AlbeRota commited on
Commit
ecc7f42
·
verified ·
1 Parent(s): 23c3998

Upload weights, notebooks, sample images

Browse files
configs/config_inference.yaml DELETED
@@ -1,29 +0,0 @@
1
- # weights_path: run "unreflectanything download-weights" then use ~/.cache/unreflectanything/weights/ (or set path below)
2
- run: "gallant-bush-806"
3
- runs_dir: "/anvme/workspace/v120bb18-unreflectanything/runs"
4
- weights_path: "/anvme/workspace/v120bb18-unreflectanything/results/gallant-bush-806/models/full_model_weights.pt"
5
-
6
- model_config_path: "/anvme/workspace/v120bb18-unreflectanything/config_train.yaml"
7
- model_module: "models"
8
- input_dir: "/anvme/workspace/v120bb18-unreflectanything/benchmark/data/input"
9
- output_dir: "/anvme/workspace/v120bb18-unreflectanything/benchmark/data/OURS_L1"
10
- batch_size: 32
11
- num_workers: 4
12
- chunk_size: 8
13
- device: "cuda"
14
- image_extensions: [".png", ".jpg", ".jpeg"]
15
- resize_output: True
16
- brightness_threshold: 0.8
17
- inpaint_mask_dilation: 11
18
- monitor_usage: True
19
-
20
- # serene-terrain-817 : SoftTHR ablation - Rebuttal
21
- # smooth-vortex-816 : Dice ablation - Rebuttal
22
- # super-microwave-815 : TV ablation - Rebuttal
23
- # magic-brook-814 : DWConv ablation - Rebuttal
24
- # faithful-music-813 : Learned mask token ablation - Rebuttal
25
- # fresh-fire-811 : Positional encoding ablation- Rebuttal
26
- # clean-haze-809 : Spec ablation - Rebuttal
27
- # dainty-paper-808 : Seam ablation - Rebuttal
28
- # leafy-glade-807 : RGB ablation - Rebuttal
29
- # gallant-bush-806 : L1 ablation - Rebuttal
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/decoder_pretrain_448.yaml DELETED
@@ -1,307 +0,0 @@
1
- ### BASELINE: CONVERGES AFTER LONG
2
-
3
- parameters:
4
-
5
- ### MODEL ARCHITECTURE
6
- MODEL:
7
- value:
8
- MODEL_CLASS: "UnReflect_Model" # Main model class name (must match class in models.py)
9
- MODEL_MODULE: "models" # Module name to import model classes from (default: "models")
10
- RGB_ENCODER:
11
- ENCODER: "facebook/dinov3-vitl16-pretrain-lvd1689m" # DINOv3 encoder model name (HuggingFace format)
12
- IMAGE_SIZE: 448 # Input image size (height and width in pixels)
13
- RETURN_SELECTED_LAYERS: [3, 6, 9, 12] # Transformer layer indices to extract features from (0-indexed)
14
- RGB_ENCODER_LR: 0.0 # Learning rate for RGB encoder (0.0 = frozen, must be explicitly set)
15
- DECODERS:
16
- diffuse:
17
- USE_FILM: False # Enable FiLM (Feature-wise Linear Modulation) conditioning in decoder
18
- FEATURE_DIM: 1024 # Feature dimension for decoder (should match encoder output)
19
- REASSEMBLE_OUT_CHANNELS: [768,1024,1536,2048] # Output channels for each decoder stage (DPT-style reassembly)
20
- REASSEMBLE_FACTORS: [4.0, 2.0, 1.0, 0.5] # Spatial upsampling factors for each stage
21
- READOUT_TYPE: "ignore" # Readout type for DPT decoder ("ignore", "project", etc.)
22
- # FROM_PRETRAINED: "weights/rgb_decoder.pth" # Path to pretrained decoder weights (optional)
23
- USE_BN: False # Use batch normalization in decoder
24
- DROPOUT: 0.1 # Dropout rate in decoder layers
25
- OUTPUT_IMAGE_SIZE: [448,448] # Output image resolution [height, width]
26
- OUTPUT_CHANNELS: 3 # Number of output channels (3 for RGB diffuse image)
27
- DECODER_LR: 1.0e-3 # Custom learning rate for decoder (0.0 = frozen, 1.0 = same as base LR)
28
- NUM_FUSION_BLOCKS_TRAINABLE: null # Number of fusion blocks to train (0-4, null = train all if DECODER_LR != 0)
29
- TRAIN_RGB_HEAD: True # Whether to train RGB head (true/false, null = train if DECODER_LR != 0)
30
- highlight:
31
- USE_FILM: False # Enable FiLM conditioning in highlight decoder
32
- FEATURE_DIM: 1024 # Feature dimension for highlight decoder
33
- REASSEMBLE_OUT_CHANNELS: [96,192,384,768] # Output channels for each decoder stage
34
- REASSEMBLE_FACTORS: [4.0, 2.0, 1.0, 0.5] # Spatial upsampling factors for each stage
35
- READOUT_TYPE: "ignore" # Readout type for DPT decoder
36
- USE_BN: False # Use batch normalization in decoder
37
- DROPOUT: 0.1 # Dropout rate in decoder layers
38
- OUTPUT_IMAGE_SIZE: [448,448] # Output image resolution [height, width]
39
- OUTPUT_CHANNELS: 1 # Number of output channels (1 for highlight mask)
40
- DECODER_LR: 5.0e-4 # Custom learning rate for decoder (0.0 = frozen, 1.0 = same as base LR)
41
- NUM_FUSION_BLOCKS_TRAINABLE: null # Number of fusion blocks to train (0-4, null = train all if DECODER_LR != 0)
42
- TOKEN_INPAINTER:
43
- TOKEN_INPAINTER_CLASS: "TokenInpainter_Prior" # Token inpainter class name
44
- TOKEN_INPAINTER_MODULE: "token_inpainters" # Module name to import token inpainter from
45
- FROM_PRETRAINED: "weights/token_inpainter.pth" # Path to pretrained token inpainter weights (optional)
46
- TOKEN_INPAINTER_LR: 1.0e-5 # Learning rate for token inpainter (can differ from base LR)
47
- DEPTH: 6 # Number of transformer blocks
48
- HEADS: 16 # Number of attention heads
49
- DROP: 0 # Dropout rate
50
- USE_POSITIONAL_ENCODING: True # Enable 2D sinusoidal positional encodings
51
- USE_FINAL_NORM: True # Enable final LayerNorm before output projection
52
- USE_LOCAL_PRIOR: True # Blend local mean prior for masked seeds
53
- LOCAL_PRIOR_WEIGHT: 0.5 # Weight for local prior blending (1.0 = only mask_token, 0.0 = only local mean)
54
- LOCAL_PRIOR_KERNEL: 5 # Kernel size for local prior blending (> 1)
55
- SEED_NOISE_STD: 0.02 # Standard deviation of noise added to masked seeds during training
56
- INPAINT_MASK_DILATION:
57
- value: 11 # Dilation kernel size (pixels) for inpaint mask - Must be odd
58
- USE_TORCH_COMPILE: # Enable PyTorch 2.0 torch.compile for faster training (experimental)
59
- value: True
60
-
61
- ### DATA
62
- DATASETS:
63
- value:
64
- SCRREAM:
65
- VAL_SCENES: ["scene10_full_00","scene11_full_00","scene044_full_00","scene04_reduced_00","scene04_reduced_01","scene04_reduced_02"] # List of validation scene names
66
- TARGET_SIZE: [448,448] # Target image size [height, width] in pixels
67
- RESIZE_MODE: "resize+crop" # Image resizing mode: "resize", "crop", "resize+crop", or "pad"
68
- FEW_IMAGES: False # If True, load only first 10 images per scene (for quick debugging)
69
- SAMPLE_EVERY_N: 4 # Load every Nth frame from each scene (1 = all frames, 4 = every 4th frame)
70
- LOAD_RGB_ONLY: True # If True, ignore polarization data and load only RGB images
71
-
72
- HOUSECAT6D:
73
- VAL_SCENES: ["val_scene1","val_scene2"] # Validation scene names
74
- TARGET_SIZE: [448,448] # Target image size [height, width]
75
- RESIZE_MODE: "resize+crop" # Image resizing mode
76
- FEW_IMAGES: False # Load only first 10 images if True
77
- SAMPLE_EVERY_N: 4 # Load every Nth frame
78
- LOAD_RGB_ONLY: True # Ignore polarization data if True
79
-
80
- CROMO:
81
- TRAIN_SCENES: ["kitchen"] # Training scene names (list or string)
82
- # VAL_SCENES: "station" # Validation scene names (optional)
83
- TARGET_SIZE: [448,448] # Target image size [height, width]
84
- RESIZE_MODE: "resize" # Image resizing mode
85
- FEW_IMAGES: False # Load only first 10 images if True
86
- SAMPLE_EVERY_N: 8 # Load every Nth frame
87
- LOAD_RGB_ONLY: True # Ignore polarization data if True
88
-
89
- PSD:
90
- TRAIN_SCENES: "PSD_Train" # Training scene name (string or list)
91
- VAL_SCENES: "PSD_Val" # Validation scene name (string or list)
92
- TARGET_SIZE: [448,448] # Target image size [height, width]
93
- RESIZE_MODE: "resize+crop" # Image resizing mode
94
- FEW_IMAGES: False # Load only first 10 images if True
95
- SAMPLE_EVERY_N: 1 # Load every Nth frame (1 = all frames)
96
- LOAD_RGB_ONLY: True # Ignore polarization data if True
97
-
98
- SCARED:
99
- VAL_SCENES: ["v22","v23","v24","v25","v26","v27","v28","v29","v30","v31","v32","v33","v34"] # Validation scene names
100
- TARGET_SIZE: [448,448] # Target image size [height, width]
101
- RESIZE_MODE: "resize+crop" # Image resizing mode
102
- SAMPLE_EVERY_N: 4 # Load every Nth frame
103
- LOAD_RGB_ONLY: True # Ignore polarization data if True
104
- FEW_IMAGES: False # Load only first 10 images if True
105
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing in dataset
106
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection (0-1)
107
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
108
- HIGHLIGHT_RECT_SIZE: [1000, 1000] # Size of highlight rectangle region [height, width]
109
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
110
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
111
-
112
- STEREOMIS_TRACKING:
113
- VAL_SCENES: ["P2_2"] # Validation scene names
114
- TARGET_SIZE: [448,448] # Target image size [height, width]
115
- RESIZE_MODE: "resize+crop" # Image resizing mode
116
- SAMPLE_EVERY_N: 10 # Load every Nth frame
117
- LOAD_RGB_ONLY: True # Ignore polarization data if True
118
- FEW_IMAGES: False # Load only first 10 images if True
119
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
120
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
121
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
122
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
