Aladin commited on
Commit
dd75616
1 Parent(s): a45cd91

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Lunar_Lander_trained_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfe1e505a7efd7ce38ffd5eb92e0744f4b0fc70c9ebb41c1ade520b87af9863d
3
+ size 150124
Lunar_Lander_trained_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.3.0
Lunar_Lander_trained_model/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x00000214E3CA5400>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000214E3CA5488>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000214E3CA5510>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000214E3CA5598>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x00000214E3CA5620>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x00000214E3CA56A8>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000214E3CA5730>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x00000214E3CA57B8>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000214E3CA5840>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000214E3CA58C8>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000214E3CA5950>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_registry": "<_weakrefset.WeakSet object at 0x00000214E3CA3208>",
20
+ "_abc_cache": "<_weakrefset.WeakSet object at 0x00000214E3CA3240>",
21
+ "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x00000214E3CA3278>",
22
+ "_abc_negative_cache_version": 85
23
+ },
24
+ "verbose": 1,
25
+ "policy_kwargs": {},
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gASVXQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lEsASwGHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowFc2hhcGWUSwiFlIwDbG93lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAaMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLCIWUaAuJQyAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBNoFUsAhZRoF4eUUpQoSwFLCIWUaAuJQyAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBNoFUsAhZRoF4eUUpQoSwFLCIWUaAiMAmIxlEsASwGHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoE2gVSwCFlGgXh5RSlChLAUsIhZRoK4lDCAAAAAAAAAAAlHSUYowJbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoO4wFc3RhdGWUfZQojANrZXmUaBNoFUsAhZRoF4eUUpQoSwFNcAKFlGgIjAJ1NJRLAEsBh5RSlChLA2gMTk5OSv////9K/////0sAdJRiiULACQAAAAAAgE7NSFjAQ9HFqym1VsBr4cUMTxD/u3Aa+FbQhb8cuoU09v99SewuXPH4tdbDHK8at042Ve2ItuugS8d/l8HFrUiqzpt8M6RI6OjqJoDiZEEjYQ6ywe1H1AVRw6S8rBmXN5ix64A6cJxy9o8ZY84i2k62kF5mMk8+ZdJ0eCLZlYAV2jHHDqdkdZqfvE3vzw/a70OM6b2+NEqZL6+EBIMZm633ca0FaGQT/fHP6fgQMO6TpGXGsZ9f21vt0TckE/BRiKXWFA1ezruyAVr0tNoMKXnWrJTZIeOUvUaQTU0SB+LyT8H3DxN9Z+R9R856ClH6xgMBLD1HmSGNAqBbQmx+WfBPyFqQyU+/QILpN+41cbt0w08bcCzlDfLb5mnRWf729nhYhFjR6cpQoMcAW2Z/3rhcmo88Tcye/vy4lfQXUa3WmBckKEOHPyTtV9WWsrgIf7831xbm8mHJu0rvmhVIMMM+xnDczRy2EB5PTUheUZu2nMgFvyU4KTzFn3rbdcpC2DBVEI0uyAhCJ9at+NAAplXb3//7UpWzdIyeG5bc4PrkFEjtc6uHu+5e65CzWXvrASuFXpoeqHr0KW+SYL2iBERHZJGuBisqBr6Iztl81gmvvT9Ou78E+CM+cpMH+ERbQz7D01i2txLh+jJYyUfMVj2QmQ3xd+zMUlKmhdc8vq958Ey7UG0FUdsXw/xK2GYyThJbUQQOaq3XG2KzagIEvf9e5nKwaYsQ9Ibodc8uhg8U5NxneenvhLljuX4dGHNp57mVbGyxbobigMOJZy9XiPKj0XD29MgCJ6JUb/Ziyjdxevc90s6Rjyi6fuLy8Dj0ZN0Su6xYCLqt7FWuhqKN3/R55oFKps7M6BHRJIXZ5rR2aq+8MEvK31wVKUbeuMWb3j0lmFB3r79dtl01yCbWGTYGl92Le+NWltbfSictIZ19xqbtE6qxx1PB4Hwf1C0GHzZ75tFKG7M1LWo5ihuNXfvgs9OBNvOALg+wDto2RjR18Cy3DN0Keel6JKMWR6E7C2aHdGDki0zj9qVdte78uHsnwnfXiph9HSFR2FGnEeRFyjWG37ELIz4W8uEflrbG3sxz07YXq0QKgm/7cf+nDofIk81HbKaLjoZBPkyWj/BkVrgq1rSN5ixWzjr70IGKdy8gOxQl+EimcD488bQU39qMnYFODqHz6WoeLpAmX2UvW4Xsob0TI7JYiY3wEf6wF4qIInS5qn6/ipZ2YFjKaW/1Rr2di+eTVvMQCgb4ZClfuUQiN0Yk8uS7pPeTI/00s96nBf7kR/eVhPzxlP1195Mhg7GXSXFtcvNCI4MYgnt4kTw06AZqfBdeQUF/ibzKp/6yEEwO1iFX+m2PjwNGGptLbKL8moqVcX4WUY6tGNqrmdse9dIN3dTy4CKLUqnnn1fjfGJc2D/ruj7vVXdcL3dbPdSrO/9719JQSFYaiNduxL61lnQZyKYGw7ZqqNdlOW1R3eeXlIgYRTyOfB2gMTJWoDxL/9e3daqaXitMaYr4Im7aSh+f0ph+v5DnZp0PN+lMkagYox4A9uuI19P01komLtc89hn4DgDQaP6rqOvorpkEmSLqRtNJ8ynEt4w0tnn620XcdNouGWatYKGHcy9UrzJDdsW844a1mV9MrcYNUVIVXBeRDB29ULENsIlqvzTTRBovQl1Hb5vPz/ps5cSl0Tx6k6Ud0eOm2JBsc6V4hqkTG1cmy91c4OBR/G5YuRTzL0/U8CT2P1XMnCngax+J9yqTpozxWv882qBgg/flAadDLkKkT3dEG5/Hed6Vjmz4hJz+KA96tEQLHslAM0/M95Vv2UshK2i6nQkbBFehEPJpHxdqRl55sNG/OT1jhO+q16eqvh7JitgyRSv6W023FWLI/X5eVmtCV3hFNw0rQhQHvCAcg8pqQ6zU9I9PEj3NG8CxM2V0Y6UAtVe2EMtRaMgMWaq1gw5mBb41j4QnoZ6NtLYRUKx7n2REb5yxjcntN/13JxA9FUPK31yT0NwhNnRKL1Vw5z+yn9gVwjhMXEFD9V8sa3AtTjCorusN8625JwpkLwYjUJfRbga5CqJcDO/aF/QmOjreTz5W8QWiici05cj+rg2ac4CLKKel/OUhGw2yimFX8VBux89UaxQlUMvjajRbe2pBu84tn8hA7Q2blLqDYQad2+2osnFFHhlPWaFCWL9mucqVwuw+7kCnvR8TcpldcnMGnST249665u+LQUU7vbGDuXSDc4eh7oi3X3+vOSwa9MLSI5WMVL/DMX4xEfmPWlq7uFoUFaNhKiq8f8a8c1VdNLB3p+WtQB7wtAi8i6/C5CAmW7fY1tc3bmBJG09SkVMrlMDcSohbxOYiHPe3950xWm/Vns0da4rEfaicDujxLGRXMokSPT5OE/YyLWg14pTjJ7zxkqWz0/kouj1sQ+iXtPLWYv9N2bYuKBEWt6e8ciWCa43KTfOqUIIcOsrjuvFrKNX/fdocFANUvpeKYE0naB0Od4eUVLfTK3Kex+teIdDF+q3FJs0+YLvv2BfB8F4lM4moHoaw0EIe3CqHk3i+iC+RJocmi/ENpPV2uLjcntg7gvR9GkYU+GDsUgP6aIKrTl+LT4sVe7cFsUSbft6cncEjFHyQJt2wtTs8ME/uJrgjfzY+6dTBIMrZOQkAyWgbCvh6wcdVxwMxiUQuKXqLGcQF7Orkw9TKaz/nlM2PhNlt710Sa588tU/pm93FWAPeYQzHevCal25BFZpwZyTQ5I1gEAcByV0zy+265pSXyqBs+JElNkSmlTQn7R8Yy/ya2gaxXve0A9m37rllfVC2FqBoi1HQKttyxX4aiLbLCnJqmP1a7KEnasSbiOpW7NO+YLdICkU8IkugXFeEX+vhC2pWmlSu9+ryEAFFVDF89hELCZEqs/e0xieU0eVaWdZpMHKhdO5qSfniNE5uVFGnGuBsxSBIJY3OqNEqJ1INPnvCrZaT51ArRW6GchyRhqLUXFntES7bCYTbDMRkLNhJVDY0ecplD0abOJuRrAa2BjH8ShhTcD36XSQ5615k8+Zju1tSlnANGNlwF9PTR1z7ffaBsL3/Gsz0E3DmL6tzSgkAlnp0xQWkc9jRb+kP2hsGEbPMGPlLXfvb508KXBI8SefKvWA6LY4KSC8sa4iA5qbf2hFeO94yMiV9xvsYh6/s+dR5ky9lw9aUuKNEZkvl+81DCP7qYHnWnKy2JP35uCaq9vLC64k1LUHNzC285RrOM5+s0PRXm9+6Nox+1hMCkwYMkcJ2OrlXk7Se5r3rx6OJWh/giHMxD5TrqfbwbntXKiDtQeCVSGPB82kTOkxJSIFRlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
29
+ "dtype": "float32",
30
+ "shape": [
31
+ 8
32
+ ],
33
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
34
+ "high": "[inf inf inf inf inf inf inf inf]",
35
+ "bounded_below": "[False False False False False False False False]",
36
+ "bounded_above": "[False False False False False False False False]",
37
+ "np_random": "RandomState(MT19937)"
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
41
