Aleksandar
commited on
Commit
•
7a3247d
1
Parent(s):
396270b
add model
Browse files- README.md +27 -40
- config.json +2 -8
- pytorch_model.bin +2 -2
- training_args.bin +1 -1
README.md
CHANGED
@@ -2,24 +2,26 @@
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
5 |
-
-
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
9 |
- f1
|
10 |
- accuracy
|
11 |
-
language:
|
12 |
-
- sr
|
13 |
model_index:
|
14 |
- name: distilbert-srb-ner
|
15 |
results:
|
16 |
- task:
|
17 |
name: Token Classification
|
18 |
type: token-classification
|
|
|
|
|
|
|
|
|
19 |
metric:
|
20 |
name: Accuracy
|
21 |
type: accuracy
|
22 |
-
value: 0.
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -27,40 +29,25 @@ should probably proofread and complete it, then remove this comment. -->
|
|
27 |
|
28 |
# distilbert-srb-ner
|
29 |
|
30 |
-
This model was
|
31 |
-
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss: 0.
|
34 |
-
- Precision: 0.
|
35 |
-
- Recall: 0.
|
36 |
-
- F1: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
41 |
-
|
42 |
|
43 |
## Intended uses & limitations
|
44 |
|
45 |
-
|
46 |
-
|-------------|--------------------------|------------------------------------------|
|
47 |
-
| O | 0 | Other |
|
48 |
-
| B-per | 1 | B.Person |
|
49 |
-
| I-per | 2 | I. Person |
|
50 |
-
| B-org | 3 | B. organization |
|
51 |
-
| I-org | 4 | I. organization |
|
52 |
-
| B-loc | 5 | B. location |
|
53 |
-
| I-loc | 6 | I. location |
|
54 |
-
| B-misc | 7 | B. Miscellaneous |
|
55 |
-
| I-misc | 8 | I. Miscellaneous |
|
56 |
-
| B-deriv-per | 9 | B. Derived Person |
|
57 |
-
|
58 |
-
MIT license
|
59 |
|
60 |
## Training and evaluation data
|
61 |
|
62 |
-
|
63 |
-
0.15% of dataset (setimes.SR) was used as validation dataset.
|
64 |
|
65 |
## Training procedure
|
66 |
|
@@ -77,18 +64,18 @@ The following hyperparameters were used during training:
|
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
-
| Training Loss | Epoch | Step
|
81 |
-
|
82 |
-
|
|
83 |
-
|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
5 |
+
- wikiann
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
9 |
- f1
|
10 |
- accuracy
|
|
|
|
|
11 |
model_index:
|
12 |
- name: distilbert-srb-ner
|
13 |
results:
|
14 |
- task:
|
15 |
name: Token Classification
|
16 |
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: wikiann
|
19 |
+
type: wikiann
|
20 |
+
args: sr
|
21 |
metric:
|
22 |
name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9570619691726958
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
# distilbert-srb-ner
|
31 |
|
32 |
+
This model was trained from scratch on the wikiann dataset.
|
|
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2532
|
35 |
+
- Precision: 0.8859
|
36 |
+
- Recall: 0.9066
|
37 |
+
- F1: 0.8962
|
38 |
+
- Accuracy: 0.9571
|
39 |
|
40 |
## Model description
|
41 |
|
42 |
+
More information needed
|
43 |
|
44 |
## Intended uses & limitations
|
45 |
|
46 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
## Training and evaluation data
|
49 |
|
50 |
+
More information needed
|
|
|
51 |
|
52 |
## Training procedure
|
53 |
|
|
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
69 |
+
| 0.2615 | 1.0 | 1250 | 0.2126 | 0.8268 | 0.8327 | 0.8297 | 0.9319 |
|
70 |
+
| 0.1568 | 2.0 | 2500 | 0.1775 | 0.8695 | 0.8699 | 0.8697 | 0.9472 |
|
71 |
+
| 0.1017 | 3.0 | 3750 | 0.1718 | 0.8649 | 0.8857 | 0.8752 | 0.9504 |
|
72 |
+
| 0.066 | 4.0 | 5000 | 0.1906 | 0.8734 | 0.8930 | 0.8831 | 0.9530 |
|
73 |
+
| 0.0413 | 5.0 | 6250 | 0.2076 | 0.8805 | 0.8992 | 0.8897 | 0.9549 |
|
74 |
+
| 0.03 | 6.0 | 7500 | 0.2257 | 0.8758 | 0.9045 | 0.8899 | 0.9554 |
|
75 |
+
| 0.0213 | 7.0 | 8750 | 0.2286 | 0.8864 | 0.9015 | 0.8939 | 0.9556 |
|
76 |
+
| 0.0157 | 8.0 | 10000 | 0.2454 | 0.8874 | 0.9021 | 0.8947 | 0.9566 |
|
77 |
+
| 0.01 | 9.0 | 11250 | 0.2486 | 0.8878 | 0.9043 | 0.8960 | 0.9573 |
|
78 |
+
| 0.0076 | 10.0 | 12500 | 0.2532 | 0.8859 | 0.9066 | 0.8962 | 0.9571 |
|
79 |
|
80 |
|
81 |
### Framework versions
|
config.json
CHANGED
@@ -15,10 +15,7 @@
|
|
15 |
"3": "LABEL_3",
|
16 |
"4": "LABEL_4",
|
17 |
"5": "LABEL_5",
|
18 |
-
"6": "LABEL_6"
|
19 |
-
"7": "LABEL_7",
|
20 |
-
"8": "LABEL_8",
|
21 |
-
"9": "LABEL_9"
|
22 |
},
|
23 |
"initializer_range": 0.02,
|
24 |
"label2id": {
|
@@ -28,10 +25,7 @@
|
|
28 |
"LABEL_3": 3,
|
29 |
"LABEL_4": 4,
|
30 |
"LABEL_5": 5,
|
31 |
-
"LABEL_6": 6
|
32 |
-
"LABEL_7": 7,
|
33 |
-
"LABEL_8": 8,
|
34 |
-
"LABEL_9": 9
|
35 |
},
|
36 |
"max_position_embeddings": 512,
|
37 |
"model_type": "distilbert",
|
|
|
15 |
"3": "LABEL_3",
|
16 |
"4": "LABEL_4",
|
17 |
"5": "LABEL_5",
|
18 |
+
"6": "LABEL_6"
|
|
|
|
|
|
|
19 |
},
|
20 |
"initializer_range": 0.02,
|
21 |
"label2id": {
|
|
|
25 |
"LABEL_3": 3,
|
26 |
"LABEL_4": 4,
|
27 |
"LABEL_5": 5,
|
28 |
+
"LABEL_6": 6
|
|
|
|
|
|
|
29 |
},
|
30 |
"max_position_embeddings": 512,
|
31 |
"model_type": "distilbert",
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec278e2e6a712f0e95da93b29462d1a5264e4ece5970fd9a42654c335808a512
|
3 |
+
size 326138357
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2671
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d0287ce65dbcec4df2dfdbdd416dd8bf259fb567921a3e005e33e8a703ae04a
|
3 |
size 2671
|