123
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
124
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
125
-
126
- CHOLEC80:
127
- VAL_SCENES: ["val"] # Validation scene names
128
- TARGET_SIZE: [448,448] # Target image size [height, width]
129
- RESIZE_MODE: "resize+crop" # Image resizing mode
130
- SAMPLE_EVERY_N: 50 # Load every Nth frame
131
- LOAD_RGB_ONLY: True # Ignore polarization data if True
132
- FEW_IMAGES: False # Load only first 10 images if True
133
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
134
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
135
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
136
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
137
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
138
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
139
-
140
- # POLARGB:
141
- # TRAIN_SCENES: "train"
142
- # VAL_SCENES: "test"
143
- # TARGET_SIZE: [448,448]
144
- # RESIZE_MODE: "resize+crop"
145
- # SAMPLE_EVERY_N: 1
146
- # LOAD_RGB_ONLY: True
147
-
148
- BATCH_SIZE: # Max batch size with img size 448 is 32
149
- value: 16 # Number of samples per batch (adjust based on GPU memory)
150
- NUM_WORKERS:
151
- value: 12 # Number of data loading worker processes (0 = main process only)
152
- SHUFFLE:
153
- value: True # Shuffle training data each epoch (False for validation/test)
154
- PIN_MEMORY:
155
- value: True # Pin memory in DataLoader for faster GPU transfer (recommended: True)
156
- PREFETCH_FACTOR:
157
- value: 2 # Number of batches to prefetch per worker (higher = more memory usage)
158
-
159
- ### HIGHLIGHTS
160
- MOGE_MODEL:
161
- value: "Ruicheng/moge-2-vits-normal" # MoGe model name for normal estimation (HuggingFace format)
162
- SURFACE_ROUGHNESS:
163
- value: 8.0 # Blinn-Phong surface roughness exponent (higher = sharper highlights)
164
- INTENSITY:
165
- value: 0.0 # Specular highlight intensity multiplier
166
- LIGHT_DISTANCE_RANGE:
167
- value: [0.0, 1] # Range for light source distance sampling [min, max] (normalized)
168
- LIGHT_LEFT_RIGHT_ANGLE:
169
- value: [0, 360] # Range for light source horizontal angle [min, max] in degrees
170
- LIGHT_ABOVE_BELOW_ANGLE:
171
- value: [0, 360] # Range for light source vertical angle [min, max] in degrees
172
- DATASET_HIGHLIGHT_DILATION:
173
- value: 25 # Dilation kernel size (pixels) for dataset highlight masks
174
- DATASET_HIGHLIGHT_THRESHOLD:
175
- value: 0.9 # Brightness/luminance threshold (0-1) for detecting highlights in dataset images
176
- DATASET_HIGHLIGHT_USE_LUMINANCE:
177
- value: True # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B) for dataset highlights; if False, use simple mean brightness
178
- HIGHLIGHT_COLOR:
179
- value: [1.0, 1.0, 1.0] # RGB color for synthetic highlights (normalized 0-1)
180
- CLAMP_RECONSTRUCTION:
181
- value: True # Clamp reconstructed images to [0, 1] range if True
182
-
183
- ### OPTIMIZATION
184
- LEARNING_RATE:
185
- value: 1.0e-3 # Base learning rate for optimizer
186
- WEIGHT_DECAY:
187
- value: 0.0 # L2 regularization weight (0.0 = no weight decay)
188
- EPOCHS:
189
- value: 50 # Maximum number of training epochs
190
- GRADIENT_ACCUMULATION_STEPS:
191
- value: 1 # Number of steps to accumulate gradients before optimizer step (1 = no accumulation)
192
- WARMUP:
193
- value: 100 # Number of warmup steps for learning rate schedule (linear warmup from 0 to LR)
194
- GRADIENT_CLIPPING_MAX_NORM:
195
- value: 8 # Maximum gradient norm for clipping (set to -1 to disable clipping)
196
- LR_SCHEDULER:
197
- value:
198
- ONPLATEAU: # ReduceLROnPlateau scheduler (reduces LR when validation metric plateaus)
199
- PATIENCE: 5 # Number of epochs to wait before reducing LR
200
- FACTOR: 0.1 # Factor by which LR is reduced (new_lr = old_lr * factor)
201
- # COSINE: # CosineAnnealingLR scheduler (cosine annealing schedule)
202
- # N_PERIODS: 5 # Number of cosine periods over training
203
- STEPWISE: # StepLR scheduler (reduces LR at fixed step intervals)
204
- N_STEPS: 4 # Number of times to reduce LR during training
205
- GAMMA: 0.5 # Factor by which LR is reduced at each step (new_lr = old_lr * gamma)
206
- # EXPONENTIAL: # ExponentialLR scheduler (exponential decay)
207
- # GAMMA: 0.5 # Multiplicative factor for exponential decay
208
-
209
- SWITCH_OPTIMIZER_EPOCH:
210
- value: null # Epoch number to switch from bootstrap to refining optimizer (null = no switch)
211
- OPTIMIZER_BOOTSTRAP_NAME:
212
- value: "AdamW" # Optimizer name for initial training phase ("Adam", "SGD", etc.)
213
- OPTIMIZER_REFINING_NAME:
214
- value: "AdamW" # Optimizer name for refining phase (used after SWITCH_OPTIMIZER_EPOCH)
215
- EARLY_STOPPING_PATIENCE:
216
- value: 20 # Number of epochs without improvement before stopping training
217
- SAVE_INTERVAL:
218
- value: 1000 # Number of training steps between model checkpoints
219
-
220
- DATASET_HIGHLIGHT_SUPERVISION_THRESHOLD:
221
- value: 0.1 # Pixel highlights above this threshold (should be low) are excluded from supervision
222
-
223
- ### LOSS WEIGHTS (relative to the total loss, NOT NORMALIZED LATER)
224
- SPECULAR_LOSS_WEIGHT:
225
- value: 1.0 # Weight for specular component reconstruction loss
226
- DIFFUSE_LOSS_WEIGHT:
227
- value: 1.0 # Weight for diffuse component reconstruction loss
228
- HIGHLIGHT_LOSS_WEIGHT:
229
- value: 1.0 # Weight for highlight mask regression loss
230
- IMAGE_RECONSTRUCTION_LOSS_WEIGHT:
231
- value: 0.0 # Weight for full image reconstruction loss
232
- SATURATION_RING_LOSS_WEIGHT:
233
- value: 0.5 # Weight for saturation ring consistency loss (around highlight regions)
234
- RING_KERNEL_SIZE:
235
- value: 11 # Kernel size (odd number) for saturation ring dilation around highlights
236
- RING_VAR_WEIGHT:
237
- value: 0.5 # Weight for variance matching in saturation ring loss (vs mean matching)
238
- RING_TEXTURE_WEIGHT:
239
- value: 0.0 # Weight for texture consistency term in saturation ring loss
240
- HLREG_W_L1:
241
- value: 1.0 # Weight for L1 loss in highlight regression
242
- HLREG_USE_CHARB:
243
- value: True # Use Charbonnier loss (smooth L1) instead of standard L1 if True
244
- HLREG_W_DICE:
245
- value: 0.2 # Weight for Dice loss in highlight regression (for mask overlap)
246
- HLREG_W_SSIM:
247
- value: 0.0 # Weight for SSIM loss in highlight regression
248
- HLREG_W_GRAD:
249
- value: 0.0 # Weight for gradient loss in highlight regression
250
- HLREG_W_TV:
251
- value: 0.0 # Weight for total variation loss in highlight regression
252
- HLREG_BALANCE_MODE:
253
- value: "auto" # Class balancing mode for highlight regression: 'none' | 'auto' | 'pos_weight'
254
- HLREG_POS_WEIGHT:
255
- value: 1.0 # Positive class weight (used only if BALANCE_MODE == 'pos_weight')
256
- HLREG_FOCAL_GAMMA:
257
- value: 2.0 # Focal loss gamma parameter (0.0 = standard BCE, 1.0-2.0 helps with gradient vanishing)
258
-
259
- WEIGHT_TOKEN_INPAINT:
260
- value: 0.0 # Weight for token-space inpainting loss (L1 + cosine similarity in feature space)
261
- WEIGHT_CONTEXT_IDENTITY:
262
- value: 0.0 # LEAVE TO 0.0: Weight for L1 loss on context (non-masked) regions (identity preservation)
263
- WEIGHT_TV_IN_HOLE:
264
- value: 0.0 # LEAVE TO 0.0: Weight for total variation loss inside masked/hole regions
265
- RING_DILATE_KERNEL:
266
- value: 17 # Dilation kernel size (odd number) for creating ring mask around highlights
267
- WEIGHT_SEAM:
268
- value: 0.5 # Weight for gradient matching loss on saturation ring
269
- SEAM_USE_CHARB:
270
- value: True # Use Charbonnier loss instead of L1 in seam loss (smooth L1 for boundary consistency)
271
- SEAM_WEIGHT_GRAD:
272
- value: 0.0 # Weight for gradient matching term inside seam loss (0.0 = disable gradient term)
273
- TOKEN_FEAT_ALPHA:
274
- value: 0.5 # Mixing factor for token feature loss: alpha * L1 + (1-alpha) * (1-cosine_sim)
275
-
276
- ### DIFFUSE HIGHLIGHT PENALTY
277
- WEIGHT_DIFFUSE_HIGHLIGHT_PENALTY:
278
- value: 0.0 # Weight for penalty loss on highlights in diffuse decoder output (0.0 = disabled)
279
- DIFFUSE_HL_THRESHOLD:
280
- value: 0.8 # Brightness/luminance threshold for detecting highlights in diffuse (0.0-1.0)
281
- DIFFUSE_HL_USE_CHARB:
282
- value: True # Use Charbonnier loss instead of L1 for diffuse highlight penalty
283
- DIFFUSE_HL_PENALTY_MODE:
284
- value: "brightness" # Penalty mode: "brightness" (penalize brightness/luminance above threshold) or "pixel" (penalize RGB values directly)
285
- DIFFUSE_HL_TARGET_BRIGHTNESS:
286
- value: null # Target brightness/luminance for penalized pixels (null = use threshold value)
287
- DIFFUSE_HL_USE_LUMINANCE:
288
- value: True # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B); if False, use simple mean brightness
289
-
290
- ### LOGGING, RESULTS AND WANDB
291
- LOG_INTERVAL:
292
- value: 1 # Number of training steps between console log outputs
293
- WANDB_LOG_INTERVAL:
294
- value: 1 # Number of training steps between WandB metric logs
295
- IMAGE_LOG_INTERVAL:
296
- value: 5 # Number of training steps between image logging to WandB
