AlejandroTorresMunoz commited on
Commit
c2625ae
1 Parent(s): b7f83bf

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.66 +/- 15.89
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b51844f3ac0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b51844f3b50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b51844f3be0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b51844f3c70>", "_build": "<function ActorCriticPolicy._build at 0x7b51844f3d00>", "forward": "<function ActorCriticPolicy.forward at 0x7b51844f3d90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b51844f3e20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b51844f3eb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b51844f3f40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5184500040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b51845000d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5184500160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b5184698dc0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707757417887837476, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACCSXL57l7q89vhQOsk2oTgJKiw+StqGuQAAgD8AAIA/M0CevUXMNj4Qw0a9QK8+vkfya73c9KY8AAAAAAAAAAANNye+abhCvNGEoboN2qW42NmpPQVDzjkAAIA/AACAP01l4z2suos87rqrvEkzQb4Ylyc7Jc5vPAAAAAAAAAAAWkEyPpVwiD+lG9U+i+YJv10KPz4+LM49AAAAAAAAAAAi7J2+4WGOPu0wkT4Fn1q+nA7EvBkSqz0AAAAAAAAAAAMqmb4rR5w+Wg/cPXw2mr7JCUi93uhIPQAAAAAAAAAADTAkvqyggTxY3vk9BCMRvXXKHL74JGk7AACAPwAAgD/gcpa+AOWsPs4pUz4PA3m+RG9AvGKi0DsAAAAAAAAAADN9hD7uvLm8LaqIOpVO3Lgv8yW+1xiruQAAgD8AAIA/7e8OvmT4yD1VB6Y9NohJvtWRNL1PLIa6AAAAAAAAAABarum9VLfDPg7Tgb1U1Le+D8phvehtzzsAAAAAAAAAAM3vAL7PV1U+fnGNOyAOlr4jpCW9g++RuwAAAAAAAAAAhh6vPu9fcD2yx/04Rgl1N5gGPT7wkDK4AACAPwAAgD/Af2u+IrdJPjI1Mz7aPGy+YOAdPHpAZLwAAAAAAAAAAA2qIr48y1M/hRF6vs/sBb9Fp5K9sv12vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDl4Ju2qkyMAWyUS+GMAXSUR0CqQnwN0/4ZdX2UKGgGR0BxRv9n9NvgaAdNCAFoCEdAqkKpgogFHXV9lChoBkdAcVStQsPJ72gHTT8BaAhHQKpDFOfNA1N1fZQoaAZHQHGxAVwgkkdoB01RAWgIR0CqQxxaPjn3dX2UKGgGR0Bsuu3F1jiGaAdL6WgIR0CqQ4t/OMVDdX2UKGgGR0Bxn0ibDuSfaAdNLgFoCEdAqkQkeyRjjXV9lChoBkdAYWF/b0voNmgHTegDaAhHQKpFHeyAxzt1fZQoaAZHQGu8yQ5myxBoB01hAWgIR0CqRi6i9IwudX2UKGgGR0Byjqi35N48aAdNFAFoCEdAqkcCLbYbsHV9lChoBkdAXkU1YQrc02gHTegDaAhHQKpH12t+1Bt1fZQoaAZHQGys2IO6NERoB00PAWgIR0CqR+R28qWkdX2UKGgGR0BwtmUqx1PnaAdL72gIR0CqR/n/tICmdX2UKGgGR0BwWeSjgydnaAdL6GgIR0CqSGxubZvldX2UKGgGR0Bs7H82rGR3aAdNBQFoCEdAqkidD+irUHV9lChoBkdAcIecTakAP2gHTQIBaAhHQKpI75rxiG51fZQoaAZHQHGpqpYLb6BoB0vfaAhHQKpJQMSbpeN1fZQoaAZHQG/ERffGdZtoB0vhaAhHQKp6JD63y7R1fZQoaAZHQG97AjIJZ4hoB0vqaAhHQKp7Etnwob51fZQoaAZHQHAXnfyf+S9oB0vaaAhHQKp8TA8jiXJ1fZQoaAZHQHBTH4Kx9ohoB0vuaAhHQKp8kNNrTH91fZQoaAZHQHIhyAQQL/loB00LAWgIR0CqfKLlFMIvdX2UKGgGR0Bu/D08NhE0aAdNCwFoCEdAqnzCCYkVvnV9lChoBkdAcBZ8hLXcxmgHS+BoCEdAqnzP3L3bmHV9lChoBkdAcKDy1uzhP2gHTSgBaAhHQKp9Vo+wC8x1fZQoaAZHQHC0OeWfK6poB00BAWgIR0CqfeTsyBTXdX2UKGgGR0BcmAM+eOGTaAdN6ANoCEdAqn6m6mO2iXV9lChoBkdAX940l7dBSmgHTegDaAhHQKp/dag26091fZQoaAZHQG8a1YhdMTNoB0vNaAhHQKqBbnqVyFR1fZQoaAZHQHHbm7FsHjZoB0v0aAhHQKqDEtCiRGN1fZQoaAZHQG6q5tNzr/toB0vlaAhHQKqDWuxrzoV1fZQoaAZHQHESyzsyBTZoB0vOaAhHQKqDsYu01Il1fZQoaAZHQFeQV6eGwidoB03oA2gIR0CqhO6q0dBCdX2UKGgGR0Bqqv1xsEaEaAdNXQFoCEdAqoUy7sfJWHV9lChoBkdAYBd36hxo7GgHTegDaAhHQKqFQNZvDP51fZQoaAZHQGz2MSCe2/loB0vzaAhHQKqFjAprk811fZQoaAZHQHC9cjZ+QU5oB0vzaAhHQKqHUMAmzB11fZQoaAZHQFpughKUVzpoB03oA2gIR0Cqh9yh8IAwdX2UKGgGR0BxTeksSTQmaAdLw2gIR0CqiDOgQHzIdX2UKGgGR0BudYhStNi6aAdL5WgIR0CqiG+UhV2idX2UKGgGR0BipgybhFVlaAdN6ANoCEdAqol2uoxYaHV9lChoBkdAbgBor4Fia2gHTUkCaAhHQKqKJ/J/5L11fZQoaAZHQHB0rBbfP5ZoB0vXaAhHQKqKL3Tuv2Z1fZQoaAZHQG4aKVhTfixoB0vfaAhHQKqKcPsiSq51fZQoaAZHQHHArrxAjY9oB0v0aAhHQKqLWys0YTF1fZQoaAZHQGDbfl6qsEJoB03oA2gIR0Cqi5F6Z6UrdX2UKGgGR0BxysMH8jzJaAdNRwFoCEdAqoz0j3VTaXV9lChoBkdAcbvxe9i+c2gHTQIBaAhHQKqPupn6Eal1fZQoaAZHQHC4XVG0/npoB000AWgIR0Cqj7i97F85dX2UKGgGR0BwUCO+7Dl6aAdNMwFoCEdAqpA9Gb1AaHV9lChoBkdAbvuHfuTibWgHS9loCEdAqpCNe+mFanV9lChoBkdAb8AqVhTfi2gHTQcBaAhHQKqQ0Gkep4t1fZQoaAZHQGx4LvTgEU1oB0vYaAhHQKqRQ8lolD51fZQoaAZHQHBHOvQnhKloB00PAWgIR0CqkXlSbYsedX2UKGgGR0Bd3nE/B3zMaAdN6ANoCEdAqpKdZX+2mnV9lChoBkdAYF84OMERrmgHTegDaAhHQKqThMtbs4V1fZQoaAZHQG9eG/N7jT9oB00UAWgIR0Cqk9