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
205 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
206 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
207 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
208 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
209 |
+
"language_model.model.layers.28.cross_attn.k_norm.weight": "model-00004-of-00005.safetensors",
|
210 |
+
"language_model.model.layers.28.cross_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
211 |
+
"language_model.model.layers.28.cross_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
212 |
+
"language_model.model.layers.28.cross_attn.q_norm.weight": "model-00004-of-00005.safetensors",
|
213 |
+
"language_model.model.layers.28.cross_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
214 |
+
"language_model.model.layers.28.cross_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
215 |
+
"language_model.model.layers.28.cross_attn_attn_gate": "model-00004-of-00005.safetensors",
|
216 |
+
"language_model.model.layers.28.cross_attn_mlp_gate": "model-00004-of-00005.safetensors",
|
217 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
218 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
219 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
220 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
221 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
222 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
223 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
224 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
225 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
226 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
227 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
228 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
229 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
230 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
231 |
+
"language_model.model.layers.3.cross_attn.k_norm.weight": "model-00001-of-00005.safetensors",
|
232 |
+
"language_model.model.layers.3.cross_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
233 |
+
"language_model.model.layers.3.cross_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
234 |
+
"language_model.model.layers.3.cross_attn.q_norm.weight": "model-00001-of-00005.safetensors",
|
235 |
+
"language_model.model.layers.3.cross_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
236 |
+
"language_model.model.layers.3.cross_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
237 |
+
"language_model.model.layers.3.cross_attn_attn_gate": "model-00001-of-00005.safetensors",
|
238 |
+
"language_model.model.layers.3.cross_attn_mlp_gate": "model-00001-of-00005.safetensors",
|
239 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
240 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
241 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
242 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
243 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
244 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
245 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
246 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
247 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
248 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
249 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
250 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
251 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
252 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
253 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
254 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
255 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
256 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
257 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
258 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
259 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
260 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
261 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
262 |
+
"language_model.model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
263 |
+
"language_model.model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
264 |
+
"language_model.model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
265 |
+
"language_model.model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
266 |
+
"language_model.model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
267 |
+
"language_model.model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
268 |
+
"language_model.model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
269 |
+
"language_model.model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
270 |
+
"language_model.model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
271 |
+
"language_model.model.layers.33.cross_attn.k_norm.weight": "model-00004-of-00005.safetensors",
|
272 |
+
"language_model.model.layers.33.cross_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
273 |
+
"language_model.model.layers.33.cross_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
274 |
+
"language_model.model.layers.33.cross_attn.q_norm.weight": "model-00004-of-00005.safetensors",
|
275 |
+
"language_model.model.layers.33.cross_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
276 |
+
"language_model.model.layers.33.cross_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
277 |
+
"language_model.model.layers.33.cross_attn_attn_gate": "model-00004-of-00005.safetensors",
|
278 |
+
"language_model.model.layers.33.cross_attn_mlp_gate": "model-00004-of-00005.safetensors",
|
279 |
+
"language_model.model.layers.33.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
280 |
+
"language_model.model.layers.33.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
281 |
+
"language_model.model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
282 |
+
"language_model.model.layers.33.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
283 |
+
"language_model.model.layers.33.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
284 |
+
"language_model.model.layers.34.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
285 |
+
"language_model.model.layers.34.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
286 |
+
"language_model.model.layers.34.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
287 |
+
"language_model.model.layers.34.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
288 |
+
"language_model.model.layers.34.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
289 |
+
"language_model.model.layers.34.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
290 |
+
"language_model.model.layers.34.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
291 |
+
"language_model.model.layers.34.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
292 |
+
"language_model.model.layers.34.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
293 |
+
"language_model.model.layers.35.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
294 |
+
"language_model.model.layers.35.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
295 |
+
"language_model.model.layers.35.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
296 |
+
"language_model.model.layers.35.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
297 |
+
"language_model.model.layers.35.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
298 |
+
"language_model.model.layers.35.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
299 |
+
"language_model.model.layers.35.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
300 |
+
"language_model.model.layers.35.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
301 |
+
"language_model.model.layers.35.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
302 |
+
"language_model.model.layers.36.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
303 |
+
"language_model.model.layers.36.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
304 |
+
"language_model.model.layers.36.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
305 |
+
"language_model.model.layers.36.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
306 |
+
"language_model.model.layers.36.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
307 |
+
"language_model.model.layers.36.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
308 |
+
"language_model.model.layers.36.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
309 |
+
"language_model.model.layers.36.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
310 |
+
"language_model.model.layers.36.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
311 |
+
"language_model.model.layers.37.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
312 |
+
"language_model.model.layers.37.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
313 |
+
"language_model.model.layers.37.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
314 |
+
"language_model.model.layers.37.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
315 |
+
"language_model.model.layers.37.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
316 |
+
"language_model.model.layers.37.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
317 |
+
"language_model.model.layers.37.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
318 |
+
"language_model.model.layers.37.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
319 |
+
"language_model.model.layers.37.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
320 |
+
"language_model.model.layers.38.cross_attn.k_norm.weight": "model-00004-of-00005.safetensors",
|
321 |
+
"language_model.model.layers.38.cross_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
322 |
+
"language_model.model.layers.38.cross_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
323 |
+
"language_model.model.layers.38.cross_attn.q_norm.weight": "model-00004-of-00005.safetensors",
|
324 |
+
"language_model.model.layers.38.cross_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
325 |
+
"language_model.model.layers.38.cross_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
326 |
+
"language_model.model.layers.38.cross_attn_attn_gate": "model-00004-of-00005.safetensors",
|
327 |
+
"language_model.model.layers.38.cross_attn_mlp_gate": "model-00004-of-00005.safetensors",
|
328 |
+
"language_model.model.layers.38.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
329 |
+
"language_model.model.layers.38.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
330 |
+
"language_model.model.layers.38.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
331 |
+
"language_model.model.layers.38.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
332 |
+
"language_model.model.layers.38.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
333 |
+
"language_model.model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
334 |
+
"language_model.model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
335 |
+
"language_model.model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
336 |
+
"language_model.model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
337 |
+
"language_model.model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
338 |
+
"language_model.model.layers.39.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
339 |
+
"language_model.model.layers.39.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
340 |
+
"language_model.model.layers.39.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
341 |
+
"language_model.model.layers.39.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
342 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
343 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
344 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
345 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
346 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
347 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
348 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
349 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
350 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
351 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
352 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
353 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
354 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
355 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
356 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
357 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
358 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
359 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
360 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
361 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
362 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
363 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
364 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
365 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
366 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
367 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
368 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
369 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
370 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
371 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
372 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
373 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
374 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
375 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
376 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
377 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
378 |
+
"language_model.model.layers.8.cross_attn.k_norm.weight": "model-00002-of-00005.safetensors",
|
379 |
+
"language_model.model.layers.8.cross_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
380 |
+
"language_model.model.layers.8.cross_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
381 |
+
"language_model.model.layers.8.cross_attn.q_norm.weight": "model-00002-of-00005.safetensors",
|
382 |
+
"language_model.model.layers.8.cross_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
383 |
+
"language_model.model.layers.8.cross_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
384 |
+
"language_model.model.layers.8.cross_attn_attn_gate": "model-00002-of-00005.safetensors",
|
385 |
+
"language_model.model.layers.8.cross_attn_mlp_gate": "model-00002-of-00005.safetensors",
|
386 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