297
- NO_WANDB:
298
- value: False # Disable WandB logging if True (useful for local debugging)
299
- MODEL_WATCHER_FREQ_WANDB:
300
- value: 50 # Frequency (in steps) for logging model parameter histograms to WandB
301
- WANDB_ENTITY:
302
- value: "unreflect-anything" # WandB organization/entity name
303
- WANDB_PROJECT:
304
- value: "UnReflectAnything" # WandB project name
305
- NOTES:
306
- value: "896 Decoder Pretraining" # Notes/description for this training run
307
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/decoder_pretrain_896.yaml DELETED
@@ -1,295 +0,0 @@
1
- ### BASELINE: CONVERGES AFTER LONG
2
-
3
- parameters:
4
-
5
- ### MODEL ARCHITECTURE
6
- MODEL:
7
- value:
8
- MODEL_CLASS: "UnReflect_Model" # Main model class name (must match class in models.py) # <<<<<<<<< DECODER PRETRAINING: NOT USING TOKEN INPAINTER (DIRECT FROM DINO)
9
- MODEL_MODULE: "models" # Module name to import model classes from (default: "models")
10
- RGB_ENCODER:
11
- ENCODER: "facebook/dinov3-vitl16-pretrain-lvd1689m" # DINOv3 encoder model name (HuggingFace format)
12
- IMAGE_SIZE: 896 # Input image size (height and width in pixels)
13
- RETURN_SELECTED_LAYERS: [3, 6, 9, 12] # Transformer layer indices to extract features from (0-indexed)
14
- RGB_ENCODER_LR: 0.0 # Learning rate for RGB encoder (0.0 = frozen, must be explicitly set)
15
- DECODERS:
16
- diffuse:
17
- USE_FILM: False # Enable FiLM (Feature-wise Linear Modulation) conditioning in decoder
18
- FEATURE_DIM: 1024 # Feature dimension for decoder (should match encoder output)
19
- REASSEMBLE_OUT_CHANNELS: [768,1024,1536,2048] # Output channels for each decoder stage (DPT-style reassembly)
20
- REASSEMBLE_FACTORS: [4.0, 2.0, 1.0, 0.5] # Spatial upsampling factors for each stage
21
- READOUT_TYPE: "ignore" # Readout type for DPT decoder ("ignore", "project", etc.)
22
- # FROM_PRETRAINED: "weights/rgb_decoder.pth" # Path to pretrained decoder weights (optional) # <<<<<<<<< DECODER PRETRAINING: NO WEIGHTS HERE
23
- USE_BN: False # Use batch normalization in decoder
24
- DROPOUT: 0.1 # Dropout rate in decoder layers
25
- OUTPUT_IMAGE_SIZE: [896,896] # Output image resolution [height, width]
26
- OUTPUT_CHANNELS: 3 # Number of output channels (3 for RGB diffuse image)
27
- DECODER_LR: 5.0e-5 # Custom learning rate for decoder (0.0 = frozen, 1.0 = same as base LR)
28
- NUM_FUSION_BLOCKS_TRAINABLE: null # Number of fusion blocks to train (0-4, null = train all if DECODER_LR != 0)
29
- TRAIN_RGB_HEAD: True # Whether to train RGB head (true/false, null = train if DECODER_LR != 0)
30
- TOKEN_INPAINTER:
31
- TOKEN_INPAINTER_CLASS: "TokenInpainter_Prior" # Token inpainter class name
32
- TOKEN_INPAINTER_MODULE: "token_inpainters" # Module name to import token inpainter from
33
- FROM_PRETRAINED: "weights/token_inpainter.pth" # Path to pretrained token inpainter weights (optional)
34
- TOKEN_INPAINTER_LR: 1.0e-5 # Learning rate for token inpainter (can differ from base LR)
35
- DEPTH: 6 # Number of transformer blocks
36
- HEADS: 16 # Number of attention heads
37
- DROP: 0 # Dropout rate
38
- USE_POSITIONAL_ENCODING: True # Enable 2D sinusoidal positional encodings
39
- USE_FINAL_NORM: True # Enable final LayerNorm before output projection
40
- USE_LOCAL_PRIOR: True # Blend local mean prior for masked seeds
41
- LOCAL_PRIOR_WEIGHT: 0.5 # Weight for local prior blending (1.0 = only mask_token, 0.0 = only local mean)
42
- LOCAL_PRIOR_KERNEL: 5 # Kernel size for local prior blending (> 1)
43
- SEED_NOISE_STD: 0.02 # Standard deviation of noise added to masked seeds during training
44
- INPAINT_MASK_DILATION:
45
- value: 11 # Dilation kernel size (pixels) for inpaint mask - Must be odd
46
- USE_TORCH_COMPILE: # Enable PyTorch 2.0 torch.compile for faster training (experimental)
47
- value: False
48
-
49
- ### DATA
50
- DATASETS:
51
- value:
52
- SCRREAM:
53
- VAL_SCENES: ["scene10_full_00","scene11_full_00","scene044_full_00","scene04_reduced_00","scene04_reduced_01","scene04_reduced_02"] # List of validation scene names
54
- TARGET_SIZE: [896,896] # Target image size [height, width] in pixels
55
- RESIZE_MODE: "resize+crop" # Image resizing mode: "resize", "crop", "resize+crop", or "pad"
56
- FEW_IMAGES: False # If True, load only first 10 images per scene (for quick debugging)
57
- SAMPLE_EVERY_N: 4 # Load every Nth frame from each scene (1 = all frames, 4 = every 4th frame)
58
- LOAD_RGB_ONLY: True # If True, ignore polarization data and load only RGB images
59
-
60
- HOUSECAT6D:
61
- VAL_SCENES: ["val_scene1","val_scene2"] # Validation scene names
62
- TARGET_SIZE: [896,896] # Target image size [height, width]
63
- RESIZE_MODE: "resize+crop" # Image resizing mode
64
- FEW_IMAGES: False # Load only first 10 images if True
65
- SAMPLE_EVERY_N: 4 # Load every Nth frame
66
- LOAD_RGB_ONLY: True # Ignore polarization data if True
67
-
68
- CROMO:
69
- TRAIN_SCENES: ["kitchen","station","facades"] # Training scene names (list or string)
70
- # VAL_SCENES: "station" # Validation scene names (optional)
71
- TARGET_SIZE: [896,896] # Target image size [height, width]
72
- RESIZE_MODE: "resize" # Image resizing mode
73
- FEW_IMAGES: False # Load only first 10 images if True
74
- SAMPLE_EVERY_N: 4 # Load every Nth frame
75
- LOAD_RGB_ONLY: True # Ignore polarization data if True
76
-
77
- PSD:
78
- TRAIN_SCENES: "PSD_Train" # Training scene name (string or list)
79
- VAL_SCENES: "PSD_Val" # Validation scene name (string or list)
80
- TARGET_SIZE: [896,896] # Target image size [height, width]
81
- RESIZE_MODE: "resize+crop" # Image resizing mode
82
- FEW_IMAGES: False # Load only first 10 images if True
83
- SAMPLE_EVERY_N: 1 # Load every Nth frame (1 = all frames)
84
- LOAD_RGB_ONLY: True # Ignore polarization data if True
85
-
86
- SCARED:
87
- VAL_SCENES: ["v22","v23","v24","v25","v26","v27","v28","v29","v30","v31","v32","v33","v34"] # Validation scene names
88
- TARGET_SIZE: [896,896] # Target image size [height, width]
89
- RESIZE_MODE: "resize+crop" # Image resizing mode
90
- SAMPLE_EVERY_N: 4 # Load every Nth frame
91
- LOAD_RGB_ONLY: True # Ignore polarization data if True
92
- FEW_IMAGES: False # Load only first 10 images if True
93
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing in dataset
94
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection (0-1)
95
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
96
- HIGHLIGHT_RECT_SIZE: [1000, 1000] # Size of highlight rectangle region [height, width]
97
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
98
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
99
-
100
- STEREOMIS_TRACKING:
101
- VAL_SCENES: ["P2_2"] # Validation scene names
102
- TARGET_SIZE: [896,896] # Target image size [height, width]
103
- RESIZE_MODE: "resize+crop" # Image resizing mode
104
- SAMPLE_EVERY_N: 5 # Load every Nth frame
105
- LOAD_RGB_ONLY: True # Ignore polarization data if True
106
- FEW_IMAGES: False # Load only first 10 images if True
107
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
108
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
109
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
110
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
111
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
112
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
113
-
114
- CHOLEC80:
115
- VAL_SCENES: ["val"] # Validation scene names
116
- TARGET_SIZE: [896,896] # Target image size [height, width]
117
- RESIZE_MODE: "resize+crop" # Image resizing mode
118
- SAMPLE_EVERY_N: 50 # Load every Nth frame
119
- LOAD_RGB_ONLY: True # Ignore polarization data if True
120
- FEW_IMAGES: False # Load only first 10 images if True
121
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
122
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
123
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
124
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
125
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
126
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
127
-
128
- # POLARGB:
129
- # TRAIN_SCENES: "train"
130
- # VAL_SCENES: "test"
131
- # TARGET_SIZE: [896,896]
132
- # RESIZE_MODE: "resize+crop"
133
- # SAMPLE_EVERY_N: 1
134
- # LOAD_RGB_ONLY: True
135
-
136
- BATCH_SIZE: # Max batch size with img size 896x896 is 20
137
- value: 20 # Number of samples per batch (adjust based on GPU memory)
138
- NUM_WORKERS:
139
- value: 12 # Number of data loading worker processes (0 = main process only)
140
- SHUFFLE:
141
- value: True # Shuffle training data each epoch (False for validation/test)
142
- PIN_MEMORY:
143
- value: True # Pin memory in DataLoader for faster GPU transfer (recommended: True)
144
- PREFETCH_FACTOR:
145
- value: 2 # Number of batches to prefetch per worker (higher = more memory usage)
146
-
147
- ### HIGHLIGHTS
148
- MOGE_MODEL:
149
- value: "Ruicheng/moge-2-vits-normal" # MoGe model name for normal estimation (HuggingFace format)
150
- SURFACE_ROUGHNESS:
151