CqhlDndX2UKGgGR0Bj61uR9w3paAdN6ANoCEdAqpTTGvOhTXV9lChoBkdAW95LwnYxtmgHTegDaAhHQKqU5IbwSap1fZQoaAZHQG5nC48U21loB0vhaAhHQKqVElVtGd91fZQoaAZHQG9BQL3K0UpoB0vYaAhHQKqVLRR/EwZ1fZQoaAZHQG9sEWykbgloB00FAWgIR0CqlVXl0YCRdX2UKGgGR0BscobIcR16aAdL+GgIR0CqlgI/iYLLdX2UKGgGR0BxUDyxzJZGaAdNLgFoCEdAqpYe/Ho5gnV9lChoBkdAcNOh/iHZb2gHS/9oCEdAqpaNAVwgknV9lChoBkdAcVzfXf642GgHTQkBaAhHQKqW6RJVbRp1fZQoaAZHQG0wcfFJg9hoB0vmaAhHQKqXOsDnvDx1fZQoaAZHQHBXX0PH1e1oB0v2aAhHQKqYWXIlt0p1fZQoaAZHQHA/hq9GqghoB0vHaAhHQKqYq8eS0Sh1fZQoaAZHQHC3t1ZDArRoB0vQaAhHQKqY6hY/3WZ1fZQoaAZHQHGnOLrHEMtoB0v0aAhHQKqZ/SbYsd11fZQoaAZHQHFjU9yLhrFoB0v0aAhHQKqaLaQFLWZ1fZQoaAZHQHEb9M9KVY9oB01OAWgIR0Cqmoj1oQFtdX2UKGgGR0BhjTfm9xp+aAdN6ANoCEdAqpqWattALXV9lChoBkdAcUXwh4dIXmgHS9loCEdAqpryjJuEVXV9lChoBkdAcphA5aNdaGgHTS8BaAhHQKqbG593KSx1fZQoaAZHQHCY6+evpyJoB00AAWgIR0Cqmz8R+SbIdX2UKGgGR0BwrKpAD7qIaAdL3WgIR0Cqm7KxLTQWdX2UKGgGR0Buv/JRwZO0aAdL7WgIR0CqnXhh6SkkdX2UKGgGR0Bq0ZQUHpr2aAdNVQFoCEdAqp3P9ehPCXV9lChoBkdAcIKMb3oLX2gHS+ZoCEdAqp7DBuXNT3V9lChoBkdAX0HRSgoPTWgHTegDaAhHQKqe2p4KQaJ1fZQoaAZHQHC8zbWVeKNoB0v5aAhHQKqfaHPeHi51fZQoaAZHQG/iM67ulXRoB0v6aAhHQKqf0fNiYsx1fZQoaAZHQHLsQAyVObloB00LAWgIR0CqoFnndO6/dX2UKGgGR0Be0UHIIWxhaAdN6ANoCEdAqqDqyOaOP3V9lChoBkdAcfY0tyxRmGgHTY0BaAhHQKqhE2sJY1Z1fZQoaAZHQGpd/KhcqvxoB03NA2gIR0CqoX9kz41xdX2UKGgGR0BtGO2qkuYhaAdNCQFoCEdAqqHFy5qdpnV9lChoBkdAcMmQtz0Yj2gHS8toCEdAqqJRB/qgRXV9lChoBkdAcNYYOUdJa2gHS9hoCEdAqqPRtLteD3V9lChoBkdAcrHhLoOhCmgHTZUBaAhHQKqj80P6KtR1fZQoaAZHQG4tfN7jT8ZoB0veaAhHQKqkIA5Jbt91fZQoaAZHQHAEYvN/vv1oB0vYaAhHQKqkl+jM3ZR1fZQoaAZHQG2nmvGIbfhoB02eAWgIR0CqpKck+otMdX2UKGgGR0Bx+Mr9VFQVaAdNHQFoCEdAqqSkpEx7A3V9lChoBkdAcV37D2rXDmgHS8poCEdAqqUnDej2z3V9lChoBkdAcDUX/5tWMmgHS+RoCEdAqqVNp9JBgXV9lChoBkdAbgQGZeAuqWgHS9FoCEdAqqXpJ/XoT3V9lChoBkdAcJSRb8m8d2gHS/5oCEdAqqb1UADJVHV9lChoBkdAcTnQCSzPbGgHS+poCEdAqqduN5t3wHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63fca852394e50efd2c8ea171d88dc4efc8d61a8999169620d0247bbbb29d86
3
+ size 148007