+ ":serialized:": "gASVTwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJRLAEsBh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCW5wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgKjAJ1NJRLAEsBh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAAAAAAgKruq4EMwPca6QNLBDAZQSleePyEkb7v9MC4Sn3OhzroegAiUXxpAt/REz/E8nMJWRDPFDIdDOUAXo+MUNo9OdPJDQYsdzqbyeCY1jlfODge4WQVbd+6HtaNnNwTRzsm7Jy/aqZR4xn5uCea5dhK4Isz4HZL9kQxb6pbqfJNYt+rHn7yt/vOi6sDbzeiQcq7NBLzQwVeGu/uWCf8CJ3nKsrxSURLiOYttwTtawxAZC+cQZr6/A9VlkzCbedAmS6d3pXFehwoYNfHzOQ/NscaWiZ2yrwXZVPThBlPjRhP/jaYO5uS6Vx4Gze0lm6dB5rvc2O+gsjfRobu8/6SoIJuSltAk4TYSYr5gvvf6oAfRZa8+yOaILRodFFN8NtEsoK76mpv85G4oDJzIFkrTPdb03ohm/rQWAe8Y2GgSm9VTs3OYiItcmSvflXA3Zl4M+iluc2h2LwcbCkNk9iYKt+BeJkf3vV8Jn19xZcjvpZvz6Aey8sNvDFrASeis2TZcamj2TmBDoRvXP5x6JlBQNQ4FK5i2bjmYtnVwidMMpX1FlmeNWTVUDnsET4+Ia1CVG361SH939xxAg77C3tXds6po5J8sHVLCH/HffYB+xM3BpnftGJu+j8HYYZYN7aTdtOzYKpbwpmBGHw29/TX4Iw2kNB351mDG6tv7ngFq66gl3velBhCydLL9gQV0DY5RpxZsREwT/wWM94Kpf7qhT8ZBLoPXJqRyYoK3IPEdZE22nApJoJc48qHia3gy4hsYoTsVWTSWDxpXewz3CU0duYcGBbYJv1sXf1KETGrZIrE+ZgHXeeQY2y7cwZ6eBzSy9uLPcESUiLkthjjxgwySoK5F9JnLtYH7XORvv9H++fGZWfQpwnMAjoUay/uBpg2pVDUqW1xklhiHUf1cpAxwPGZt/YEM9FWtX1StpA8q46SjNYukfH3hBCWotpGR70wig/zN2w9zefhOWy1LjIltb5Nmrc5gt4IclCkUVUWODlc/cN27FCwtvMpTxWmWz/9DANliHmOHV/qzMcTrhPDrFOGvYiCvrH4DS+zbriAyYytHYnS0oLTS68HfuulVYJVjZ67OhV9XEVKL4qPDxR3TE6bEOBDN8acUDvJ368JQJNfzzrG33aF9Bps8n4wwuJF+CyYw1C5L0iVQIbYprS6aslTYmRbQJdKKKNWD1yB+249B++bysBzctNVXYc7jVqH0xA8b7UGW3s3C6rudKiW6T7r6QftcD6abemBKIyTXZfGP++xNk/Bbr+l50kAO84MNjFCr84ZALUZ4W7WmSGuU1XkHlr2wOkvvGrjMbxM0UwW+cy34TtI4R72ZeYcm4zKzIAjDtnVezgTkqdZOYgjqfktKWqqswlOGPasX559kizj1tEkJrLAcWhpuA9JyzM6bOdMYkAlF90fEMTI3s//FdLQnQctF4xxf+Jq1v2G3K6Nk3TT23GNyvzYk3fZ3BINTNN/lCD7PCRGm1p2HDdnJtoZSAM26wupyTJ/gcWumXNDON1fPgxlAkES+UYdfQUoy2KMAuZ1m95fvRFn04FH/VpKDb9JpP5c7uKyrJIlhaHczil+5L9q+nXThoQ4Wh1Syezc4Y7YXxeacZEMMM0e+ZgNTV/7sCD/3paTvXwVWuZD/VR7pk9zczef3dzR3Odu7+eySS232Hvv25mofBg7YOd4UtwApmZNym5qGmtgg6Ll92DfaXYui5ijsMmkihoF4GGU62SCre5fk463tu6Y+iIkM/eq7mpAO/6xpIoIBo3YDRzD3ims3WX5A1KPAfn3mM3AWDtj/z+U11vUdSTU79Pr70VxVfk9B8d4fctOM3v9K