387 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
388 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
389 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
390 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
391 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
392 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
393 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
394 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
395 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
396 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
397 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
398 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
399 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
400 |
+
"language_model.model.norm.weight": "model-00005-of-00005.safetensors",
|
401 |
+
"multi_modal_projector.bias": "model-00005-of-00005.safetensors",
|
402 |
+
"multi_modal_projector.weight": "model-00005-of-00005.safetensors",
|
403 |
+
"vision_model.class_embedding": "model-00001-of-00005.safetensors",
|
404 |
+
"vision_model.gated_positional_embedding.embedding": "model-00001-of-00005.safetensors",
|
405 |
+
"vision_model.gated_positional_embedding.gate": "model-00001-of-00005.safetensors",
|
406 |
+
"vision_model.gated_positional_embedding.tile_embedding.weight": "model-00001-of-00005.safetensors",
|
407 |
+
"vision_model.global_transformer.layers.0.gate_attn": "model-00001-of-00005.safetensors",
|
408 |
+
"vision_model.global_transformer.layers.0.gate_ffn": "model-00001-of-00005.safetensors",
|
409 |
+
"vision_model.global_transformer.layers.0.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
410 |
+
"vision_model.global_transformer.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
411 |
+
"vision_model.global_transformer.layers.0.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
412 |
+
"vision_model.global_transformer.layers.0.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
413 |
+
"vision_model.global_transformer.layers.0.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
414 |
+
"vision_model.global_transformer.layers.0.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
415 |
+
"vision_model.global_transformer.layers.0.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
416 |
+
"vision_model.global_transformer.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
417 |
+
"vision_model.global_transformer.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
418 |
+
"vision_model.global_transformer.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
419 |
+
"vision_model.global_transformer.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
420 |
+
"vision_model.global_transformer.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
421 |
+
"vision_model.global_transformer.layers.1.gate_attn": "model-00001-of-00005.safetensors",
|
422 |
+
"vision_model.global_transformer.layers.1.gate_ffn": "model-00001-of-00005.safetensors",
|
423 |
+
"vision_model.global_transformer.layers.1.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
424 |
+
"vision_model.global_transformer.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
425 |
+
"vision_model.global_transformer.layers.1.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
426 |
+
"vision_model.global_transformer.layers.1.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
427 |
+
"vision_model.global_transformer.layers.1.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
428 |
+
"vision_model.global_transformer.layers.1.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
429 |
+
"vision_model.global_transformer.layers.1.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
430 |
+
"vision_model.global_transformer.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
431 |
+
"vision_model.global_transformer.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
432 |
+
"vision_model.global_transformer.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
433 |
+
"vision_model.global_transformer.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
434 |
+
"vision_model.global_transformer.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
435 |
+
"vision_model.global_transformer.layers.2.gate_attn": "model-00001-of-00005.safetensors",
|
436 |
+
"vision_model.global_transformer.layers.2.gate_ffn": "model-00001-of-00005.safetensors",
|
437 |
+
"vision_model.global_transformer.layers.2.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
438 |
+
"vision_model.global_transformer.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
439 |
+
"vision_model.global_transformer.layers.2.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
440 |
+
"vision_model.global_transformer.layers.2.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
441 |
+
"vision_model.global_transformer.layers.2.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
442 |
+
"vision_model.global_transformer.layers.2.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
443 |
+
"vision_model.global_transformer.layers.2.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
444 |
+
"vision_model.global_transformer.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
445 |
+
"vision_model.global_transformer.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
446 |
+
"vision_model.global_transformer.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
447 |
+
"vision_model.global_transformer.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
448 |
+
"vision_model.global_transformer.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
449 |
+
"vision_model.global_transformer.layers.3.gate_attn": "model-00001-of-00005.safetensors",
|
450 |
+
"vision_model.global_transformer.layers.3.gate_ffn": "model-00001-of-00005.safetensors",
|
451 |
+
"vision_model.global_transformer.layers.3.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
452 |
+
"vision_model.global_transformer.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
453 |
+
"vision_model.global_transformer.layers.3.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
454 |
+
"vision_model.global_transformer.layers.3.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
455 |
+
"vision_model.global_transformer.layers.3.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
456 |
+
"vision_model.global_transformer.layers.3.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
457 |
+
"vision_model.global_transformer.layers.3.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
458 |
+
"vision_model.global_transformer.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
459 |
+
"vision_model.global_transformer.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
460 |
+
"vision_model.global_transformer.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
461 |
+
"vision_model.global_transformer.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
462 |
+
"vision_model.global_transformer.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
463 |
+
"vision_model.global_transformer.layers.4.gate_attn": "model-00001-of-00005.safetensors",
|
464 |
+
"vision_model.global_transformer.layers.4.gate_ffn": "model-00001-of-00005.safetensors",
|
465 |
+
"vision_model.global_transformer.layers.4.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
466 |
+
"vision_model.global_transformer.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
467 |
+
"vision_model.global_transformer.layers.4.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
468 |
+
"vision_model.global_transformer.layers.4.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
469 |
+
"vision_model.global_transformer.layers.4.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
470 |
+
"vision_model.global_transformer.layers.4.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
471 |
+
"vision_model.global_transformer.layers.4.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
472 |
+
"vision_model.global_transformer.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
473 |
+
"vision_model.global_transformer.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
474 |
+
"vision_model.global_transformer.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
475 |
+
"vision_model.global_transformer.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
476 |
+
"vision_model.global_transformer.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
477 |
+
"vision_model.global_transformer.layers.5.gate_attn": "model-00001-of-00005.safetensors",
|
478 |
+
"vision_model.global_transformer.layers.5.gate_ffn": "model-00001-of-00005.safetensors",
|
479 |
+
"vision_model.global_transformer.layers.5.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
480 |
+
"vision_model.global_transformer.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
481 |
+
"vision_model.global_transformer.layers.5.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
482 |
+
"vision_model.global_transformer.layers.5.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
483 |
+
"vision_model.global_transformer.layers.5.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
484 |
+
"vision_model.global_transformer.layers.5.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
485 |
+
"vision_model.global_transformer.layers.5.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
486 |
+
"vision_model.global_transformer.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
487 |
+
"vision_model.global_transformer.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
488 |
+
"vision_model.global_transformer.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
489 |
+
"vision_model.global_transformer.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
490 |
+
"vision_model.global_transformer.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
491 |
+
"vision_model.global_transformer.layers.6.gate_attn": "model-00001-of-00005.safetensors",
|
492 |
+
"vision_model.global_transformer.layers.6.gate_ffn": "model-00001-of-00005.safetensors",
|
493 |
+
"vision_model.global_transformer.layers.6.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
494 |
+
"vision_model.global_transformer.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
495 |
+
"vision_model.global_transformer.layers.6.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
496 |
+
"vision_model.global_transformer.layers.6.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
497 |
+
"vision_model.global_transformer.layers.6.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
498 |
+
"vision_model.global_transformer.layers.6.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
499 |
+
"vision_model.global_transformer.layers.6.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
500 |
+
"vision_model.global_transformer.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
501 |
+
"vision_model.global_transformer.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
502 |
+
"vision_model.global_transformer.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
503 |
+
"vision_model.global_transformer.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
504 |
+
"vision_model.global_transformer.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
505 |
+
"vision_model.global_transformer.layers.7.gate_attn": "model-00001-of-00005.safetensors",
|
506 |
+
"vision_model.global_transformer.layers.7.gate_ffn": "model-00001-of-00005.safetensors",
|
507 |
+
"vision_model.global_transformer.layers.7.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
508 |
+
"vision_model.global_transformer.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
509 |
+
"vision_model.global_transformer.layers.7.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
510 |
+
"vision_model.global_transformer.layers.7.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
511 |
+
"vision_model.global_transformer.layers.7.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
512 |
+
"vision_model.global_transformer.layers.7.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
513 |
+
"vision_model.global_transformer.layers.7.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
514 |
+
"vision_model.global_transformer.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
515 |
+
"vision_model.global_transformer.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
516 |
+
"vision_model.global_transformer.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
517 |
+
"vision_model.global_transformer.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
518 |
+
"vision_model.global_transformer.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
519 |
+
"vision_model.layernorm_post.bias": "model-00001-of-00005.safetensors",
|
520 |
+
"vision_model.layernorm_post.weight": "model-00001-of-00005.safetensors",
|
521 |
+
"vision_model.layernorm_pre.bias": "model-00001-of-00005.safetensors",
|
522 |
+
"vision_model.layernorm_pre.weight": "model-00001-of-00005.safetensors",
|
523 |
+
"vision_model.patch_embedding.weight": "model-00001-of-00005.safetensors",
|
524 |
+
"vision_model.post_tile_positional_embedding.embedding.weight": "model-00001-of-00005.safetensors",
|
525 |
+
"vision_model.post_tile_positional_embedding.gate": "model-00001-of-00005.safetensors",
|
526 |
+
"vision_model.pre_tile_positional_embedding.embedding.weight": "model-00001-of-00005.safetensors",
|
527 |
+
"vision_model.pre_tile_positional_embedding.gate": "model-00001-of-00005.safetensors",
|
528 |
+
"vision_model.transformer.layers.0.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
529 |
+
"vision_model.transformer.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
530 |
+
"vision_model.transformer.layers.0.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
531 |
+
"vision_model.transformer.layers.0.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
532 |
+
"vision_model.transformer.layers.0.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
533 |
+
"vision_model.transformer.layers.0.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
534 |
+
"vision_model.transformer.layers.0.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
535 |
+
"vision_model.transformer.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
536 |
+
"vision_model.transformer.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
537 |
+
"vision_model.transformer.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
538 |
+
"vision_model.transformer.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
539 |
+
"vision_model.transformer.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