- value: 8.0 # Blinn-Phong surface roughness exponent (higher = sharper highlights)
152
- INTENSITY:
153
- value: 0.0 # Specular highlight intensity multiplier
154
- LIGHT_DISTANCE_RANGE:
155
- value: [0.0, 1] # Range for light source distance sampling [min, max] (normalized)
156
- LIGHT_LEFT_RIGHT_ANGLE:
157
- value: [0, 360] # Range for light source horizontal angle [min, max] in degrees
158
- LIGHT_ABOVE_BELOW_ANGLE:
159
- value: [0, 360] # Range for light source vertical angle [min, max] in degrees
160
- DATASET_HIGHLIGHT_DILATION:
161
- value: 25 # Dilation kernel size (pixels) for dataset highlight masks
162
- DATASET_HIGHLIGHT_THRESHOLD:
163
- value: 0.9 # Brightness/luminance threshold (0-1) for detecting highlights in dataset images
164
- DATASET_HIGHLIGHT_USE_LUMINANCE:
165
- value: True # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B) for dataset highlights; if False, use simple mean brightness
166
- HIGHLIGHT_COLOR:
167
- value: [1.0, 1.0, 1.0] # RGB color for synthetic highlights (normalized 0-1)
168
- CLAMP_RECONSTRUCTION:
169
- value: True # Clamp reconstructed images to [0, 1] range if True
170
-
171
- ### OPTIMIZATION
172
- EPOCHS:
173
- value: 20 # Maximum number of training epochs<
174
- LEARNING_RATE:
175
- value: 1.0e-4 # Base learning rate for optimizer
176
- WEIGHT_DECAY:
177
- value: 0.0 # L2 regularization weight (0.0 = no weight decay)
178
- GRADIENT_ACCUMULATION_STEPS:
179
- value: 1 # Number of steps to accumulate gradients before optimizer step (1 = no accumulation)
180
- WARMUP:
181
- value: 100 # Number of warmup steps for learning rate schedule (linear warmup from 0 to LR)
182
- GRADIENT_CLIPPING_MAX_NORM:
183
- value: 8 # Maximum gradient norm for clipping (set to -1 to disable clipping)
184
- LR_SCHEDULER:
185
- value:
186
- ONPLATEAU: # ReduceLROnPlateau scheduler (reduces LR when validation metric plateaus)
187
- PATIENCE: 5 # Number of epochs to wait before reducing LR
188
- FACTOR: 0.1 # Factor by which LR is reduced (new_lr = old_lr * factor)
189
- COSINE: # CosineAnnealingLR scheduler (cosine annealing schedule)
190
- N_PERIODS: 1 # Number of cosine periods over training
191
- # STEPWISE: # StepLR scheduler (reduces LR at fixed step intervals)
192
- # N_STEPS: 5 # Number of times to reduce LR during training
193
- # GAMMA: 0.25 # Factor by which LR is reduced at each step (new_lr = old_lr * gamma)
194
- # EXPONENTIAL: # ExponentialLR scheduler (exponential decay)
195
- # GAMMA: 0.5 # Multiplicative factor for exponential decay
196
-
197
- SWITCH_OPTIMIZER_EPOCH:
198
- value: null # Epoch number to switch from bootstrap to refining optimizer (null = no switch)
199
- OPTIMIZER_BOOTSTRAP_NAME:
200
- value: "AdamW" # Optimizer name for initial training phase ("Adam", "SGD", etc.)
201
- OPTIMIZER_REFINING_NAME:
202
- value: "AdamW" # Optimizer name for refining phase (used after SWITCH_OPTIMIZER_EPOCH)
203
- EARLY_STOPPING_PATIENCE:
204
- value: 20 # Number of epochs without improvement before stopping training
205
- SAVE_INTERVAL:
206
- value: 1000 # Number of training steps between model checkpoints
207
-
208
- DATASET_HIGHLIGHT_SUPERVISION_THRESHOLD:
209
- value: 0.1 # Pixel highlights above this threshold (should be low) are excluded from supervision
210
-
211
- ### LOSS WEIGHTS (relative to the total loss, NOT NORMALIZED LATER)
212
- SPECULAR_LOSS_WEIGHT:
213
- value: 0.0 # Weight for specular component reconstruction loss
214
- DIFFUSE_LOSS_WEIGHT:
215
- value: 1.0 # Weight for diffuse component reconstruction loss
216
- HIGHLIGHT_LOSS_WEIGHT:
217
- value: 0.0 # Weight for highlight mask regression loss
218
- IMAGE_RECONSTRUCTION_LOSS_WEIGHT:
219
- value: 0.0 # Weight for full image reconstruction loss
220
- SATURATION_RING_LOSS_WEIGHT:
221
- value: 0.0 # Weight for saturation ring consistency loss (around highlight regions)
222
- RING_KERNEL_SIZE:
223
- value: 11 # Kernel size (odd number) for saturation ring dilation around highlights
224
- RING_VAR_WEIGHT:
225
- value: 0.5 # Weight for variance matching in saturation ring loss (vs mean matching)
226
- RING_TEXTURE_WEIGHT:
227
- value: 0.0 # Weight for texture consistency term in saturation ring loss
228
- HLREG_W_L1:
229
- value: 1.0 # Weight for L1 loss in highlight regression
230
- HLREG_USE_CHARB:
231
- value: True # Use Charbonnier loss (smooth L1) instead of standard L1 if True
232
- HLREG_W_DICE:
233
- value: 0.2 # Weight for Dice loss in highlight regression (for mask overlap)
234
- HLREG_W_SSIM:
235
- value: 0.0 # Weight for SSIM loss in highlight regression
236
- HLREG_W_GRAD:
237
- value: 0.0 # Weight for gradient loss in highlight regression
238
- HLREG_W_TV:
239
- value: 0.0 # Weight for total variation loss in highlight regression
240
- HLREG_BALANCE_MODE:
241
- value: "auto" # Class balancing mode for highlight regression: 'none' | 'auto' | 'pos_weight'
242
- HLREG_POS_WEIGHT:
243
- value: 1.0 # Positive class weight (used only if BALANCE_MODE == 'pos_weight')
244
- HLREG_FOCAL_GAMMA:
245
- value: 2.0 # Focal loss gamma parameter (0.0 = standard BCE, 1.0-2.0 helps with gradient vanishing)
246
-
247
- WEIGHT_TOKEN_INPAINT:
248
- value: 0.0 # Weight for token-space inpainting loss (L1 + cosine similarity in feature space)
249
- WEIGHT_CONTEXT_IDENTITY:
250
- value: 0.0 # LEAVE TO 0.0: Weight for L1 loss on context (non-masked) regions (identity preservation)
251
- WEIGHT_TV_IN_HOLE:
252
- value: 0.0 # LEAVE TO 0.0: Weight for total variation loss inside masked/hole regions
253
- RING_DILATE_KERNEL:
254
- value: 17 # Dilation kernel size (odd number) for creating ring mask around highlights
255
- WEIGHT_SEAM:
256
- value: 0.0 # Weight for gradient matching loss on saturation ring
257
- SEAM_USE_CHARB:
258
- value: True # Use Charbonnier loss instead of L1 in seam loss (smooth L1 for boundary consistency)
259
- SEAM_WEIGHT_GRAD:
260
- value: 0.0 # Weight for gradient matching term inside seam loss (0.0 = disable gradient term)
261
- TOKEN_FEAT_ALPHA:
262
- value: 0.5 # Mixing factor for token feature loss: alpha * L1 + (1-alpha) * (1-cosine_sim)
263
-
264
- ### DIFFUSE HIGHLIGHT PENALTY
265
- WEIGHT_DIFFUSE_HIGHLIGHT_PENALTY:
266
- value: 0.0 # Weight for penalty loss on highlights in diffuse decoder output (0.0 = disabled)
267
- DIFFUSE_HL_THRESHOLD:
268
- value: 0.8 # Brightness/luminance threshold for detecting highlights in diffuse (0.0-1.0)
269
- DIFFUSE_HL_USE_CHARB:
270
- value: True # Use Charbonnier loss instead of L1 for diffuse highlight penalty
271
- DIFFUSE_HL_PENALTY_MODE:
272
- value: "brightness" # Penalty mode: "brightness" (penalize brightness/luminance above threshold) or "pixel" (penalize RGB values directly)
273
- DIFFUSE_HL_TARGET_BRIGHTNESS:
274
- value: null # Target brightness/luminance for penalized pixels (null = use threshold value)
275
- DIFFUSE_HL_USE_LUMINANCE:
276
- value: True # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B); if False, use simple mean brightness
277
-
278
- ### LOGGING, RESULTS AND WANDB
279
- LOG_INTERVAL:
280
- value: 1 # Number of training steps between console log outputs
281
- WANDB_LOG_INTERVAL:
282
- value: 1 # Number of training steps between WandB metric logs
283
- IMAGE_LOG_INTERVAL:
284
- value: 5 # Number of training steps between image logging to WandB
285
- NO_WANDB:
286
- value: False # Disable WandB logging if True (useful for local debugging)
287
- MODEL_WATCHER_FREQ_WANDB:
288
- value: 50 # Frequency (in steps) for logging model parameter histograms to WandB
289
- WANDB_ENTITY:
290
- value: "unreflect-anything" # WandB organization/entity name
291
- WANDB_PROJECT:
292
- value: "UnReflectAnything" # WandB project name
293
- NOTES:
294
- value: "896 Decoder Pretraining" # Notes/description for this training run
295
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/figuremeout.yaml DELETED
@@ -1,306 +0,0 @@
1
- ### BASELINE: CONVERGES AFTER LONG
2
-
3
- parameters:
4
-
5
- ### MODEL ARCHITECTURE
6
- MODEL:
7
- value:
8
- MODEL_CLASS: "UnReflect_Model " # Main model class name (must match class in models.py)
9
- MODEL_MODULE: "models" # Module name to import model classes from (default: "models")
10
- RGB_ENCODER:
11
- ENCODER: "facebook/dinov3-vitl16-pretrain-lvd1689m" # DINOv3 encoder model name (HuggingFace format)
12
- IMAGE_SIZE: 448 # Input image size (height and width in pixels)
13
- RETURN_SELECTED_LAYERS: [3, 6, 9 , 12] # Transformer layer indices to extract features from (0-indexed)
14
- RGB_ENCODER_LR: 0.0 # Learning rate for RGB encoder (0.0 = frozen, must be explicitly set)
15
- DECODERS:
16
- diffuse:
17
- USE_FILM: False # Enable FiLM (Feature-wise Linear Modulation) conditioning in decoder
18
- FEATURE_DIM: 1024 # Feature dimension for decoder (should match encoder output)
19
- REASSEMBLE_OUT_CHANNELS: [768,1024,1536,2048] # Output channels for each decoder stage (DPT-style reassembly)
20
- REASSEMBLE_FACTORS: [4.0, 2.0, 1.0, 0.5] # Spatial upsampling factors for each stage
21
- READOUT_TYPE: "ignore" # Readout type for DPT decoder ("ignore", "project", etc.)
