Alegzandra commited on
Commit
b975482
1 Parent(s): 9d7b03c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ - accuracy
8
+ model-index:
9
+ - name: romanian_bert-finetuned-on-REDv2-romanian
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # romanian_bert-finetuned-on-REDv2-romanian
17
+
18
+ This model is a fine-tuned version of [dumitrescustefan/bert-base-romanian-cased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.2788
21
+ - F1: 0.6915
22
+ - Roc Auc: 0.8084
23
+ - Accuracy: 0.5801
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 5
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
54
+ | 0.32 | 1.0 | 511 | 0.2475 | 0.6561 | 0.7697 | 0.5433 |
55
+ | 0.2069 | 2.0 | 1022 | 0.2434 | 0.6661 | 0.7827 | 0.5672 |
56
+ | 0.1433 | 3.0 | 1533 | 0.2548 | 0.6891 | 0.8026 | 0.5856 |
57
+ | 0.0968 | 4.0 | 2044 | 0.2677 | 0.6847 | 0.8050 | 0.5727 |
58
+ | 0.0758 | 5.0 | 2555 | 0.2788 | 0.6915 | 0.8084 | 0.5801 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.25.1
64
+ - Pytorch 1.13.0+cu116
65
+ - Datasets 2.8.0
66
+ - Tokenizers 0.13.2