540 |
+
"vision_model.transformer.layers.1.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
541 |
+
"vision_model.transformer.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
542 |
+
"vision_model.transformer.layers.1.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
543 |
+
"vision_model.transformer.layers.1.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
544 |
+
"vision_model.transformer.layers.1.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
545 |
+
"vision_model.transformer.layers.1.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
546 |
+
"vision_model.transformer.layers.1.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
547 |
+
"vision_model.transformer.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
548 |
+
"vision_model.transformer.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
549 |
+
"vision_model.transformer.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
550 |
+
"vision_model.transformer.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
551 |
+
"vision_model.transformer.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
552 |
+
"vision_model.transformer.layers.10.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
553 |
+
"vision_model.transformer.layers.10.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
554 |
+
"vision_model.transformer.layers.10.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
555 |
+
"vision_model.transformer.layers.10.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
556 |
+
"vision_model.transformer.layers.10.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
557 |
+
"vision_model.transformer.layers.10.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
558 |
+
"vision_model.transformer.layers.10.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
559 |
+
"vision_model.transformer.layers.10.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
560 |
+
"vision_model.transformer.layers.10.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
561 |
+
"vision_model.transformer.layers.10.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
562 |
+
"vision_model.transformer.layers.10.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
563 |
+
"vision_model.transformer.layers.10.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
564 |
+
"vision_model.transformer.layers.11.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
565 |
+
"vision_model.transformer.layers.11.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
566 |
+
"vision_model.transformer.layers.11.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
567 |
+
"vision_model.transformer.layers.11.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
568 |
+
"vision_model.transformer.layers.11.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
569 |
+
"vision_model.transformer.layers.11.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
570 |
+
"vision_model.transformer.layers.11.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
571 |
+
"vision_model.transformer.layers.11.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
572 |
+
"vision_model.transformer.layers.11.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
573 |
+
"vision_model.transformer.layers.11.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
574 |
+
"vision_model.transformer.layers.11.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
575 |
+
"vision_model.transformer.layers.11.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
576 |
+
"vision_model.transformer.layers.12.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
577 |
+
"vision_model.transformer.layers.12.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
578 |
+
"vision_model.transformer.layers.12.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
579 |
+
"vision_model.transformer.layers.12.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
580 |
+
"vision_model.transformer.layers.12.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
581 |
+
"vision_model.transformer.layers.12.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
582 |
+
"vision_model.transformer.layers.12.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
583 |
+
"vision_model.transformer.layers.12.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
584 |
+
"vision_model.transformer.layers.12.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
585 |
+
"vision_model.transformer.layers.12.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
586 |
+
"vision_model.transformer.layers.12.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
587 |
+
"vision_model.transformer.layers.12.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
588 |
+
"vision_model.transformer.layers.13.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
589 |
+
"vision_model.transformer.layers.13.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
590 |
+
"vision_model.transformer.layers.13.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
591 |
+
"vision_model.transformer.layers.13.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
592 |
+
"vision_model.transformer.layers.13.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
593 |
+
"vision_model.transformer.layers.13.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
594 |
+
"vision_model.transformer.layers.13.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
595 |
+
"vision_model.transformer.layers.13.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
596 |
+
"vision_model.transformer.layers.13.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
597 |
+
"vision_model.transformer.layers.13.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
598 |
+
"vision_model.transformer.layers.13.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
599 |
+
"vision_model.transformer.layers.13.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
600 |
+
"vision_model.transformer.layers.14.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
601 |
+
"vision_model.transformer.layers.14.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
602 |
+
"vision_model.transformer.layers.14.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
603 |
+
"vision_model.transformer.layers.14.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
604 |
+
"vision_model.transformer.layers.14.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
605 |
+
"vision_model.transformer.layers.14.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
606 |
+
"vision_model.transformer.layers.14.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
607 |
+
"vision_model.transformer.layers.14.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
608 |
+
"vision_model.transformer.layers.14.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
609 |
+
"vision_model.transformer.layers.14.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
610 |
+
"vision_model.transformer.layers.14.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
611 |
+
"vision_model.transformer.layers.14.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
612 |
+
"vision_model.transformer.layers.15.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
613 |
+
"vision_model.transformer.layers.15.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
614 |
+
"vision_model.transformer.layers.15.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
615 |
+
"vision_model.transformer.layers.15.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
616 |
+
"vision_model.transformer.layers.15.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
617 |
+
"vision_model.transformer.layers.15.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
618 |
+
"vision_model.transformer.layers.15.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
619 |
+
"vision_model.transformer.layers.15.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
620 |
+
"vision_model.transformer.layers.15.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
621 |
+
"vision_model.transformer.layers.15.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
622 |
+
"vision_model.transformer.layers.15.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
623 |
+
"vision_model.transformer.layers.15.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
624 |
+
"vision_model.transformer.layers.16.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
625 |
+
"vision_model.transformer.layers.16.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
626 |
+
"vision_model.transformer.layers.16.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
627 |
+
"vision_model.transformer.layers.16.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
628 |
+
"vision_model.transformer.layers.16.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
629 |
+
"vision_model.transformer.layers.16.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
630 |
+
"vision_model.transformer.layers.16.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
631 |
+
"vision_model.transformer.layers.16.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
632 |
+
"vision_model.transformer.layers.16.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
633 |
+
"vision_model.transformer.layers.16.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
634 |
+
"vision_model.transformer.layers.16.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
635 |
+
"vision_model.transformer.layers.16.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
636 |
+
"vision_model.transformer.layers.17.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
637 |
+
"vision_model.transformer.layers.17.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
638 |
+
"vision_model.transformer.layers.17.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
639 |
+
"vision_model.transformer.layers.17.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
640 |
+
"vision_model.transformer.layers.17.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
641 |
+
"vision_model.transformer.layers.17.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
642 |
+
"vision_model.transformer.layers.17.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
643 |
+
"vision_model.transformer.layers.17.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
644 |
+
"vision_model.transformer.layers.17.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
645 |
+
"vision_model.transformer.layers.17.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
646 |
+
"vision_model.transformer.layers.17.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
647 |
+
"vision_model.transformer.layers.17.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
648 |
+
"vision_model.transformer.layers.18.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
649 |
+
"vision_model.transformer.layers.18.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
650 |
+
"vision_model.transformer.layers.18.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
651 |
+
"vision_model.transformer.layers.18.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
652 |
+
"vision_model.transformer.layers.18.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
653 |
+
"vision_model.transformer.layers.18.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
654 |
+
"vision_model.transformer.layers.18.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
655 |
+
"vision_model.transformer.layers.18.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
656 |
+
"vision_model.transformer.layers.18.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
657 |
+
"vision_model.transformer.layers.18.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
658 |
+
"vision_model.transformer.layers.18.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
659 |
+
"vision_model.transformer.layers.18.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
660 |
+
"vision_model.transformer.layers.19.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
661 |
+
"vision_model.transformer.layers.19.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
662 |
+
"vision_model.transformer.layers.19.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
663 |
+
"vision_model.transformer.layers.19.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
664 |
+
"vision_model.transformer.layers.19.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
665 |
+
"vision_model.transformer.layers.19.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
666 |
+
"vision_model.transformer.layers.19.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
667 |
+
"vision_model.transformer.layers.19.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
668 |
+
"vision_model.transformer.layers.19.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
669 |
+
"vision_model.transformer.layers.19.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
670 |
+
"vision_model.transformer.layers.19.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
671 |
+
"vision_model.transformer.layers.19.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
672 |
+
"vision_model.transformer.layers.2.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
673 |
+
"vision_model.transformer.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
674 |
+
"vision_model.transformer.layers.2.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
675 |
+
"vision_model.transformer.layers.2.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
676 |
+
"vision_model.transformer.layers.2.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
677 |
+
"vision_model.transformer.layers.2.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
678 |
+
"vision_model.transformer.layers.2.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
679 |
+
"vision_model.transformer.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
680 |
+
"vision_model.transformer.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
681 |
+
"vision_model.transformer.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
682 |
+
"vision_model.transformer.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
683 |
+
"vision_model.transformer.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
684 |
+
"vision_model.transformer.layers.20.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
685 |
+
"vision_model.transformer.layers.20.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
686 |
+
"vision_model.transformer.layers.20.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
687 |
+
"vision_model.transformer.layers.20.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
688 |
+
"vision_model.transformer.layers.20.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