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b51844f3ac0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b51844f3b50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b51844f3be0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b51844f3c70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b51844f3d00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b51844f3d90>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b51844f3e20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b51844f3eb0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b51844f3f40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b5184500040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b51845000d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b5184500160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b5184698dc0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1707757417887837476,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACCSXL57l7q89vhQOsk2oTgJKiw+StqGuQAAgD8AAIA/M0CevUXMNj4Qw0a9QK8+vkfya73c9KY8AAAAAAAAAAANNye+abhCvNGEoboN2qW42NmpPQVDzjkAAIA/AACAP01l4z2suos87rqrvEkzQb4Ylyc7Jc5vPAAAAAAAAAAAWkEyPpVwiD+lG9U+i+YJv10KPz4+LM49AAAAAAAAAAAi7J2+4WGOPu0wkT4Fn1q+nA7EvBkSqz0AAAAAAAAAAAMqmb4rR5w+Wg/cPXw2mr7JCUi93uhIPQAAAAAAAAAADTAkvqyggTxY3vk9BCMRvXXKHL74JGk7AACAPwAAgD/gcpa+AOWsPs4pUz4PA3m+RG9AvGKi0DsAAAAAAAAAADN9hD7uvLm8LaqIOpVO3Lgv8yW+1xiruQAAgD8AAIA/7e8OvmT4yD1VB6Y9NohJvtWRNL1PLIa6AAAAAAAAAABarum9VLfDPg7Tgb1U1Le+D8phvehtzzsAAAAAAAAAAM3vAL7PV1U+fnGNOyAOlr4jpCW9g++RuwAAAAAAAAAAhh6vPu9fcD2yx/04Rgl1N5gGPT7wkDK4AACAPwAAgD/Af2u+IrdJPjI1Mz7aPGy+YOAdPHpAZLwAAAAAAAAAAA2qIr48y1M/hRF6vs/sBb9Fp5K9sv12vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVFAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDl4Ju2qkyMAWyUS+GMAXSUR0CqQnwN0/4ZdX2UKGgGR0BxRv9n9NvgaAdNCAFoCEdAqkKpgogFHXV9lChoBkdAcVStQsPJ72gHTT8BaAhHQKpDFOfNA1N1fZQoaAZHQHGxAVwgkkdoB01RAWgIR0CqQxxaPjn3dX2UKGgGR0Bsuu3F1jiGaAdL6WgIR0CqQ4t/OMVDdX2UKGgGR0Bxn0ibDuSfaAdNLgFoCEdAqkQkeyRjjXV9lChoBkdAYWF/b0voNmgHTegDaAhHQKpFHeyAxzt1fZQoaAZHQGu8yQ5myxBoB01hAWgIR0CqRi6i9IwudX2UKGgGR0Byjqi35N48aAdNFAFoCEdAqkcCLbYbsHV9lChoBkdAXkU1YQrc02gHTegDaAhHQKpH12t+1Bt1fZQoaAZHQGys2IO6NERoB00PAWgIR0CqR+R28qWkdX2UKGgGR0BwtmUqx1PnaAdL72gIR0CqR/n/tICmdX2UKGgGR0BwWeSjgydnaAdL6GgIR0CqSGxubZvldX2UKGgGR0Bs7H82rGR3aAdNBQFoCEdAqkidD+irUHV9lChoBkdAcIecTakAP2gHTQIBaAhHQKpI75rxiG51fZQoaAZHQHGpqpYLb6BoB0vfaAhHQKpJQMSbpeN1fZQoaAZHQG/ERffGdZtoB0vhaAhHQKp6JD63y7R1fZQoaAZHQG97AjIJZ4hoB0vqaAhHQKp7Etnwob51fZQoaAZHQHAXnfyf+S9oB0vaaAhHQKp8TA8jiXJ1fZQoaAZHQHBTH4Kx9ohoB0vuaAhHQKp8kNNrTH91fZQoaAZHQHIhyAQQL/loB00LAWgIR0CqfKLlFMIvdX2UKGgGR0Bu/D08NhE0aAdNCwFoCEdAqnzCCYkVvnV9lChoBkdAcBZ8hLXcxmgHS+BoCEdAqnzP3L3bmHV9lChoBkdAcKDy1uzhP2gHTSgBaAhHQKp9Vo+wC8x1fZQoaAZHQHC0OeWfK6poB00BAWgIR0CqfeTsyBTXdX2UKGgGR0BcmAM+eOGTaAdN6ANoCEdAqn6m6mO2iXV9lChoBkdAX940l7dBSmgHTegDaAhHQKp/dag26091fZQoaAZHQG8a1YhdMTNoB0vNaAhHQKqBbnqVyFR1fZQoaAZHQHHbm7FsHjZoB0v0aAhHQKqDEtCiRGN1fZQoaAZHQG6q5tNzr/toB0vlaAhHQKqDWuxrzoV1fZQoaAZHQHESyzsyBTZoB0vOaAhHQKqDsYu01Il1fZQoaAZHQFeQV6eGwidoB03oA2gIR0CqhO6q0dBCdX2UKGgGR0Bqqv1xsEaEaAdNXQFoCEdAqoUy7sfJWHV9lChoBkdAYBd36hxo7GgHTegDaAhHQKqFQNZvDP51fZQoaAZHQGz2MSCe2/loB0vzaAhHQKqFjAprk811fZQoaAZHQHC9cjZ+QU5oB0vzaAhHQKqHUMAmzB11fZQoaAZHQFpughKUVzpoB03oA2gIR0Cqh9yh8IAwdX2UKGgGR0BxTeksSTQmaAdLw2gIR0CqiDOgQHzIdX2UKGgGR0BudYhStNi6aAdL5WgIR0CqiG+UhV2idX2UKGgGR0BipgybhFVlaAdN6ANoCEdAqol2uoxYaHV9lChoBkdAbgBor4Fia2gHTUkCaAhHQKqKJ/J/5L11fZQoaAZHQHB0rBbfP5ZoB0vXaAhHQKqKL3Tuv2Z1fZQoaAZHQG4aKVhTfixoB0vfaAhHQKqKcPsiSq51fZQoaAZHQHHArrxAjY9oB0v0aAhHQKqLWys0YTF1fZQoaAZHQGDbfl6qsEJoB03oA2gIR0Cqi5F6Z6UrdX2UKGgGR0BxysMH8jzJaAdNRwFoCEdAqoz0j3VTaXV9lChoBkdAcbvxe9i+c2gHTQIBaAhHQKqPupn6Eal1fZQoaAZHQHC4XVG0/npoB000AWgIR0Cqj7i97F85dX2UKGgGR0BwUCO+7Dl6aAdNMwFoCEdAqpA9Gb1AaHV9lChoBkdAbvuHfuTibWgHS9loCEdAqpCNe+mFanV9lChoBkdAb8AqVhTfi2gHTQcBaAhHQKqQ0Gkep4t1fZQoaAZHQGx4LvTgEU1oB0vYaAhHQKqRQ8lolD51fZQoaAZHQHBHOvQnhKloB00PAWgIR0CqkXlSbYsedX2UKGgGR0Bd3nE/B3zMaAdN6ANoCEdAqpKdZX+2mnV9lChoBkdAYF84OMERrmgHTegDaAhHQKqThMtbs4V1fZQoaAZHQG9eG/N7jT9oB00UAWgIR0Cqk9CqhlDndX2UKGgGR0Bj61uR9w3paAdN6ANoCEdAqpTTGvOhTXV9lChoBkdAW95LwnYxtmgHTegDaAhHQKqU5IbwSap1fZQoaAZHQG5nC48U21loB0vhaAhHQKqVElVtGd91fZQoaAZHQG9BQL3K0UpoB0vYaAhHQKqVLRR/EwZ1fZQoaAZHQG9sEWykbgloB00FAWgIR0CqlVXl0