79tFiBRgS4whEfxSgJpV/6qpS0IODieR6xa4XTiLRyzoPiTO6y6+O07JjtnmgXLgcb42s8HaePkdnQ9Tkv0eS13D1lZHCF1TxljqWKLd07Tyhc8YFLO/0CPT6LDqIcx5wxBRJxUgq36FCDVSKvTz/VI5IHEg98jTD3/NCRlILramf0PVSPs/uwaEDKeISbDf2Q/z0/4sbYXbwZdqTIxd1R/OxZ8S3nEhYEE9SQdHqByVVfYPrRRUZXGao/tz4lViEYSRcvnPBi9flEjr6RQv4LOm+rgG7CCdPz/GgpXIl4oh0NSIzr4+UrPedkXfsFXIw0MOy5qOyHrQdfV0lrfxpV9rh7KG4Wbu+oYT40TFR6xdtT3gPGKnK5KmaSUtZ6jczXKs6G5K4EAQsJntuuLq5nP9Qmy9siNXI7+9THAkQY0Rhs1zI+SOxX/i9OlOfAKmoM0h/FWyiHfyQEcR3N9B2w7ZBppHFzuKZt2Q6OzUsQM/JSZlCjNqgZNsF4meyZ2cdecwHvXBGc9B3bVIJViwaauoavxniYMpbggadsgUx8B2m4VHwCwlIXLmMlxAvwylh0B6jQZsvOgToKsYLQKeZO1mczEWrxglmDjg7fvuJ+jglqaAedaZMKj7Zs1yHocco8JbGoqA8U18AVwv0zd+24RVeuh7LkykkqCkvgiU4/tn45blJZ1IErXjbpICrjP4DxhjLoYTH3K3J9A+RK40Ye6Sfg0QDT5MMXi7yIDZpo3qoGhgwfUafk8hxZ9+kao/sfydYLhHv1nhXE+qV/HfcvGdP/dP2RoqL1Dk3XlM5Mll6KeGKWWH1H7GkUvlXKlTOn7RAqBym7hIp9UnIqhLgBjLhjfYLHP6oNlO2bMNOBkBn+yDvAWfKMm8IowQsKsptNRTCP/9G7SoZFLY2ElwdZEXDNDySYqxu2WQEKo8Nl5oGM4H1NdUvtaklEfvOcvDXBZE5fgHoJitQo4ErFajllWwmOIJyZGQWneSWNt3QWzGlzosQ3DsBhvBrjJhSpcbQXZavxKs1fQNZFb3+45g/aBJOS2DTdEOPeWn2xtn8R+q0kPrGXFqezTWTvpJdX2Iu7eLyRiyZOzGk1dIc1FskXAjVJb7kzhkxhTsaae1WuRfsRzwjcL+xE2VWfsM9aFghxWDJgis/9ZXl9ofy8bhQSgqtWN2T3jeXcGxc51kScmr0/PLzSdJs9T+zcwtZejHR0O7ENQpagdTXA+UvfyIkws6oOv18nfniypSxb+Lige6XQ+nJavTswjvYhwoldbzufKH+8ChaOla9DD4WVkucxUIRUjs29KOAaNaWdjB5wxpr5hy07n2p78ZoMcfdcFGmE834ifW2HGw7fDw2AxOshYd6JyTvcLsetWIstzS8VGzhoILxzK7j6k9bFksizazAbNnQy7tAWXvD1/MB6JJ0tv1oh9+a6Y81XvuCsZFGTAC5zsaSYj5lLyFuAyKfiodYKto08NsURrO/OQe0tQlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
42
+ "n": 4,
43
+ "shape": [],
44
+ "dtype": "int64",
45
+ "np_random": "RandomState(MT19937)"
46
+ },
47
+ "n_envs": 1,
48
+ "num_timesteps": 500736,
49
+ "_total_timesteps": 500000,
50
+ "seed": null,
51
+ "action_noise": null,
52
+ "start_time": 1652914764.5823133,
53
+ "learning_rate": 0.0003,
54
+ "tensorboard_log": null,
55
+ "lr_schedule": {
56
+ ":type:": "<class 'function'>",
57