689 |
+
"vision_model.transformer.layers.20.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
690 |
+
"vision_model.transformer.layers.20.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
691 |
+
"vision_model.transformer.layers.20.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
692 |
+
"vision_model.transformer.layers.20.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
693 |
+
"vision_model.transformer.layers.20.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
694 |
+
"vision_model.transformer.layers.20.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
695 |
+
"vision_model.transformer.layers.20.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
696 |
+
"vision_model.transformer.layers.21.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
697 |
+
"vision_model.transformer.layers.21.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
698 |
+
"vision_model.transformer.layers.21.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
699 |
+
"vision_model.transformer.layers.21.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
700 |
+
"vision_model.transformer.layers.21.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
701 |
+
"vision_model.transformer.layers.21.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
702 |
+
"vision_model.transformer.layers.21.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
703 |
+
"vision_model.transformer.layers.21.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
704 |
+
"vision_model.transformer.layers.21.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
705 |
+
"vision_model.transformer.layers.21.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
706 |
+
"vision_model.transformer.layers.21.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
707 |
+
"vision_model.transformer.layers.21.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
708 |
+
"vision_model.transformer.layers.22.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
709 |
+
"vision_model.transformer.layers.22.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
710 |
+
"vision_model.transformer.layers.22.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
711 |
+
"vision_model.transformer.layers.22.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
712 |
+
"vision_model.transformer.layers.22.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
713 |
+
"vision_model.transformer.layers.22.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
714 |
+
"vision_model.transformer.layers.22.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
715 |
+
"vision_model.transformer.layers.22.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
716 |
+
"vision_model.transformer.layers.22.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
717 |
+
"vision_model.transformer.layers.22.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
718 |
+
"vision_model.transformer.layers.22.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
719 |
+
"vision_model.transformer.layers.22.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
720 |
+
"vision_model.transformer.layers.23.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
721 |
+
"vision_model.transformer.layers.23.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
722 |
+
"vision_model.transformer.layers.23.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
723 |
+
"vision_model.transformer.layers.23.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
724 |
+
"vision_model.transformer.layers.23.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
725 |
+
"vision_model.transformer.layers.23.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
726 |
+
"vision_model.transformer.layers.23.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
727 |
+
"vision_model.transformer.layers.23.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
728 |
+
"vision_model.transformer.layers.23.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
729 |
+
"vision_model.transformer.layers.23.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
730 |
+
"vision_model.transformer.layers.23.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
731 |
+
"vision_model.transformer.layers.23.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
732 |
+
"vision_model.transformer.layers.24.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
733 |
+
"vision_model.transformer.layers.24.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
734 |
+
"vision_model.transformer.layers.24.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
735 |
+
"vision_model.transformer.layers.24.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
736 |
+
"vision_model.transformer.layers.24.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
737 |
+
"vision_model.transformer.layers.24.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
738 |
+
"vision_model.transformer.layers.24.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
739 |
+
"vision_model.transformer.layers.24.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
740 |
+
"vision_model.transformer.layers.24.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
741 |
+
"vision_model.transformer.layers.24.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
742 |
+
"vision_model.transformer.layers.24.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
743 |
+
"vision_model.transformer.layers.24.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
744 |
+
"vision_model.transformer.layers.25.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
745 |
+
"vision_model.transformer.layers.25.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
746 |
+
"vision_model.transformer.layers.25.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
747 |
+
"vision_model.transformer.layers.25.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
748 |
+
"vision_model.transformer.layers.25.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
749 |
+
"vision_model.transformer.layers.25.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
750 |
+
"vision_model.transformer.layers.25.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
751 |
+
"vision_model.transformer.layers.25.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
752 |
+
"vision_model.transformer.layers.25.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
753 |
+
"vision_model.transformer.layers.25.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
754 |
+
"vision_model.transformer.layers.25.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
755 |
+
"vision_model.transformer.layers.25.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
756 |
+
"vision_model.transformer.layers.26.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
757 |
+
"vision_model.transformer.layers.26.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
758 |
+
"vision_model.transformer.layers.26.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
759 |
+
"vision_model.transformer.layers.26.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
760 |
+
"vision_model.transformer.layers.26.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
761 |
+
"vision_model.transformer.layers.26.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
762 |
+
"vision_model.transformer.layers.26.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
763 |
+
"vision_model.transformer.layers.26.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
764 |
+
"vision_model.transformer.layers.26.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
765 |
+
"vision_model.transformer.layers.26.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
766 |
+
"vision_model.transformer.layers.26.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
767 |
+
"vision_model.transformer.layers.26.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
768 |
+
"vision_model.transformer.layers.27.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
769 |
+
"vision_model.transformer.layers.27.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
770 |
+
"vision_model.transformer.layers.27.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
771 |
+
"vision_model.transformer.layers.27.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
772 |
+
"vision_model.transformer.layers.27.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
773 |
+
"vision_model.transformer.layers.27.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
774 |
+
"vision_model.transformer.layers.27.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
775 |
+
"vision_model.transformer.layers.27.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
776 |
+
"vision_model.transformer.layers.27.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
777 |
+
"vision_model.transformer.layers.27.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
778 |
+
"vision_model.transformer.layers.27.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
779 |
+
"vision_model.transformer.layers.27.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
780 |
+
"vision_model.transformer.layers.28.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
781 |
+
"vision_model.transformer.layers.28.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
782 |
+
"vision_model.transformer.layers.28.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
783 |
+
"vision_model.transformer.layers.28.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
784 |
+
"vision_model.transformer.layers.28.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
785 |
+
"vision_model.transformer.layers.28.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
786 |
+
"vision_model.transformer.layers.28.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
787 |
+
"vision_model.transformer.layers.28.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
788 |
+
"vision_model.transformer.layers.28.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
789 |
+
"vision_model.transformer.layers.28.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
790 |
+
"vision_model.transformer.layers.28.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
791 |
+
"vision_model.transformer.layers.28.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
792 |
+
"vision_model.transformer.layers.29.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
793 |
+
"vision_model.transformer.layers.29.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
794 |
+
"vision_model.transformer.layers.29.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
795 |
+
"vision_model.transformer.layers.29.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
796 |
+
"vision_model.transformer.layers.29.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
797 |
+
"vision_model.transformer.layers.29.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
798 |
+
"vision_model.transformer.layers.29.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
799 |
+
"vision_model.transformer.layers.29.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
800 |
+
"vision_model.transformer.layers.29.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
801 |
+
"vision_model.transformer.layers.29.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
802 |
+
"vision_model.transformer.layers.29.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
803 |
+
"vision_model.transformer.layers.29.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
804 |
+
"vision_model.transformer.layers.3.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
805 |
+
"vision_model.transformer.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
806 |
+
"vision_model.transformer.layers.3.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
807 |
+
"vision_model.transformer.layers.3.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
808 |
+
"vision_model.transformer.layers.3.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
809 |
+
"vision_model.transformer.layers.3.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
810 |
+
"vision_model.transformer.layers.3.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
811 |
+
"vision_model.transformer.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
812 |
+
"vision_model.transformer.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
813 |
+
"vision_model.transformer.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
814 |
+
"vision_model.transformer.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
815 |
+
"vision_model.transformer.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
816 |
+
"vision_model.transformer.layers.30.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
817 |
+
"vision_model.transformer.layers.30.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
818 |
+
"vision_model.transformer.layers.30.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
819 |
+
"vision_model.transformer.layers.30.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
820 |
+
"vision_model.transformer.layers.30.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
821 |
+
"vision_model.transformer.layers.30.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
822 |
+
"vision_model.transformer.layers.30.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
823 |
+
"vision_model.transformer.layers.30.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
824 |
+
"vision_model.transformer.layers.30.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
825 |
+
"vision_model.transformer.layers.30.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
826 |
+
"vision_model.transformer.layers.30.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
827 |
+
"vision_model.transformer.layers.30.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
828 |
+
"vision_model.transformer.layers.31.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
829 |
+
"vision_model.transformer.layers.31.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
830 |
+
"vision_model.transformer.layers.31.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
831 |
+
"vision_model.transformer.layers.31.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
832 |
+
"vision_model.transformer.layers.31.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
833 |
+
"vision_model.transformer.layers.31.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
834 |
+
"vision_model.transformer.layers.31.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
835 |
+
"vision_model.transformer.layers.31.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
836 |
+
"vision_model.transformer.layers.31.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