22
- # FROM_PRETRAINED: "weights/rgb_decoder.pth" # Path to pretrained decoder weights (optional)
23
- USE_BN: False # Use batch normalization in decoder
24
- DROPOUT: 0.1 # Dropout rate in decoder layers
25
- OUTPUT_IMAGE_SIZE: [448,448] # Output image resolution [height, width]
26
- OUTPUT_CHANNELS: 3 # Number of output channels (3 for RGB diffuse image)
27
- DECODER_LR: 1.0e-4 # Custom learning rate for decoder (0.0 = frozen, 1.0 = same as base LR)
28
- NUM_FUSION_BLOCKS_TRAINABLE: 1 # Number of fusion blocks to train (0-4, null = train all if DECODER_LR != 0)
29
- TRAIN_RGB_HEAD: True # Whether to train RGB head (true/false, null = train if DECODER_LR != 0)
30
- highlight:
31
- USE_FILM: False # Enable FiLM conditioning in highlight decoder
32
- FEATURE_DIM: 1024 # Feature dimension for highlight decoder
33
- REASSEMBLE_OUT_CHANNELS: [96,192,384,768] # Output channels for each decoder stage
34
- REASSEMBLE_FACTORS: [4.0, 2.0, 1.0, 0.5] # Spatial upsampling factors for each stage
35
- READOUT_TYPE: "ignore" # Readout type for DPT decoder
36
- USE_BN: False # Use batch normalization in decoder
37
- DROPOUT: 0.1 # Dropout rate in decoder layers
38
- OUTPUT_IMAGE_SIZE: [448,448] # Output image resolution [height, width]
39
- OUTPUT_CHANNELS: 1 # Number of output channels (1 for highlight mask)
40
- DECODER_LR: 5.0e-4 # Custom learning rate for decoder (0.0 = frozen, 1.0 = same as base LR)
41
- NUM_FUSION_BLOCKS_TRAINABLE: null # Number of fusion blocks to train (0-4, null = train all if DECODER_LR != 0)
42
- TOKEN_INPAINTER:
43
- TOKEN_INPAINTER_CLASS: "TokenInpainter_Naive" # Token inpainter class name
44
- # TOKEN_INPAINTER_MODULE: "token_inpainters" # Module name to import token inpainter from
45
- # FROM_PRETRAINED: "weights/token_inpainter.pth" # Path to pretrained token inpainter weights (optional)
46
- TOKEN_INPAINTER_LR: 0.0 # Learning rate for token inpainter (can differ from base LR)
47
- DEPTH: 6 # Number of transformer blocks
48
- HEADS: 16 # Number of attention heads
49
- DROP: 0 # Dropout rate
50
- USE_POSITIONAL_ENCODING: True # Enable 2D sinusoidal positional encodings
51
- USE_FINAL_NORM: True # Enable final LayerNorm before output projection
52
- USE_LOCAL_PRIOR: True # Blend local mean prior for masked seeds
53
- LOCAL_PRIOR_WEIGHT: 0.5 # Weight for local prior blending (1.0 = only mask_token, 0.0 = only local mean)
54
- LOCAL_PRIOR_KERNEL: 5 # Kernel size for local prior blending (> 1)
55
- SEED_NOISE_STD: 0.02 # Standard deviation of noise added to masked seeds during training
56
- INPAINT_MASK_DILATION:
57
- value: 1 # Dilation kernel size (pixels) for inpaint mask - Must be odd
58
- USE_TORCH_COMPILE: # Enable PyTorch 2.0 torch.compile for faster training (experimental)
59
- value: False
60
-
61
- ### DATA
62
- DATASETS:
63
- value:
64
- SCRREAM:
65
- VAL_SCENES: ["scene10_full_00","scene11_full_00","scene044_full_00","scene04_reduced_00","scene04_reduced_01","scene04_reduced_02"] # List of validation scene names
66
- TARGET_SIZE: [448,448] # Target image size [height, width] in pixels
67
- RESIZE_MODE: "resize+crop" # Image resizing mode: "resize", "crop", "resize+crop", or "pad"
68
- FEW_IMAGES: False # If True, load only first 10 images per scene (for quick debugging)
69
- SAMPLE_EVERY_N: 2 # Load every Nth frame from each scene (1 = all frames, 4 = every 4th frame)
70
- LOAD_RGB_ONLY: True # If True, ignore polarization data and load only RGB images
71
-
72
- HOUSECAT6D:
73
- VAL_SCENES: ["val_scene1","val_scene2"] # Validation scene names
74
- TARGET_SIZE: [448,448] # Target image size [height, width]
75
- RESIZE_MODE: "resize+crop" # Image resizing mode
76
- FEW_IMAGES: False # Load only first 10 images if True
77
- SAMPLE_EVERY_N: 2 # Load every Nth frame
78
- LOAD_RGB_ONLY: True # Ignore polarization data if True
79
-
80
- CROMO:
81
- TRAIN_SCENES: ["kitchen"] # Training scene names (list or string)
82
- # VAL_SCENES: "station" # Validation scene names (optional)
83
- TARGET_SIZE: [448,448] # Target image size [height, width]
84
- RESIZE_MODE: "resize" # Image resizing mode
85
- FEW_IMAGES: False # Load only first 10 images if True
86
- SAMPLE_EVERY_N: 2 # Load every Nth frame
87
- LOAD_RGB_ONLY: True # Ignore polarization data if True
88
-
89
- PSD:
90
- TRAIN_SCENES: "PSD_Train" # Training scene name (string or list)
91
- VAL_SCENES: "PSD_Val" # Validation scene name (string or list)
92
- TARGET_SIZE: [448,448] # Target image size [height, width]
93
- RESIZE_MODE: "resize+crop" # Image resizing mode
94
- FEW_IMAGES: False # Load only first 10 images if True
95
- SAMPLE_EVERY_N: 1 # Load every Nth frame (1 = all frames)
96
- LOAD_RGB_ONLY: True # Ignore polarization data if True
97
-
98
- SCARED:
99
- VAL_SCENES: ["v22","v23","v24","v25","v26","v27","v28","v29","v30","v31","v32","v33","v34"] # Validation scene names
100
- TARGET_SIZE: [448,448] # Target image size [height, width]
101
- RESIZE_MODE: "resize+crop" # Image resizing mode
102
- SAMPLE_EVERY_N: 8 # Load every Nth frame
103
- LOAD_RGB_ONLY: True # Ignore polarization data if True
104
- FEW_IMAGES: False # Load only first 10 images if True
105
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing in dataset
106
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection (0-1)
107
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
108
- HIGHLIGHT_RECT_SIZE: [1000, 1000] # Size of highlight rectangle region [height, width]
109
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
110
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
111
-
112
- STEREOMIS_TRACKING:
113
- VAL_SCENES: ["P2_2"] # Validation scene names
114
- TARGET_SIZE: [448,448] # Target image size [height, width]
115
- RESIZE_MODE: "resize+crop" # Image resizing mode
116
- SAMPLE_EVERY_N: 4 # Load every Nth frame
117
- LOAD_RGB_ONLY: True # Ignore polarization data if True
118
- FEW_IMAGES: False # Load only first 10 images if True
119
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
120
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
121
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
122
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
123
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
124
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
125
-
126
- CHOLEC80:
127
- VAL_SCENES: ["val"] # Validation scene names
128
- TARGET_SIZE: [448,448] # Target image size [height, width]
129
- RESIZE_MODE: "resize+crop" # Image resizing mode
130
- SAMPLE_EVERY_N: 10 # Load every Nth frame
131
- LOAD_RGB_ONLY: True # Ignore polarization data if True
132
- FEW_IMAGES: False # Load only first 10 images if True
133
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
134
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
135
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
136
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
137
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
138
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
139
-
140
- # POLARGB:
141
- # TRAIN_SCENES: "train"
142
- # VAL_SCENES: "test"
143
- # TARGET_SIZE: [448,448]
144
- # RESIZE_MODE: "resize+crop"
145
- # SAMPLE_EVERY_N: 1
146
- # LOAD_RGB_ONLY: True
147
-
148
- BATCH_SIZE: # Max batch size with img size 448 is 32
149
- value: 32 # Number of samples per batch (adjust based on GPU memory)
150
- NUM_WORKERS:
151
- value: 8 # Number of data loading worker processes (0 = main process only)
152
- SHUFFLE:
153
- value: True # Shuffle training data each epoch (False for validation/test)
154
- PIN_MEMORY:
155
- value: True # Pin memory in DataLoader for faster GPU transfer (recommended: True)
156
- PREFETCH_FACTOR:
157
- value: 2 # Number of batches to prefetch per worker (higher = more memory usage)
158
-
159
- ### HIGHLIGHTS
160
- MOGE_MODEL:
161
- value: "Ruicheng/moge-2-vits-normal" # MoGe model name for normal estimation (HuggingFace format)
162
- SURFACE_ROUGHNESS:
163
- value: 8.0 # Blinn-Phong surface roughness exponent (higher = sharper highlights)
164
- INTENSITY:
165
- value: 0.0 # Specular highlight intensity multiplier
166
- LIGHT_DISTANCE_RANGE:
167
- value: [0.0, 1] # Range for light source distance sampling [min, max] (normalized)
168
- LIGHT_LEFT_RIGHT_ANGLE:
169
- value: [0, 360] # Range for light source horizontal angle [min, max] in degrees
170
- LIGHT_ABOVE_BELOW_ANGLE:
171
- value: [0, 360] # Range for light source vertical angle [min, max] in degrees
172
- DATASET_HIGHLIGHT_DILATION:
173