+ ":serialized:": "gASVCgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxMQzpcUHJvZ3JhbURhdGFcQW5hY29uZGEzXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpRLAX2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMCHF1YWxuYW1llIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMCmt3ZGVmYXVsdHOUTnV0Ui4="
58
+ },
59
+ "_last_obs": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gASVrAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJRLAEsBh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQyCtjyA+Lof1O2cRTLnkMnK3QreJPTFuhDgAAIA/AACAP5R0lGIu"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gASViwAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUSwBLAYeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMBAJR0lGIu"
66
+ },
67
+ "_last_original_obs": null,
68
+ "_episode_num": 0,
69
+ "use_sde": false,
70
+ "sde_sample_freq": -1,
71
+ "_current_progress_remaining": -0.0014719999999999178,
72
+ "ep_info_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gASVgxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUSwBLAYeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiQwiPAG4WL7hsQJSGlFKUjAFslE3mAYwBdJRHQIzC/wPRRdh1fZQoaAZoCWgPQwgqcoi4OdRrQJSGlFKUaBVNlAFoFkdAjMqRYaHbh3V9lChoBmgJaA9DCAR1yqObA2RAlIaUUpRoFU3oA2gWR0CM3DNB4UvgdX2UKGgGaAloD0MIct2U8tqVYECUhpRSlGgVTegDaBZHQIzvGU4aP0Z1fZQoaAZoCWgPQwipiT4f5X1jQJSGlFKUaBVN6ANoFkdAjQBF0o0ALnV9lChoBmgJaA9DCCKphZLJD2NAlIaUUpRoFU3oA2gWR0CNEppQk5ZKdX2UKGgGaAloD0MIGZEotCy3aUCUhpRSlGgVTT8CaBZHQI0be5H3Del1fZQoaAZoCWgPQwgmb4CZ7z9jQJSGlFKUaBVN6ANoFkdAjS7E7nxJ/XV9lChoBmgJaA9DCNRDNLqDHmNAlIaUUpRoFU3oA2gWR0CNQG6/7BO6dX2UKGgGaAloD0MIzGCMSBS+XUCUhpRSlGgVTegDaBZHQI1UWGKyfL91fZQoaAZoCWgPQwi688RzNqpjQJSGlFKUaBVN6ANoFkdAjWeGU4aP0nV9lChoBmgJaA9DCJ92+GuycFtAlIaUUpRoFU3oA2gWR0CNeGXuVopQdX2UKGgGaAloD0MINum2RK7bYECUhpRSlGgVTegDaBZHQI2Pg6XBxgl1fZQoaAZoCWgPQwiOzY5U379pQJSGlFKUaBVNtwFoFkdAjZe5p8F6iXV9lChoBmgJaA9DCLeXNEbrB2BAlIaUUpRoFU3oA2gWR0CNq2CQLeANdX2UKGgGaAloD0MIj/0sliLpRcCUhpRSlGgVTYoBaBZHQI2wQBV+7UZ1fZQoaAZoCWgPQwgpeXWOAQdcQJSGlFKUaBVN6ANoFkdAjcS1tGd7OXV9lChoBmgJaA9DCHukwW1tMlxAlIaUUpRoFU3oA2gWR0CN1as5n13/dX2UKGgGaAloD0MICyQofowbY0CUhpRSlGgVTegDaBZHQI3rq