837 |
+
"vision_model.transformer.layers.31.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
838 |
+
"vision_model.transformer.layers.31.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
839 |
+
"vision_model.transformer.layers.31.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
840 |
+
"vision_model.transformer.layers.4.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
841 |
+
"vision_model.transformer.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
842 |
+
"vision_model.transformer.layers.4.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
843 |
+
"vision_model.transformer.layers.4.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
844 |
+
"vision_model.transformer.layers.4.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
845 |
+
"vision_model.transformer.layers.4.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
846 |
+
"vision_model.transformer.layers.4.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
847 |
+
"vision_model.transformer.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
848 |
+
"vision_model.transformer.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
849 |
+
"vision_model.transformer.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
850 |
+
"vision_model.transformer.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
851 |
+
"vision_model.transformer.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
852 |
+
"vision_model.transformer.layers.5.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
853 |
+
"vision_model.transformer.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
854 |
+
"vision_model.transformer.layers.5.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
855 |
+
"vision_model.transformer.layers.5.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
856 |
+
"vision_model.transformer.layers.5.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
857 |
+
"vision_model.transformer.layers.5.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
858 |
+
"vision_model.transformer.layers.5.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
859 |
+
"vision_model.transformer.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
860 |
+
"vision_model.transformer.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
861 |
+
"vision_model.transformer.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
862 |
+
"vision_model.transformer.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
863 |
+
"vision_model.transformer.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
864 |
+
"vision_model.transformer.layers.6.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
865 |
+
"vision_model.transformer.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
866 |
+
"vision_model.transformer.layers.6.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
867 |
+
"vision_model.transformer.layers.6.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
868 |
+
"vision_model.transformer.layers.6.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
869 |
+
"vision_model.transformer.layers.6.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
870 |
+
"vision_model.transformer.layers.6.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
871 |
+
"vision_model.transformer.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
872 |
+
"vision_model.transformer.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
873 |
+
"vision_model.transformer.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
874 |
+
"vision_model.transformer.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
875 |
+
"vision_model.transformer.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
876 |
+
"vision_model.transformer.layers.7.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
877 |
+
"vision_model.transformer.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
878 |
+
"vision_model.transformer.layers.7.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
879 |
+
"vision_model.transformer.layers.7.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
880 |
+
"vision_model.transformer.layers.7.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
881 |
+
"vision_model.transformer.layers.7.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
882 |
+
"vision_model.transformer.layers.7.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
883 |
+
"vision_model.transformer.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
884 |
+
"vision_model.transformer.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
885 |
+
"vision_model.transformer.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
886 |
+
"vision_model.transformer.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
887 |
+
"vision_model.transformer.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
888 |
+
"vision_model.transformer.layers.8.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
889 |
+
"vision_model.transformer.layers.8.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
890 |
+
"vision_model.transformer.layers.8.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
891 |
+
"vision_model.transformer.layers.8.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
892 |
+
"vision_model.transformer.layers.8.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
893 |
+
"vision_model.transformer.layers.8.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
894 |
+
"vision_model.transformer.layers.8.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
895 |
+
"vision_model.transformer.layers.8.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
896 |
+
"vision_model.transformer.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
897 |
+
"vision_model.transformer.layers.8.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
898 |
+
"vision_model.transformer.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
899 |
+
"vision_model.transformer.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
900 |
+
"vision_model.transformer.layers.9.input_layernorm.bias": "model-00001-of-00005.safetensors",
|
901 |
+
"vision_model.transformer.layers.9.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
902 |
+
"vision_model.transformer.layers.9.mlp.fc1.bias": "model-00001-of-00005.safetensors",
|
903 |
+
"vision_model.transformer.layers.9.mlp.fc1.weight": "model-00001-of-00005.safetensors",
|
904 |
+
"vision_model.transformer.layers.9.mlp.fc2.bias": "model-00001-of-00005.safetensors",
|
905 |
+
"vision_model.transformer.layers.9.mlp.fc2.weight": "model-00001-of-00005.safetensors",
|
906 |
+
"vision_model.transformer.layers.9.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
|
907 |
+
"vision_model.transformer.layers.9.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
908 |
+
"vision_model.transformer.layers.9.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
909 |
+
"vision_model.transformer.layers.9.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
910 |
+
"vision_model.transformer.layers.9.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
911 |
+
"vision_model.transformer.layers.9.self_attn.v_proj.weight": "model-00001-of-00005.safetensors"
|
912 |
+
}
|
913 |
+
}
|
modeling_llama3.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from transformers import MllamaPreTrainedModel, MllamaVisionModel, MllamaForCausalLM
|
9 |
+
from transformers.generation import GenerationMixin
|
10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11 |
+
from transformers.utils import logging
|
12 |
+
from transformers.models.mllama.modeling_mllama import _prepare_cross_attention_mask
|
13 |
+
from configuration_llama3 import Llama3Config
|
14 |
+
from mllama_audio_model import MllamaAudioModel
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
class Llama3PreTrainedModel(MllamaPreTrainedModel):
|
19 |
+
config_class = Llama3Config
|
20 |
+
base_model_prefix = "model"
|
21 |
+
|
22 |
+
class Llama3ForConditionalGeneration(Llama3PreTrainedModel, GenerationMixin):
|
23 |
+
_supports_quantized_cache = False # quant cache not supported in encoder-decoder setting
|
24 |
+
|
25 |
+
def __init__(self, config: Llama3Config):
|
26 |
+
super().__init__(config)
|
27 |
+
self.vocab_size = config.text_config.vocab_size
|
28 |
+
self.hidden_size = config.text_config.hidden_size
|
29 |
+
self.max_num_tiles = config.vision_config.max_num_tiles
|
30 |
+
self.vision_output_dim = config.vision_config.vision_output_dim
|
31 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
32 |
+
|
33 |
+
self.vision_model = MllamaVisionModel._from_config(config.vision_config)
|
34 |
+
self.language_model = MllamaForCausalLM._from_config(config.text_config)
|
35 |
+
self.audio_model = MllamaAudioModel(config.audio_config, self.language_model.get_input_embeddings())
|
36 |
+
self.multi_modal_projector = nn.Linear(
|
37 |
+
config.vision_config.vision_output_dim,
|
38 |
+
config.text_config.hidden_size,
|
39 |
+
bias=True,
|
40 |
+
)
|
41 |
+
self.post_init()
|
42 |
+
|
43 |
+
def get_input_embeddings(self):
|
44 |
+
return self.language_model.get_input_embeddings()
|
45 |
+
|
46 |
+
def set_input_embeddings(self, value):
|
47 |
+
self.language_model.set_input_embeddings(value)
|
48 |
+
|
49 |
+
def get_output_embeddings(self):
|
50 |
+
return self.language_model.get_output_embeddings()
|
51 |
+
|
52 |
+
def set_output_embeddings(self, new_embeddings):
|
53 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
54 |
+
|
55 |
+
def set_decoder(self, decoder):
|
56 |
+
self.language_model.set_decoder(decoder)
|
57 |
+
|
58 |
+
def get_decoder(self):
|
59 |
+
return self.language_model.get_decoder()
|
60 |
+
|
61 |
+
def tie_weights(self):
|
62 |
+
return self.language_model.tie_weights()
|
63 |
+
|
64 |
+
def forward(
|
65 |
+
self,
|
66 |
+
input_ids: Optional[torch.LongTensor] = None,
|
67 |
+
audio_features: Optional[torch.FloatTensor] = None,
|
68 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
69 |
+
aspect_ratio_mask: Optional[torch.Tensor] = None,
|
70 |
+
aspect_ratio_ids: Optional[torch.Tensor] = None,
|
71 |
+
attention_mask: Optional[torch.Tensor] = None,
|
72 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
73 |
+
cross_attention_states: Optional[torch.Tensor] = None,
|
74 |
+
position_ids: Optional[torch.LongTensor] = None,
|
75 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
76 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
77 |
+
labels: Optional[torch.LongTensor] = None,
|
78 |
+
use_cache: Optional[bool] = None,
|
79 |
+
output_attentions: Optional[bool] = None,
|
80 |
+
output_hidden_states: Optional[bool] = None,
|
81 |
+
return_dict: Optional[bool] = None,
|
82 |
+
cache_position: Optional[torch.LongTensor] = None,
|
83 |
+
num_logits_to_keep: int = 0,
|
84 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
85 |
+
r"""
|
86 |
+
Args:
|
87 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
88 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
89 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
90 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
91 |
+
|
92 |
+
num_logits_to_keep (`int`, *optional*):
|
93 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
94 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
95 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
96 |
+
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
|
100 |
+
Example:
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from PIL import Image
|
104 |
+
>>> import requests
|
105 |
+
>>> from transformers import AutoProcessor, MllamaForConditionalGeneration
|
106 |
+
|
107 |
+
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
|
108 |
+
>>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint)
|
109 |
+
>>> processor = AutoProcessor.from_pretrained(checkpoint)
|
110 |
+
|
111 |
+
>>> prompt = "<|image|>If I had to write a haiku for this one"
|
112 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
113 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
114 |
+
|
115 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
116 |
+
|
117 |
+
>>> # Generate
|
118 |
+
>>> output = model.generate(**inputs, max_new_tokens=15)
|
119 |
+
|
120 |
+
>>> prompt_len = inputs.input_ids.shape[-1]
|
121 |
+
>>> generated_ids = output[:, prompt_len:]
|
122 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
123 |
+
>>> print(generated_text)
|
124 |
+
[', it would be:.\\nA stop sign in Chinatown.\\n']
|
125 |
+
```
|
126 |
+
"""
|
127 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
128 |
+
output_hidden_states = (
|
129 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
130 |
+
)
|
131 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
132 |
+
|
133 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
134 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
135 |
+
|
136 |
+
if pixel_values is not None and inputs_embeds is not None:
|
137 |
+
raise ValueError(
|
138 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
139 |
+
)
|
140 |
+
|
141 |
+
if pixel_values is not None and cross_attention_states is not None:
|
142 |
+
raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")
|
143 |
+
|
144 |
+
if pixel_values is not None:
|
145 |
+
if aspect_ratio_ids is None:
|
146 |
+
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
|
147 |
+
# get vision tokens from vision model
|
148 |
+
vision_outputs = self.vision_model(
|
149 |
+
pixel_values=pixel_values,
|
150 |
+
aspect_ratio_ids=aspect_ratio_ids,
|
151 |
+
aspect_ratio_mask=aspect_ratio_mask,
|
152 |
+
output_hidden_states=output_hidden_states,
|
153 |
+
output_attentions=output_attentions,
|
154 |
+
return_dict=return_dict,
|
155 |
+
)
|
156 |
+
cross_attention_states = vision_outputs[0]
|
157 |
+
cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape(
|
158 |
+
-1, cross_attention_states.shape[-2], self.hidden_size
|
159 |
+
)
|
160 |
+
|
161 |
+
if cross_attention_mask is not None:
|
162 |
+
cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask(
|
163 |
+
cross_attention_mask,
|
164 |
+
num_vision_tokens=self.vision_model.num_patches,
|
165 |
+
dtype=self.dtype,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
full_text_row_masked_out_mask = None
|
169 |
+
|
170 |
+
if cross_attention_mask is not None and cache_position is not None:
|
171 |
+
cross_attention_mask = cross_attention_mask[:, :, cache_position]
|
172 |
+
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
|
173 |
+
|
174 |
+
if audio_features is not None:
|
175 |
+
if input_ids is None:
|
176 |
+
raise ValueError("You must provide `input_ids` if you pass `audio_features`.")