- value: 25 # Dilation kernel size (pixels) for dataset highlight masks
174
- DATASET_HIGHLIGHT_THRESHOLD:
175
- value: 0.9 # Brightness/luminance threshold (0-1) for detecting highlights in dataset images
176
- DATASET_HIGHLIGHT_USE_LUMINANCE:
177
- value: True # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B) for dataset highlights; if False, use simple mean brightness
178
- HIGHLIGHT_COLOR:
179
- value: [1.0, 1.0, 1.0] # RGB color for synthetic highlights (normalized 0-1)
180
- CLAMP_RECONSTRUCTION:
181
- value: True # Clamp reconstructed images to [0, 1] range if True
182
-
183
- ### OPTIMIZATION
184
- LEARNING_RATE:
185
- value: 1.0e-3 # Base learning rate for optimizer
186
- WEIGHT_DECAY:
187
- value: 0.0 # L2 regularization weight (0.0 = no weight decay)
188
- EPOCHS:
189
- value: 25 # Maximum number of training epochs
190
- GRADIENT_ACCUMULATION_STEPS:
191
- value: 1 # Number of steps to accumulate gradients before optimizer step (1 = no accumulation)
192
- WARMUP:
193
- value: 200 # Number of warmup steps for learning rate schedule (linear warmup from 0 to LR)
194
- GRADIENT_CLIPPING_MAX_NORM:
195
- value: 8 # Maximum gradient norm for clipping (set to -1 to disable clipping)
196
- LR_SCHEDULER:
197
- value:
198
- ONPLATEAU: # ReduceLROnPlateau scheduler (reduces LR when validation metric plateaus)
199
- PATIENCE: 5 # Number of epochs to wait before reducing LR
200
- FACTOR: 0.1 # Factor by which LR is reduced (new_lr = old_lr * factor)
201
- # COSINE: # CosineAnnealingLR scheduler (cosine annealing schedule)
202
- # N_PERIODS: 5 # Number of cosine periods over training
203
- STEPWISE: # StepLR scheduler (reduces LR at fixed step intervals)
204
- N_STEPS: 4 # Number of times to reduce LR during training
205
- GAMMA: 0.5 # Factor by which LR is reduced at each step (new_lr = old_lr * gamma)
206
- # EXPONENTIAL: # ExponentialLR scheduler (exponential decay)
207
- # GAMMA: 0.5 # Multiplicative factor for exponential decay
208
-
209
- SWITCH_OPTIMIZER_EPOCH:
210
- value: null # Epoch number to switch from bootstrap to refining optimizer (null = no switch)
211
- OPTIMIZER_BOOTSTRAP_NAME:
212
- value: "AdamW" # Optimizer name for initial training phase ("Adam", "SGD", etc.)
213
- OPTIMIZER_REFINING_NAME:
214
- value: "AdamW" # Optimizer name for refining phase (used after SWITCH_OPTIMIZER_EPOCH)
215
- EARLY_STOPPING_PATIENCE:
216
- value: 10 # Number of epochs without improvement before stopping training
217
- SAVE_INTERVAL:
218
- value: 1000 # Number of training steps between model checkpoints
219
-
220
- DATASET_HIGHLIGHT_SUPERVISION_THRESHOLD:
221
- value: 0.1 # Pixel highlights above this threshold (should be low) are excluded from supervision
222
-
223
- ### LOSS WEIGHTS (relative to the total loss, NOT NORMALIZED LATER)
224
- SPECULAR_LOSS_WEIGHT:
225
- value: 0.0 # Weight for specular component reconstruction loss
226
- DIFFUSE_LOSS_WEIGHT:
227
- value: 1.0 # Weight for diffuse component reconstruction loss
228
- HIGHLIGHT_LOSS_WEIGHT:
229
- value: 0.0 # Weight for highlight mask regression loss
230
- IMAGE_RECONSTRUCTION_LOSS_WEIGHT:
231
- value: 0.0 # Weight for full image reconstruction loss
232
- SATURATION_RING_LOSS_WEIGHT:
233
- value: 0.0 # Weight for saturation ring consistency loss (around highlight regions)
234
- RING_KERNEL_SIZE:
235
- value: 11 # Kernel size (odd number) for saturation ring dilation around highlights
236
- RING_VAR_WEIGHT:
237
- value: 0.5 # Weight for variance matching in saturation ring loss (vs mean matching)
238
- RING_TEXTURE_WEIGHT:
239
- value: 1.0 # Weight for texture consistency term in saturation ring loss
240
- HLREG_W_L1:
241
- value: 1.0 # Weight for L1 loss in highlight regression
242
- HLREG_USE_CHARB:
243
- value: True # Use Charbonnier loss (smooth L1) instead of standard L1 if True
244
- HLREG_W_DICE:
245
- value: 0.2 # Weight for Dice loss in highlight regression (for mask overlap)
246
- HLREG_W_SSIM:
247
- value: 0.0 # Weight for SSIM loss in highlight regression
248
- HLREG_W_GRAD:
249
- value: 0.0 # Weight for gradient loss in highlight regression
250
- HLREG_W_TV:
251
- value: 0.0 # Weight for total variation loss in highlight regression
252
- HLREG_BALANCE_MODE:
253
- value: "auto" # Class balancing mode for highlight regression: 'none' | 'auto' | 'pos_weight'
254
- HLREG_POS_WEIGHT:
255
- value: 1.0 # Positive class weight (used only if BALANCE_MODE == 'pos_weight')
256
- HLREG_FOCAL_GAMMA:
257
- value: 2.0 # Focal loss gamma parameter (0.0 = standard BCE, 1.0-2.0 helps with gradient vanishing)
258
-
259
- WEIGHT_TOKEN_INPAINT:
260
- value: 0.0 # Weight for token-space inpainting loss (L1 + cosine similarity in feature space)
261
- WEIGHT_CONTEXT_IDENTITY:
262
- value: 0.0 # LEAVE TO 0.0: Weight for L1 loss on context (non-masked) regions (identity preservation)
263
- WEIGHT_TV_IN_HOLE:
264
- value: 0.0 # LEAVE TO 0.0: Weight for total variation loss inside masked/hole regions
265
- RING_DILATE_KERNEL:
266
- value: 17 # Dilation kernel size (odd number) for creating ring mask around highlights
267
- WEIGHT_SEAM:
268
- value: 0.5 # Weight for gradient matching loss on saturation ring
269
- SEAM_USE_CHARB:
270
- value: True # Use Charbonnier loss instead of L1 in seam loss (smooth L1 for boundary consistency)
271
- SEAM_WEIGHT_GRAD:
272
- value: 0.0 # Weight for gradient matching term inside seam loss (0.0 = disable gradient term)
273
- TOKEN_FEAT_ALPHA:
274
- value: 0.5 # Mixing factor for token feature loss: alpha * L1 + (1-alpha) * (1-cosine_sim)
275
-
276
- ### DIFFUSE HIGHLIGHT PENALTY
277
- WEIGHT_DIFFUSE_HIGHLIGHT_PENALTY:
278
- value: 0.0 # Weight for penalty loss on highlights in diffuse decoder output (0.0 = disabled)
279
- DIFFUSE_HL_THRESHOLD:
280
- value: 0.8 # Brightness/luminance threshold for detecting highlights in diffuse (0.0-1.0)
281
- DIFFUSE_HL_USE_CHARB:
282
- value: True # Use Charbonnier loss instead of L1 for diffuse highlight penalty
283
- DIFFUSE_HL_PENALTY_MODE:
284
- value: "brightness" # Penalty mode: "brightness" (penalize brightness/luminance above threshold) or "pixel" (penalize RGB values directly)
285
- DIFFUSE_HL_TARGET_BRIGHTNESS:
286
- value: null # Target brightness/luminance for penalized pixels (null = use threshold value)
287
- DIFFUSE_HL_USE_LUMINANCE:
288
- value: False # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B); if False, use simple mean brightness
289
-
290
- ### LOGGING, RESULTS AND WANDB
291
- LOG_INTERVAL:
292
- value: 1 # Number of training steps between console log outputs
293
- WANDB_LOG_INTERVAL:
294
- value: 1 # Number of training steps between WandB metric logs
295
- IMAGE_LOG_INTERVAL:
296
- value: 5 # Number of training steps between image logging to WandB
297
- NO_WANDB:
298
- value: False # Disable WandB logging if True (useful for local debugging)
299
- MODEL_WATCHER_FREQ_WANDB:
300
- value: 50 # Frequency (in steps) for logging model parameter histograms to WandB
301
- WANDB_ENTITY:
302
- value: "unreflect-anything" # WandB organization/entity name
303
- WANDB_PROJECT:
304
- value: "UnReflectAnything" # WandB project name
305
- NOTES:
306
- value: "Final - TKI Learns, Decoder Learns faster" # Notes/description for this training run
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/pretrain_tki.yaml DELETED
@@ -1,306 +0,0 @@
1
- ### BASELINE: CONVERGES AFTER LONG
2
-
3
- parameters:
4
-
5
- ### MODEL ARCHITECTURE
6
- MODEL:
7
- value:
8
- MODEL_CLASS: "UnReflect_Model_TokenInpainter" # Main model class name (must match class in models.py)
9
- MODEL_MODULE: "models" # Module name to import model classes from (default: "models")
10
- RGB_ENCODER:
11
- ENCODER: "facebook/dinov3-vitl16-pretrain-lvd1689m" # DINOv3 encoder model name (HuggingFace format)
12
- IMAGE_SIZE: 896 # Input image size (height and width in pixels)
13
- RETURN_SELECTED_LAYERS: [3, 6, 9 , 12] # Transformer layer indices to extract features from (0-indexed)
14
- RGB_ENCODER_LR: 0.0 # Learning rate for RGB encoder (0.0 = frozen, must be explicitly set)
15
- DECODERS:
16
- diffuse:
17
- USE_FILM: False # Enable FiLM (Feature-wise Linear Modulation) conditioning in decoder
18
- FEATURE_DIM: 1024 # Feature dimension for decoder (should match encoder output)
19
- REASSEMBLE_OUT_CHANNELS: [768,1024,1536,2048] # Output channels for each decoder stage (DPT-style reassembly)
20
- REASSEMBLE_FACTORS: [4.0, 2.0, 1.0, 0.5] # Spatial upsampling factors for each stage
21
- READOUT_TYPE: "ignore" # Readout type for DPT decoder ("ignore", "project", etc.)