1b7j1h1fZQoaAZoCWgPQwh+ObNdoQcnwJSGlFKUaBVNLQFoFkdAje5erMkhR3V9lChoBmgJaA9DCEgyq3e4zSFAlIaUUpRoFU1ZAWgWR0CN9NQGfPHDdX2UKGgGaAloD0MI1nJnJhhbUECUhpRSlGgVTegDaBZHQI4E1sWO6up1fZQoaAZoCWgPQwgYtJCA0VZcQJSGlFKUaBVN6ANoFkdAjhmGPo3aSXV9lChoBmgJaA9DCP1s5Lop5fS/lIaUUpRoFU1OAWgWR0COINA1vVEvdX2UKGgGaAloD0MIuCIxQQ2PYUCUhpRSlGgVTegDaBZHQI415FmWdEt1fZQoaAZoCWgPQwhnX3mQnp5gQJSGlFKUaBVN6ANoFkdAjksFWXC0nnV9lChoBmgJaA9DCJ27XS/NrGtAlIaUUpRoFU0yAmgWR0COUkxvegtfdX2UKGgGaAloD0MIWRZM/FFAW0CUhpRSlGgVTegDaBZHQI5n+GATZg51fZQoaAZoCWgPQwixUGua96piQJSGlFKUaBVN6ANoFkdAjoKkhJRO13V9lChoBmgJaA9DCEMDsWzm115AlIaUUpRoFU3oA2gWR0COmWe4kNWmdX2UKGgGaAloD0MImwEuyJbJQsCUhpRSlGgVTXcBaBZHQI6g6eRPoFF1fZQoaAZoCWgPQwjqew3BcYRbQJSGlFKUaBVN6ANoFkdAjrPW74BV/HV9lChoBmgJaA9DCLTmx1/ahmJAlIaUUpRoFU3oA2gWR0COx74k/r0KdX2UKGgGaAloD0MIIeaSqu1AYkCUhpRSlGgVTegDaBZHQI7hDmwJPZZ1fZQoaAZoCWgPQwi5xfzc0IxFwJSGlFKUaBVNjwFoFkdAjuZ3Q+lj3HV9lChoBmgJaA9DCJ0v9l589TTAlIaUUpRoFU2wAWgWR0CO6+mIj4YadX2UKGgGaAloD0MIL6UuGccwV0CUhpRSlGgVTegDaBZHQI7/VkvsZ511fZQoaAZoCWgPQwiorKbrCW1iQJSGlFKUaBVN6ANoFkdAjxKX2VVxTHV9lChoBmgJaA9DCLN9yFuuBiFAlIaUUpRoFU1FAWgWR0CPGa6Zpi7TdX2UKGgGaAloD0MISG+4j9x3VUCUhpRSlGgVTegDaBZHQI8yXrrxAjZ1fZQoaAZoCWgPQwhzg6EOK7ZcQJSGlFKUaBVN6ANoFkdAj0xmrS3LFHV9lChoBmgJaA9DCD0LQnkfV1FAlIaUUpRoFU3oA2gWR0CPYbzJ6po9dX2UKGgGaAloD0MIdA0zNJ6EWkCUhpRSlGgVTegDaBZHQI94YRh+fAd1fZQoaAZoCWgPQwhzS6shcRdVQJSGlFKUaBVN6ANoFkdAj5JmipNsWXV9lChoBmgJaA9DCFvR5ji3RltAlIaUUpRoFU3oA2gWR0CPsRcB2fTTdX2UKGgGaAloD0MIa32R0JbmYECUhpRSlGgVTegDaBZHQI/Cy3XqZ+h1fZQoaAZoCWgPQwijztxDwn1ZQJSGlFKUaBVN6ANoFkdAj9l4pMHryHV9lChoBmgJaA9DCNLFppVCplpAlIaUUpRoFU3oA2gWR0CP8A1CPZIydX2UKGgGaAloD0MIr+sX7Ib8W0CUhpRSlGgVTegDaBZHQJAAk3XI2fl1fZQoaAZoCWgPQwi8kA4P4TtiQJSGlFKUaBVN6ANoFkdAkAsc9B8hLXV9lChoBmgJaA9DCExUbw1soVBAlIaUUpRoFU3oA2gWR0CQGXAEdNnHdX2UKGgGaAloD0MIwsBz7+GAYUCUhpRSlGgVTegDaBZHQJAi893bEgp1fZQoaAZoCWgPQwjpuvCD88BbQJSGlFKUaBVN6ANoFkdAkCtFEVnEl3V9lChoBmgJaA9DCPQ2NjtS6VlAlIaUUpRoFU3oA2gWR0CQNgnNgSezdX2UKGgGaAloD0MIOX8TChE2WUCUhpRSlGgVTegDaBZHQJBESB3A2yd1fZQoaAZoCWgPQwh+j/rrFRJVQJSGlFKUaBVN6ANoFkdAkE8dCzC1qnV9lChoBmgJaA