|
177 |
+
|
178 |
+
inputs_embeds = self.audio_model(
|
179 |
+
audio_feature=audio_features,
|
180 |
+
input_ids=input_ids,
|
181 |
+
return_dict=False,
|
182 |
+
)
|
183 |
+
input_ids = None
|
184 |
+
|
185 |
+
outputs = self.language_model(
|
186 |
+
input_ids=input_ids,
|
187 |
+
attention_mask=attention_mask,
|
188 |
+
position_ids=position_ids,
|
189 |
+
cross_attention_states=cross_attention_states,
|
190 |
+
cross_attention_mask=cross_attention_mask,
|
191 |
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
192 |
+
past_key_values=past_key_values,
|
193 |
+
use_cache=use_cache,
|
194 |
+
inputs_embeds=inputs_embeds,
|
195 |
+
labels=labels,
|
196 |
+
output_hidden_states=output_hidden_states,
|
197 |
+
output_attentions=output_attentions,
|
198 |
+
return_dict=return_dict,
|
199 |
+
cache_position=cache_position,
|
200 |
+
num_logits_to_keep=num_logits_to_keep,
|
201 |
+
)
|
202 |
+
|
203 |
+
return outputs
|
204 |
+
|
205 |
+
def prepare_inputs_for_generation(
|
206 |
+
self,
|
207 |
+
input_ids=None,
|
208 |
+
inputs_embeds=None,
|
209 |
+
attention_mask=None,
|
210 |
+
position_ids=None,
|
211 |
+
pixel_values=None,
|
212 |
+
aspect_ratio_ids=None,
|
213 |
+
aspect_ratio_mask=None,
|
214 |
+
cross_attention_mask=None,
|
215 |
+
past_key_values=None,
|
216 |
+
use_cache=False,
|
217 |
+
cache_position=None,
|
218 |
+
num_logits_to_keep=None,
|
219 |
+
**kwargs,
|
220 |
+
):
|
221 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
222 |
+
|
223 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
224 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
225 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
226 |
+
if past_key_values is not None:
|
227 |
+
if inputs_embeds is not None: # Exception 1
|
228 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
229 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
230 |
+
input_ids = input_ids[:, cache_position]
|
231 |
+
|
232 |
+
# TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way
|
233 |
+
if attention_mask is not None and position_ids is None:
|
234 |
+
# create position_ids on the fly for batch generation
|
235 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
236 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
237 |
+
if past_key_values:
|
238 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
239 |
+
|
240 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
241 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
242 |
+
|
243 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
244 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
245 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
246 |
+
else:
|
247 |
+
# The clone here is for the same reason as for `position_ids`.
|
248 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
249 |
+
|
250 |
+
if num_logits_to_keep is not None:
|
251 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
252 |
+
|
253 |
+
model_inputs.update(
|
254 |
+
{
|
255 |
+
"position_ids": position_ids,
|
256 |
+
"cache_position": cache_position,
|
257 |
+
"past_key_values": past_key_values,
|
258 |
+
"use_cache": use_cache,
|
259 |
+
"attention_mask": attention_mask,
|
260 |
+
"cross_attention_mask": cross_attention_mask,
|
261 |
+
}
|
262 |
+
)
|
263 |
+
|
264 |
+
# If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
|
265 |
+
# to compute image hidden states, otherwise they are cached within each cross attn layer
|
266 |
+
if cache_position[0] == 0:
|
267 |
+
model_inputs["pixel_values"] = pixel_values
|
268 |
+
model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
|
269 |
+
model_inputs["aspect_ratio_mask"] = aspect_ratio_mask
|
270 |
+
|
271 |
+
return model_inputs
|
272 |
+
|
273 |
+
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
|
274 |
+
cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
|
275 |
+
model_kwargs = super()._update_model_kwargs_for_generation(
|
276 |
+
outputs=outputs,
|
277 |
+
model_kwargs=model_kwargs,
|
278 |
+
is_encoder_decoder=is_encoder_decoder,
|
279 |
+
**kwargs,
|
280 |
+
)
|
281 |
+
|
282 |
+
# add cross-attn mask for new token
|
283 |
+
if cross_attention_mask_prev is not None:
|
284 |
+
model_kwargs["cross_attention_mask"] = torch.cat(
|
285 |
+
[cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1
|
286 |
+
)
|
287 |
+
return model_kwargs
|
preprocessor_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_pad": true,
|
5 |
+
"do_rescale": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_processor_type": "MllamaImageProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.26862954,
|
15 |
+
0.26130258,
|
16 |
+
0.27577711
|
17 |
+
],
|
18 |
+
"max_image_tiles": 4,
|
19 |
+
"resample": 2,
|
20 |
+
"rescale_factor": 0.00392156862745098,
|
21 |
+
"size": {
|
22 |
+
"height": 560,
|
23 |
+
"width": 560
|
24 |
+
}
|
25 |
+
}
|
processing_mllama.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Processor class for Mllama."""
|
17 |
+
|
18 |
+
from typing import List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from transformers.feature_extraction_utils import BatchFeature
|
23 |
+
from transformers.image_utils import ImageInput
|
24 |
+
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, AudioKwargs
|
25 |
+
from transformers.tokenization_utils_base import (
|
26 |
+
PreTokenizedInput,
|
27 |
+
TextInput,
|
28 |
+
AudioInput,
|
29 |
+
)
|
30 |
+
|
31 |
+
# TODO: Can we do it that way or its better include as "Copied from ..."
|
32 |
+
from transformers.models.mllama.image_processing_mllama import make_list_of_images
|
33 |
+
from .audio_processing_mllama import make_list_of_audio_clips, build_audio_tokens, pack_audio_clips
|
34 |
+
|
35 |
+
|
36 |
+
class MllamaImagesKwargs(ImagesKwargs, total=False):
|
37 |
+
max_image_tiles: Optional[int]
|
38 |
+
|
39 |
+
class MllamaProcessorKwargs(ProcessingKwargs, total=False):
|
40 |
+
images_kwargs: MllamaImagesKwargs
|
41 |
+
|
42 |
+
_defaults = {
|
43 |
+
"image_kwargs": {
|
44 |
+
"max_image_tiles": 4,
|
45 |
+
},
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
def get_cross_attention_token_mask(input_ids: List[int], image_token_id: int) -> List[List[int]]:
|
50 |
+
"""
|
51 |
+
Generate a cross-attention token mask for image tokens in the input sequence.
|
52 |
+
|
53 |
+
This function identifies the positions of image tokens in the input sequence and creates
|
54 |
+
a mask that defines which subsequent tokens each image token should attend to.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
input_ids (List[int]): A list of token ids representing the input sequence.
|
58 |
+
image_token_id (int): The id of the token used to represent images in the sequence.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
List[List[int]]: A list of [start, end] pairs, where each pair represents the range
|
62 |
+
of tokens an image token should attend to.