YCRdX2UKGgGR0BscobIcR16aAdL+GgIR0CqlgI/iYLLdX2UKGgGR0BxUDyxzJZGaAdNLgFoCEdAqpYe/Ho5gnV9lChoBkdAcNOh/iHZb2gHS/9oCEdAqpaNAVwgknV9lChoBkdAcVzfXf642GgHTQkBaAhHQKqW6RJVbRp1fZQoaAZHQG0wcfFJg9hoB0vmaAhHQKqXOsDnvDx1fZQoaAZHQHBXX0PH1e1oB0v2aAhHQKqYWXIlt0p1fZQoaAZHQHA/hq9GqghoB0vHaAhHQKqYq8eS0Sh1fZQoaAZHQHC3t1ZDArRoB0vQaAhHQKqY6hY/3WZ1fZQoaAZHQHGnOLrHEMtoB0v0aAhHQKqZ/SbYsd11fZQoaAZHQHFjU9yLhrFoB0v0aAhHQKqaLaQFLWZ1fZQoaAZHQHEb9M9KVY9oB01OAWgIR0Cqmoj1oQFtdX2UKGgGR0BhjTfm9xp+aAdN6ANoCEdAqpqWattALXV9lChoBkdAcUXwh4dIXmgHS9loCEdAqpryjJuEVXV9lChoBkdAcphA5aNdaGgHTS8BaAhHQKqbG593KSx1fZQoaAZHQHCY6+evpyJoB00AAWgIR0Cqmz8R+SbIdX2UKGgGR0BwrKpAD7qIaAdL3WgIR0Cqm7KxLTQWdX2UKGgGR0Buv/JRwZO0aAdL7WgIR0CqnXhh6SkkdX2UKGgGR0Bq0ZQUHpr2aAdNVQFoCEdAqp3P9ehPCXV9lChoBkdAcIKMb3oLX2gHS+ZoCEdAqp7DBuXNT3V9lChoBkdAX0HRSgoPTWgHTegDaAhHQKqe2p4KQaJ1fZQoaAZHQHC8zbWVeKNoB0v5aAhHQKqfaHPeHi51fZQoaAZHQG/iM67ulXRoB0v6aAhHQKqf0fNiYsx1fZQoaAZHQHLsQAyVObloB00LAWgIR0CqoFnndO6/dX2UKGgGR0Be0UHIIWxhaAdN6ANoCEdAqqDqyOaOP3V9lChoBkdAcfY0tyxRmGgHTY0BaAhHQKqhE2sJY1Z1fZQoaAZHQGpd/KhcqvxoB03NA2gIR0CqoX9kz41xdX2UKGgGR0BtGO2qkuYhaAdNCQFoCEdAqqHFy5qdpnV9lChoBkdAcMmQtz0Yj2gHS8toCEdAqqJRB/qgRXV9lChoBkdAcNYYOUdJa2gHS9hoCEdAqqPRtLteD3V9lChoBkdAcrHhLoOhCmgHTZUBaAhHQKqj80P6KtR1fZQoaAZHQG4tfN7jT8ZoB0veaAhHQKqkIA5Jbt91fZQoaAZHQHAEYvN/vv1oB0vYaAhHQKqkl+jM3ZR1fZQoaAZHQG2nmvGIbfhoB02eAWgIR0CqpKck+otMdX2UKGgGR0Bx+Mr9VFQVaAdNHQFoCEdAqqSkpEx7A3V9lChoBkdAcV37D2rXDmgHS8poCEdAqqUnDej2z3V9lChoBkdAcDUX/5tWMmgHS+RoCEdAqqVNp9JBgXV9lChoBkdAbgQGZeAuqWgHS9FoCEdAqqXpJ/XoT3V9lChoBkdAcJSRb8m8d2gHS/5oCEdAqqb1UADJVHV9lChoBkdAcTnQCSzPbGgHS+poCEdAqqduN5t3wHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdedf3bed25044e891bf895e1c24c65b3409e88e28f4076d53d49714a4417aae
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23d2e2cf1276df117c661ec4a4dc930b168f8b3d91d0c6cc1b8c172e5ea31147
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (174 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.6566236, "std_reward": 15.893520599399874, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-12T17:32:25.554363"}