22
- FROM_PRETRAINED: "weights/decoder_896.pth" # Path to pretrained decoder weights (optional)
23
- USE_BN: False # Use batch normalization in decoder
24
- DROPOUT: 0.1 # Dropout rate in decoder layers
25
- OUTPUT_IMAGE_SIZE: [896,896] # Output image resolution [height, width]
26
- OUTPUT_CHANNELS: 3 # Number of output channels (3 for RGB diffuse image)
27
- DECODER_LR: 0.0 # Custom learning rate for decoder (0.0 = frozen, 1.0 = same as base LR)
28
- NUM_FUSION_BLOCKS_TRAINABLE: 1 # Number of fusion blocks to train (0-4, null = train all if DECODER_LR != 0)
29
- TRAIN_RGB_HEAD: True # Whether to train RGB head (true/false, null = train if DECODER_LR != 0)
30
- highlight:
31
- USE_FILM: False # Enable FiLM conditioning in highlight decoder
32
- FEATURE_DIM: 1024 # Feature dimension for highlight decoder
33
- REASSEMBLE_OUT_CHANNELS: [96,192,384,768] # Output channels for each decoder stage
34
- REASSEMBLE_FACTORS: [4.0, 2.0, 1.0, 0.5] # Spatial upsampling factors for each stage
35
- READOUT_TYPE: "ignore" # Readout type for DPT decoder
36
- USE_BN: False # Use batch normalization in decoder
37
- DROPOUT: 0.1 # Dropout rate in decoder layers
38
- OUTPUT_IMAGE_SIZE: [896,896] # Output image resolution [height, width]
39
- OUTPUT_CHANNELS: 1 # Number of output channels (1 for highlight mask)
40
- DECODER_LR: 5.0e-4 # Custom learning rate for decoder (0.0 = frozen, 1.0 = same as base LR)
41
- NUM_FUSION_BLOCKS_TRAINABLE: null # Number of fusion blocks to train (0-4, null = train all if DECODER_LR != 0)
42
- TOKEN_INPAINTER:
43
- TOKEN_INPAINTER_CLASS: "TokenInpainter_Prior" # Token inpainter class name
44
- TOKEN_INPAINTER_MODULE: "token_inpainters" # Module name to import token inpainter from
45
- # FROM_PRETRAINED: "weights/token_inpainter.pth" # Path to pretrained token inpainter weights (optional)
46
- TOKEN_INPAINTER_LR: 1.0e-4 # Learning rate for token inpainter (can differ from base LR)
47
- DEPTH: 6 # Number of transformer blocks
48
- HEADS: 16 # Number of attention heads
49
- DROP: 0 # Dropout rate
50
- USE_POSITIONAL_ENCODING: True # Enable 2D sinusoidal positional encodings
51
- USE_FINAL_NORM: True # Enable final LayerNorm before output projection
52
- USE_LOCAL_PRIOR: True # Blend local mean prior for masked seeds
53
- LOCAL_PRIOR_WEIGHT: 0.5 # Weight for local prior blending (1.0 = only mask_token, 0.0 = only local mean)
54
- LOCAL_PRIOR_KERNEL: 5 # Kernel size for local prior blending (> 1)
55
- SEED_NOISE_STD: 0.02 # Standard deviation of noise added to masked seeds during training
56
- INPAINT_MASK_DILATION:
57
- value: 1 # Dilation kernel size (pixels) for inpaint mask - Must be odd
58
- USE_TORCH_COMPILE: # Enable PyTorch 2.0 torch.compile for faster training (experimental)
59
- value: False
60
-
61
- ### DATA
62
- DATASETS:
63
- value:
64
- SCRREAM:
65
- VAL_SCENES: ["scene10_full_00","scene11_full_00","scene044_full_00","scene04_reduced_00","scene04_reduced_01","scene04_reduced_02"] # List of validation scene names
66
- TARGET_SIZE: [896,896] # Target image size [height, width] in pixels
67
- RESIZE_MODE: "resize+crop" # Image resizing mode: "resize", "crop", "resize+crop", or "pad"
68
- FEW_IMAGES: False # If True, load only first 10 images per scene (for quick debugging)
69
- SAMPLE_EVERY_N: 2 # Load every Nth frame from each scene (1 = all frames, 4 = every 4th frame)
70
- LOAD_RGB_ONLY: True # If True, ignore polarization data and load only RGB images
71
-
72
- HOUSECAT6D:
73
- VAL_SCENES: ["val_scene1","val_scene2"] # Validation scene names
74
- TARGET_SIZE: [896,896] # Target image size [height, width]
75
- RESIZE_MODE: "resize+crop" # Image resizing mode
76
- FEW_IMAGES: False # Load only first 10 images if True
77
- SAMPLE_EVERY_N: 2 # Load every Nth frame
78
- LOAD_RGB_ONLY: True # Ignore polarization data if True
79
-
80
- CROMO:
81
- TRAIN_SCENES: ["kitchen"] # Training scene names (list or string)
82
- # VAL_SCENES: "station" # Validation scene names (optional)
83
- TARGET_SIZE: [896,896] # Target image size [height, width]
84
- RESIZE_MODE: "resize" # Image resizing mode
85
- FEW_IMAGES: False # Load only first 10 images if True
86
- SAMPLE_EVERY_N: 2 # Load every Nth frame
87
- LOAD_RGB_ONLY: True # Ignore polarization data if True
88
-
89
- PSD:
90
- TRAIN_SCENES: "PSD_Train" # Training scene name (string or list)
91
- VAL_SCENES: "PSD_Val" # Validation scene name (string or list)
92
- TARGET_SIZE: [896,896] # Target image size [height, width]
93
- RESIZE_MODE: "resize+crop" # Image resizing mode
94
- FEW_IMAGES: False # Load only first 10 images if True
95
- SAMPLE_EVERY_N: 1 # Load every Nth frame (1 = all frames)
96
- LOAD_RGB_ONLY: True # Ignore polarization data if True
97
-
98
- SCARED:
99
- VAL_SCENES: ["v22","v23","v24","v25","v26","v27","v28","v29","v30","v31","v32","v33","v34"] # Validation scene names
100
- TARGET_SIZE: [896,896] # Target image size [height, width]
101
- RESIZE_MODE: "resize+crop" # Image resizing mode
102
- SAMPLE_EVERY_N: 8 # Load every Nth frame
103
- LOAD_RGB_ONLY: True # Ignore polarization data if True
104
- FEW_IMAGES: False # Load only first 10 images if True
105
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing in dataset
106
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection (0-1)
107
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
108
- HIGHLIGHT_RECT_SIZE: [1000, 1000] # Size of highlight rectangle region [height, width]
109
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
110
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
111
-
112
- STEREOMIS_TRACKING:
113
- VAL_SCENES: ["P2_2"] # Validation scene names
114
- TARGET_SIZE: [896,896] # Target image size [height, width]
115
- RESIZE_MODE: "resize+crop" # Image resizing mode
116
- SAMPLE_EVERY_N: 4 # Load every Nth frame
117
- LOAD_RGB_ONLY: True # Ignore polarization data if True
118
- FEW_IMAGES: False # Load only first 10 images if True
119
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
120
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
121
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
122
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
123
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
124
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
125
-
126
- CHOLEC80:
127
- VAL_SCENES: ["val"] # Validation scene names
128
- TARGET_SIZE: [896,896] # Target image size [height, width]
129
- RESIZE_MODE: "resize+crop" # Image resizing mode
130
- SAMPLE_EVERY_N: 10 # Load every Nth frame
131
- LOAD_RGB_ONLY: True # Ignore polarization data if True
132
- FEW_IMAGES: False # Load only first 10 images if True
133
- HIGHLIGHT_ENABLE: False # Enable highlight detection/processing
134
- HIGHLIGHT_BRIGHTNESS_THRESHOLD: 0.9 # Brightness threshold for highlight detection
135
- HIGHLIGHT_RETURN_MASK: True # Return highlight mask in dataset output
136
- HIGHLIGHT_RECT_SIZE: [800, 800] # Size of highlight rectangle region
137
- HIGHLIGHT_RETURN_RECT_AS_RGB: False # Return highlight rectangle as RGB if True
138
- HIGHLIGHT_RETURN_RECT: True # Return highlight rectangle region if True
139
-
140
- # POLARGB:
141
- # TRAIN_SCENES: "train"
142
- # VAL_SCENES: "test"
143
- # TARGET_SIZE: [896,896]
144
- # RESIZE_MODE: "resize+crop"
145
- # SAMPLE_EVERY_N: 1
146
- # LOAD_RGB_ONLY: True
147
-
148
- BATCH_SIZE: # Max batch size with img size 896 is 32
149
- value: 16 # Number of samples per batch (adjust based on GPU memory)
150
- NUM_WORKERS:
151
- value: 8 # Number of data loading worker processes (0 = main process only)
152
- SHUFFLE:
153
- value: True # Shuffle training data each epoch (False for validation/test)
154
- PIN_MEMORY:
155
- value: True # Pin memory in DataLoader for faster GPU transfer (recommended: True)
156
- PREFETCH_FACTOR:
157
- value: 2 # Number of batches to prefetch per worker (higher = more memory usage)
158
-
159
- ### HIGHLIGHTS
160
- MOGE_MODEL:
161