|
63 |
+
|
64 |
+
Notes:
|
65 |
+
- If no image tokens are present, an empty list is returned.
|
66 |
+
- For a single image token, it attends to all subsequent tokens until the end of the sequence.
|
67 |
+
- For multiple image tokens, each attends to tokens up to the next image token or the end of the sequence.
|
68 |
+
- Consecutive image tokens are treated as a group and attend to all subsequent tokens together.
|
69 |
+
"""
|
70 |
+
|
71 |
+
image_token_locations = [i for i, token in enumerate(input_ids) if token == image_token_id]
|
72 |
+
|
73 |
+
if len(image_token_locations) == 0:
|
74 |
+
return []
|
75 |
+
|
76 |
+
# only one image present, unmask until end of sequence
|
77 |
+
if len(image_token_locations) == 1:
|
78 |
+
return [[image_token_locations[0], -1]]
|
79 |
+
|
80 |
+
vision_masks = [[loc1, loc2] for loc1, loc2 in zip(image_token_locations[:-1], image_token_locations[1:])]
|
81 |
+
|
82 |
+
# last image will attend to all subsequent text
|
83 |
+
vision_masks.append([image_token_locations[-1], len(input_ids)])
|
84 |
+
|
85 |
+
# if there are two or more consecutive vision tokens,
|
86 |
+
# they should all attend to all subsequent
|
87 |
+
# text present
|
88 |
+
last_mask_end = vision_masks[-1][1]
|
89 |
+
for vision_mask in vision_masks[::-1]:
|
90 |
+
if vision_mask[0] == vision_mask[1] - 1:
|
91 |
+
vision_mask[1] = last_mask_end
|
92 |
+
last_mask_end = vision_mask[1]
|
93 |
+
|
94 |
+
return vision_masks
|
95 |
+
|
96 |
+
|
97 |
+
def convert_sparse_cross_attention_mask_to_dense(
|
98 |
+
cross_attention_token_mask: List[List[List[int]]],
|
99 |
+
num_tiles: List[List[int]],
|
100 |
+
max_num_tiles: int,
|
101 |
+
length: int,
|
102 |
+
) -> np.ndarray:
|
103 |
+
"""
|
104 |
+
Convert the cross attention mask indices to a cross attention mask 4D array.
|
105 |
+
|
106 |
+
This function takes a sparse representation of cross attention masks and converts it to a dense 4D numpy array.
|
107 |
+
The sparse representation is a nested list structure that defines attention ranges for each image in each batch item.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
cross_attention_token_mask (List[List[List[int]]]): A nested list structure where:
|
111 |
+
- The outer list represents the batch dimension.
|
112 |
+
- The middle list represents different images within each batch item.
|
113 |
+
- The inner list contains pairs of integers [start, end] representing token ranges for each image.
|
114 |
+
num_tiles (List[List[int]]): A nested list structure specifying the number of tiles for each image in each batch item.
|
115 |
+
max_num_tiles (int): The maximum possible number of tiles.
|
116 |
+
length (int): The total sequence length of the input.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
np.ndarray: A 4D numpy array of shape (batch_size, length, max_num_images, max_num_tiles)
|
120 |
+
The array contains `1` where attention is allowed and `0` where it is not.
|
121 |
+
|
122 |
+
Note:
|
123 |
+
- Special handling is done for cases where the end token is -1, which is interpreted as attending to the end of the sequence.
|
124 |
+
"""
|
125 |
+
|
126 |
+
batch_size = len(cross_attention_token_mask)
|
127 |
+
max_num_images = max([len(masks) for masks in cross_attention_token_mask])
|
128 |
+
|
129 |
+
cross_attention_mask = np.zeros(
|
130 |
+
shape=(batch_size, length, max_num_images, max_num_tiles),
|
131 |
+
dtype=np.int64,
|
132 |
+
)
|
133 |
+
|
134 |
+
for sample_idx, (sample_masks, sample_num_tiles) in enumerate(zip(cross_attention_token_mask, num_tiles)):
|
135 |
+
for mask_idx, (locations, mask_num_tiles) in enumerate(zip(sample_masks, sample_num_tiles)):
|
136 |
+
if len(locations) == 2:
|
137 |
+
start, end = locations
|
138 |
+
end = min(end, length)
|
139 |
+
if end == -1:
|
140 |
+
end = length
|
141 |
+
cross_attention_mask[sample_idx, start:end, mask_idx, :mask_num_tiles] = 1
|
142 |
+
return cross_attention_mask
|
143 |
+
|
144 |
+
|
145 |
+
def build_string_from_input(prompt: str, bos_token: str, image_token: str) -> str:
|
146 |
+
"""
|
147 |
+
Builds a string from the input prompt by adding `bos_token` if not already present.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
prompt (`str`):
|
151 |
+
The input prompt string.
|
152 |
+
bos_token (`str`):
|
153 |
+
The beginning of sentence token to be added.
|
154 |
+
image_token (`str`):
|
155 |
+
The image token used to identify the start of an image sequence.
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
str: The modified prompt string with the `bos_token` added if necessary.
|
159 |
+
|
160 |
+
Examples:
|
161 |
+
>>> build_string_from_input("Hello world", "<begin_of_text>", "<|image|>")
|
162 |
+
'<begin_of_text>Hello world'
|
163 |
+
|
164 |
+
>>> build_string_from_input("<|image|>Hello world", "<begin_of_text>", "<|image|>")
|
165 |
+
'<|image|><begin_of_text>Hello world'
|
166 |
+
|
167 |
+
>>> build_string_from_input("<begin_of_text>Hello world", "<begin_of_text>", "<|image|>")
|
168 |
+
'<begin_of_text>Hello world'
|
169 |
+
"""
|
170 |
+
|
171 |
+
if bos_token in prompt:
|
172 |
+
return prompt
|
173 |
+
|
174 |
+
num_image_tokens_on_start = 0
|
175 |
+
while prompt.startswith(image_token):
|
176 |
+
prompt = prompt[len(image_token) :]
|
177 |
+
num_image_tokens_on_start += 1
|
178 |
+
|
179 |
+
return f"{image_token * num_image_tokens_on_start}{bos_token}{prompt}"
|
180 |
+
|
181 |
+
|
182 |
+
class MllamaProcessor(ProcessorMixin):
|
183 |
+
r"""
|
184 |
+
Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
|
185 |
+
[`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
|
186 |
+
tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
|
187 |
+
information.
|
188 |
+
The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
|
189 |
+
```python
|
190 |
+
from transformers import MllamaProcessor
|
191 |
+
from PIL import Image
|
192 |
+
|
193 |
+
processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")
|
194 |
+
|
195 |
+
processor(
|
196 |
+
images=your_pil_image,
|
197 |
+
text=["<|image|>If I had to write a haiku for this one"],
|
198 |
+
images_kwargs = {"size": {"height": 448, "width": 448}},
|
199 |
+
text_kwargs = {"padding": "right"},
|
200 |
+
common_kwargs = {"return_tensors": "pt"},
|
201 |
+
)
|
202 |
+
```
|
203 |
+
|
204 |
+
Args:
|
205 |
+
image_processor ([`MllamaImageProcessor`]):
|
206 |
+
The image processor is a required input.
|
207 |
+
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
|
208 |
+
The tokenizer is a required input.
|
209 |
+
|
210 |
+
"""
|
211 |
+
|
212 |
+
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
213 |
+
image_processor_class = "MllamaImageProcessor"
|
214 |
+
audio_processor_class = "MllamaAudioFeatureExtractor"
|
215 |
+
tokenizer_class = "PreTrainedTokenizerFast"
|
216 |
+
|
217 |
+
def __init__(self, image_processor, audio_processor, tokenizer):
|
218 |
+
self.image_token = "<|image|>"
|
219 |
+
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
|
220 |
+
self.audio_token = "<|audio|>"
|
221 |
+
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
|
222 |
+
self.python_token = "<|python_tag|>"
|
223 |
+
self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
|
224 |
+
self.bos_token = tokenizer.bos_token
|
225 |
+
self.chat_template = tokenizer.chat_template
|
226 |
+
super().__init__(image_processor, audio_processor, tokenizer)
|
227 |
+
|
228 |
+
def __call__(
|
229 |
+
self,
|
230 |
+
images: Optional[ImageInput] = None,
|
231 |
+
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
232 |
+
audio: Optional[AudioInput] = None,
|
233 |
+
videos=None,
|
234 |
+
**kwargs: Unpack[MllamaProcessorKwargs],
|
235 |
+
) -> BatchFeature:
|
236 |
+
"""
|
237 |
+
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
|
238 |
+
arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
|
239 |
+
the text. To prepare the image(s), this method forwards the `images` arguments to
|
240 |
+
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
|
241 |
+
to the docstring of the above two methods for more information.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
245 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
246 |
+
tensor. Both channels-first and channels-last formats are supported.
|
247 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
248 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
249 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
250 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
251 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
252 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
253 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
254 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
255 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
256 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
257 |
+
Returns:
|
258 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
259 |
+
|
260 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
261 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
262 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
263 |
+
`None`).
|
264 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
265 |
+
- **audio_features** -- Audio features extracted using SeamlessM4TFeatureExtractor. Returned when `audio` is not `None`.
|
266 |
+
TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
|
267 |
+
"""
|
268 |
+
if text is None:
|
269 |
+
raise ValueError("You must specify text.")
|
270 |
+
|
271 |
+
output_kwargs = self._merge_kwargs(
|
272 |
+
MllamaProcessorKwargs,
|
273 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
274 |
+
**kwargs,
|
275 |
+
)
|
276 |
+
|
277 |
+
text_kwargs = output_kwargs["text_kwargs"]
|
278 |
+
images_kwargs = output_kwargs["images_kwargs"]
|
279 |
+
common_kwargs = output_kwargs["common_kwargs"]
|
280 |
+
|
281 |
+
data = {}
|
282 |
+
|
283 |
+
if audio is not None:
|
284 |
+
audio_batch = make_list_of_audio_clips(audio)
|
285 |
+
audio_features = self.audio_processor(audio_batch)
|
286 |
+
data.update(audio_features)
|
287 |
+
|
288 |
+
if isinstance(text, str):
|
289 |
+
text = [text]
|
290 |
+
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
|
291 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
292 |
+
n_images_in_text = [t.count(self.image_token) for t in text]
|
293 |
+
text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
|
294 |
+
_ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
|
295 |
+
encoding = self.tokenizer(text, **text_kwargs)
|
296 |
+
if audio is not None:
|
297 |
+
encoding = build_audio_tokens(encoding, audio_features, self.audio_token_id)
|
298 |
+
data.update(encoding)
|
299 |
+
|
300 |
+
n_images_in_images = [0]
|
301 |
+
if images is not None:
|
302 |
+
images = make_list_of_images(images)
|
303 |
+
n_images_in_images = [len(sample) for sample in images]
|
304 |
+
|
305 |
+
if text is not None:
|
306 |
+
if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
|
307 |
+
batch_img == 0 for batch_img in n_images_in_text
|
308 |
+
):
|
309 |
+
raise ValueError(
|
310 |
+
"If a batch of text is provided, there should be either no images or at least one image per sample"
|
311 |
+
)
|
312 |
+
if sum(n_images_in_images) != sum(n_images_in_text):
|
313 |
+
if images is None:
|
314 |
+
raise ValueError("No image were provided, but there are image tokens in the prompt")
|
315 |
+
else:
|
316 |
+
raise ValueError(
|
317 |
+
f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
|
318 |
+
)
|
319 |
+
|
320 |
+
if images is not None:
|
321 |
+
image_features = self.image_processor(images, **images_kwargs)
|
322 |
+
num_tiles = image_features.pop("num_tiles")
|
323 |
+
data.update(image_features)
|
324 |
+
|
325 |
+
# Create cross attention mask
|
326 |
+
if images is not None and text is not None:
|
327 |
+
cross_attention_token_mask = [
|
328 |
+
get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
|
329 |
+
]
|
330 |
+
cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
|
331 |
+
cross_attention_token_mask,
|
332 |
+
num_tiles=num_tiles,
|
333 |
+
max_num_tiles=self.image_processor.max_image_tiles,
|
334 |
+
length=max(len(input_ids) for input_ids in encoding["input_ids"]),
|
335 |
+
)
|
336 |
+
data["cross_attention_mask"] = cross_attention_mask
|
337 |
+
|
338 |
+
return_tensors = common_kwargs.pop("return_tensors", None)
|
339 |
+
batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
|
340 |
+
|
341 |
+
return batch_feature
|
342 |
+
|
343 |
+
def batch_decode(self, *args, **kwargs):
|
344 |
+
"""
|
345 |
+
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
346 |
+
refer to the docstring of this method for more information.
|
347 |
+
"""
|
348 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
349 |
+
|
350 |
+
def decode(self, *args, **kwargs):
|
351 |
+
"""
|
352 |
+
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
353 |
+
the docstring of this method for more information.
|
354 |
+
"""
|
355 |
+
return self.tokenizer.decode(*args, **kwargs)
|
356 |
+
|
357 |
+
@property
|
358 |
+
def model_input_names(self):
|
359 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
360 |
+
image_processor_input_names = self.image_processor.model_input_names
|
361 |
+
audio_processor_input_names = self.audio_processor.model_input_names
|
362 |
+
return list(tokenizer_input_names +
|
363 |
+
image_processor_input_names +
|
364 |
+
["cross_attention_mask"] +
|
365 |
+
audio_processor_input_names)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|finetune_right_pad_id|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2079 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|step_id|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_2|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_3|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_4|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_5|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_6|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_7|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_8|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_9|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_10|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_11|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_12|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_13|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_14|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_15|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_16|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_17|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_18|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_19|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_20|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_21|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_22|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_23|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_24|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_25|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_26|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_27|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_28|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_29|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_30|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_31|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_32|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_33|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_34|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_35|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_36|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_37|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_38|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_39|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_40|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_41|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_42|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_43|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_44|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_45|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_46|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_47|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_48|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_49|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_50|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_51|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_52|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_53|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_54|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_55|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_56|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_57|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_58|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_59|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_60|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_61|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_62|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_63|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_64|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_65|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_66|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_67|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_68|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_69|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_70|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_71|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_72|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_73|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_74|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_75|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_76|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_77|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_78|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_79|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_80|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_81|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_82|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_83|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_84|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_85|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_86|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_87|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_88|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_89|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_90|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_91|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_92|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_93|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_94|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_95|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_96|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_97|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_98|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_99|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_100|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_101|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_102|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_103|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_104|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_105|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_106|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_107|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_108|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_109|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_110|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_111|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_112|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_113|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_114|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_115|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_116|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_117|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_118|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_119|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_120|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_121|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_122|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_123|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_124|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_125|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_126|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_127|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_128|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_129|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_130|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_131|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_132|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_133|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_134|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_135|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_136|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_137|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_138|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_139|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_140|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_141|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_142|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_143|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_144|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_145|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_146|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_147|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_148|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_149|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_150|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_151|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_152|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_153|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_154|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_155|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_156|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_157|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_158|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_159|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_160|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_161|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_162|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_163|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_164|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_165|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_166|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_167|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_168|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_169|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_170|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_171|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_172|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_173|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_174|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_175|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_176|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_177|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_178|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_179|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_180|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_181|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_182|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_183|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_184|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_185|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_186|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_187|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_188|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_189|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_190|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_191|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_192|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_193|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_194|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_195|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_196|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_197|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_198|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_199|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_200|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_201|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_202|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_203|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_204|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_205|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_206|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_207|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_208|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_209|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_210|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_211|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_212|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_213|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_214|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_215|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_216|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_217|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_218|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_219|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_220|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_221|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_222|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_223|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_224|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_225|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_226|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_227|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_228|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_229|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_230|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_231|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_232|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_233|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_234|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_235|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_236|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_237|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_238|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_239|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_240|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|begin_of_audio|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|end_of_audio|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_243|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_244|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_245|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_246|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128256": {
|
2052 |
+
"content": "<|image|>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
},
|
2059 |
+
"128257": {
|
2060 |
+
"content": "<|audio|>",
|
2061 |
+
"lstrip": false,
|
2062 |
+
"normalized": false,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": true
|
2066 |
+
}
|
2067 |
+
},
|
2068 |
+
"bos_token": "<|begin_of_text|>",
|
2069 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n{%- endfor %}\n\n{#- Error out if there are images and system message #}\n{%- if image_ns.has_images and not system_message == \"\" %}\n {{- raise_exception(\"Prompting with images is incompatible with system messages.\") }}\n{%- endif %}\n\n{#- System message if there are no images #}\n{%- if not image_ns.has_images %}\n {{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n {%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n {%- endif %}\n {{- \"Cutting Knowledge Date: December 2023\\n\" }}\n {{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n {%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- \"<|eot_id|>\" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2070 |
+
"clean_up_tokenization_spaces": true,
|
2071 |
+
"eos_token": "<|eot_id|>",
|
2072 |
+
"model_input_names": [
|
2073 |
+
"input_ids",
|
2074 |
+
"attention_mask"
|
2075 |
+
],
|
2076 |
+
"model_max_length": 131072,
|
2077 |
+
"pad_token": "<|finetune_right_pad_id|>",
|
2078 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2079 |
+
}
|