- value: "Ruicheng/moge-2-vits-normal" # MoGe model name for normal estimation (HuggingFace format)
162
- SURFACE_ROUGHNESS:
163
- value: 8.0 # Blinn-Phong surface roughness exponent (higher = sharper highlights)
164
- INTENSITY:
165
- value: 2.0 # Specular highlight intensity multiplier
166
- LIGHT_DISTANCE_RANGE:
167
- value: [0.0, 1] # Range for light source distance sampling [min, max] (normalized)
168
- LIGHT_LEFT_RIGHT_ANGLE:
169
- value: [0, 360] # Range for light source horizontal angle [min, max] in degrees
170
- LIGHT_ABOVE_BELOW_ANGLE:
171
- value: [0, 360] # Range for light source vertical angle [min, max] in degrees
172
- DATASET_HIGHLIGHT_DILATION:
173
- value: 25 # Dilation kernel size (pixels) for dataset highlight masks
174
- DATASET_HIGHLIGHT_THRESHOLD:
175
- value: 0.9 # Brightness/luminance threshold (0-1) for detecting highlights in dataset images
176
- DATASET_HIGHLIGHT_USE_LUMINANCE:
177
- value: True # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B) for dataset highlights; if False, use simple mean brightness
178
- HIGHLIGHT_COLOR:
179
- value: [1.0, 1.0, 1.0] # RGB color for synthetic highlights (normalized 0-1)
180
- CLAMP_RECONSTRUCTION:
181
- value: True # Clamp reconstructed images to [0, 1] range if True
182
-
183
- ### OPTIMIZATION
184
- LEARNING_RATE:
185
- value: 1.0e-3 # Base learning rate for optimizer
186
- WEIGHT_DECAY:
187
- value: 0.0 # L2 regularization weight (0.0 = no weight decay)
188
- EPOCHS:
189
- value: 25 # Maximum number of training epochs
190
- GRADIENT_ACCUMULATION_STEPS:
191
- value: 1 # Number of steps to accumulate gradients before optimizer step (1 = no accumulation)
192
- WARMUP:
193
- value: 200 # Number of warmup steps for learning rate schedule (linear warmup from 0 to LR)
194
- GRADIENT_CLIPPING_MAX_NORM:
195
- value: 8 # Maximum gradient norm for clipping (set to -1 to disable clipping)
196
- LR_SCHEDULER:
197
- value:
198
- ONPLATEAU: # ReduceLROnPlateau scheduler (reduces LR when validation metric plateaus)
199
- PATIENCE: 5 # Number of epochs to wait before reducing LR
200
- FACTOR: 0.1 # Factor by which LR is reduced (new_lr = old_lr * factor)
201
- # COSINE: # CosineAnnealingLR scheduler (cosine annealing schedule)
202
- # N_PERIODS: 5 # Number of cosine periods over training
203
- STEPWISE: # StepLR scheduler (reduces LR at fixed step intervals)
204
- N_STEPS: 4 # Number of times to reduce LR during training
205
- GAMMA: 0.5 # Factor by which LR is reduced at each step (new_lr = old_lr * gamma)
206
- # EXPONENTIAL: # ExponentialLR scheduler (exponential decay)
207
- # GAMMA: 0.5 # Multiplicative factor for exponential decay
208
-
209
- SWITCH_OPTIMIZER_EPOCH:
210
- value: null # Epoch number to switch from bootstrap to refining optimizer (null = no switch)
211
- OPTIMIZER_BOOTSTRAP_NAME:
212
- value: "AdamW" # Optimizer name for initial training phase ("Adam", "SGD", etc.)
213
- OPTIMIZER_REFINING_NAME:
214
- value: "AdamW" # Optimizer name for refining phase (used after SWITCH_OPTIMIZER_EPOCH)
215
- EARLY_STOPPING_PATIENCE:
216
- value: 10 # Number of epochs without improvement before stopping training
217
- SAVE_INTERVAL:
218
- value: 1000 # Number of training steps between model checkpoints
219
-
220
- DATASET_HIGHLIGHT_SUPERVISION_THRESHOLD:
221
- value: 0.1 # Pixel highlights above this threshold (should be low) are excluded from supervision
222
-
223
- ### LOSS WEIGHTS (relative to the total loss, NOT NORMALIZED LATER)
224
- SPECULAR_LOSS_WEIGHT:
225
- value: 0.0 # Weight for specular component reconstruction loss
226
- DIFFUSE_LOSS_WEIGHT:
227
- value: 0.0 # Weight for diffuse component reconstruction loss
228
- HIGHLIGHT_LOSS_WEIGHT:
229
- value: 0.0 # Weight for highlight mask regression loss
230
- IMAGE_RECONSTRUCTION_LOSS_WEIGHT:
231
- value: 0.0 # Weight for full image reconstruction loss
232
- SATURATION_RING_LOSS_WEIGHT:
233
- value: 0.0 # Weight for saturation ring consistency loss (around highlight regions)
234
- RING_KERNEL_SIZE:
235
- value: 11 # Kernel size (odd number) for saturation ring dilation around highlights
236
- RING_VAR_WEIGHT:
237
- value: 0.5 # Weight for variance matching in saturation ring loss (vs mean matching)
238
- RING_TEXTURE_WEIGHT:
239
- value: 1.0 # Weight for texture consistency term in saturation ring loss
240
- HLREG_W_L1:
241
- value: 1.0 # Weight for L1 loss in highlight regression
242
- HLREG_USE_CHARB:
243
- value: True # Use Charbonnier loss (smooth L1) instead of standard L1 if True
244
- HLREG_W_DICE:
245
- value: 0.2 # Weight for Dice loss in highlight regression (for mask overlap)
246
- HLREG_W_SSIM:
247
- value: 0.0 # Weight for SSIM loss in highlight regression
248
- HLREG_W_GRAD:
249
- value: 0.0 # Weight for gradient loss in highlight regression
250
- HLREG_W_TV:
251
- value: 0.0 # Weight for total variation loss in highlight regression
252
- HLREG_BALANCE_MODE:
253
- value: "auto" # Class balancing mode for highlight regression: 'none' | 'auto' | 'pos_weight'
254
- HLREG_POS_WEIGHT:
255
- value: 1.0 # Positive class weight (used only if BALANCE_MODE == 'pos_weight')
256
- HLREG_FOCAL_GAMMA:
257
- value: 2.0 # Focal loss gamma parameter (0.0 = standard BCE, 1.0-2.0 helps with gradient vanishing)
258
-
259
- WEIGHT_TOKEN_INPAINT:
260
- value: 1.0 # Weight for token-space inpainting loss (L1 + cosine similarity in feature space)
261
- WEIGHT_CONTEXT_IDENTITY:
262
- value: 0.0 # LEAVE TO 0.0: Weight for L1 loss on context (non-masked) regions (identity preservation)
263
- WEIGHT_TV_IN_HOLE:
264
- value: 0.0 # LEAVE TO 0.0: Weight for total variation loss inside masked/hole regions
265
- RING_DILATE_KERNEL:
266
- value: 17 # Dilation kernel size (odd number) for creating ring mask around highlights
267
- WEIGHT_SEAM:
268
- value: 0.5 # Weight for gradient matching loss on saturation ring
269
- SEAM_USE_CHARB:
270
- value: True # Use Charbonnier loss instead of L1 in seam loss (smooth L1 for boundary consistency)
271
- SEAM_WEIGHT_GRAD:
272
- value: 0.0 # Weight for gradient matching term inside seam loss (0.0 = disable gradient term)
273
- TOKEN_FEAT_ALPHA:
274
- value: 0.5 # Mixing factor for token feature loss: alpha * L1 + (1-alpha) * (1-cosine_sim)
275
-
276
- ### DIFFUSE HIGHLIGHT PENALTY
277
- WEIGHT_DIFFUSE_HIGHLIGHT_PENALTY:
278
- value: 0.1 # Weight for penalty loss on highlights in diffuse decoder output (0.0 = disabled)
279
- DIFFUSE_HL_THRESHOLD:
280
- value: 0.8 # Brightness/luminance threshold for detecting highlights in diffuse (0.0-1.0)
281
- DIFFUSE_HL_USE_CHARB:
282
- value: True # Use Charbonnier loss instead of L1 for diffuse highlight penalty
283
- DIFFUSE_HL_PENALTY_MODE:
284
- value: "brightness" # Penalty mode: "brightness" (penalize brightness/luminance above threshold) or "pixel" (penalize RGB values directly)
285
- DIFFUSE_HL_TARGET_BRIGHTNESS:
286
- value: null # Target brightness/luminance for penalized pixels (null = use threshold value)
287
- DIFFUSE_HL_USE_LUMINANCE:
288
- value: False # If True, use perceptually-weighted luminance (0.299*R + 0.587*G + 0.114*B); if False, use simple mean brightness
289
-
290
- ### LOGGING, RESULTS AND WANDB
291
- LOG_INTERVAL:
292
- value: 1 # Number of training steps between console log outputs
293
- WANDB_LOG_INTERVAL:
294
- value: 1 # Number of training steps between WandB metric logs
295
- IMAGE_LOG_INTERVAL:
296
- value: 5 # Number of training steps between image logging to WandB
297
- NO_WANDB:
298
- value: False # Disable WandB logging if True (useful for local debugging)
299
- MODEL_WATCHER_FREQ_WANDB:
300
- value: 50 # Frequency (in steps) for logging model parameter histograms to WandB
301
- WANDB_ENTITY:
302
- value: "unreflect-anything" # WandB organization/entity name
303
- WANDB_PROJECT:
304
- value: "UnReflectAnything" # WandB project name
305
- NOTES:
306
- value: "Final - TKI Learns, Decoder Learns faster" # Notes/description for this training run