9DCNtpa0Sw6WJAlIaUUpRoFU3oA2gWR0CQWAFLWZqmdX2UKGgGaAloD0MI9rcE4J+qQsCUhpRSlGgVTaIBaBZHQJBcCozeoDR1fZQoaAZoCWgPQwjkh0ojZvY4wJSGlFKUaBVNggFoFkdAkF5foNd7fHV9lChoBmgJaA9DCP94r1oZRGBAlIaUUpRoFU3oA2gWR0CQaOKzzErHdX2UKGgGaAloD0MIHCYapOAmXkCUhpRSlGgVTegDaBZHQJB0n4sVclh1fZQoaAZoCWgPQwhbIhecwRJjQJSGlFKUaBVN6ANoFkdAkH1u7g88tHV9lChoBmgJaA9DCJLqO78oSFlAlIaUUpRoFU3oA2gWR0CQiWYU34sVdX2UKGgGaAloD0MIsAER4kqrYECUhpRSlGgVTegDaBZHQJCVWNS619h1fZQoaAZoCWgPQwhzZyYYzj5bQJSGlFKUaBVN6ANoFkdAkKBYbjtG/nV9lChoBmgJaA9DCO5brROXoylAlIaUUpRoFU1JAWgWR0CQok0e2d/bdX2UKGgGaAloD0MIdhiT/t70YkCUhpRSlGgVTegDaBZHQJCqtWkrPMV1fZQoaAZoCWgPQwh1kNeDSRVaQJSGlFKUaBVN6ANoFkdAkLb+LWI42nV9lChoBmgJaA9DCP1pozqdRmtAlIaUUpRoFU2XAWgWR0CQuVM+/xlQdX2UKGgGaAloD0MIUFCKVu74Y0CUhpRSlGgVTegDaBZHQJDB8Tg2qDN1fZQoaAZoCWgPQwgx0ovafcFjQJSGlFKUaBVN6ANoFkdAkMq0JF9a2XV9lChoBmgJaA9DCNKnVfSH1lRAlIaUUpRoFU3oA2gWR0CQ00FG5MDfdX2UKGgGaAloD0MIRKURM/v9YkCUhpRSlGgVTegDaBZHQJDb7iaRZEF1fZQoaAZoCWgPQwgKZHYWvdhbQJSGlFKUaBVN6ANoFkdAkOQ/1tfoinV9lChoBmgJaA9DCBdky/J1/1tAlIaUUpRoFU3oA2gWR0CQ77edkJ8fdX2UKGgGaAloD0MIHsAiv/6TYkCUhpRSlGgVTegDaBZHQJD6Z+iJwbV1fZQoaAZoCWgPQwjxtz1B4jhhQJSGlFKUaBVN6ANoFkdAkQm9+9allHV9lChoBmgJaA9DCIfguIybDGBAlIaUUpRoFU3oA2gWR0CRFHSSNfgKdX2UKGgGaAloD0MIBz9xAH3aYECUhpRSlGgVTegDaBZHQJEctrtVrAR1fZQoaAZoCWgPQwgZq83/q94gwJSGlFKUaBVNKAFoFkdAkR/NCJGe+XV9lChoBmgJaA9DCAfTMHxE4l5AlIaUUpRoFU3oA2gWR0CRKaJ+UhV3dX2UKGgGaAloD0MI66pALQZoXECUhpRSlGgVTegDaBZHQJExFr0rbxp1fZQoaAZoCWgPQwjfbkkO2IVfQJSGlFKUaBVN6ANoFkdAkTwt7rs0HnV9lChoBmgJaA9DCEC/7988Q2NAlIaUUpRoFU3oA2gWR0CRRaqvvBrOdX2UKGgGaAloD0MI5KCEmbYXMsCUhpRSlGgVTXYBaBZHQJFKLRBu4w11fZQoaAZoCWgPQwh/wAMDiNlhQJSGlFKUaBVN6ANoFkdAkVQS1Z1V53V9lChoBmgJaA9DCCOimLwBTVRAlIaUUpRoFU3oA2gWR0CRYSNgjQiSdX2UKGgGaAloD0MIstZQai9SE0CUhpRSlGgVTUkBaBZHQJFizh/Aj6h1fZQoaAZoCWgPQwi5NH7hlXhbQJSGlFKUaBVN6ANoFkdAkW3U4ecQRXV9lChoBmgJaA9DCEKz694KB2NAlIaUUpRoFU3oA2gWR0CRdMq7yxzJdX2UKGgGaAloD0MIC5jArbu1XkCUhpRSlGgVTegDaBZHQJF9fOGCZnd1fZQoaAZoCWgPQwi4sG68u4xhQJSGlFKUaBVN6ANoFkdAkYZVx4ptrXV9lChoBmgJaA9DCEpGzsKeZhlAlIaUUpRoFU0oAWgWR0CRh8DQ7cO9dX2UKGgGaAloD0MIPnjt0gbuYkCUhpRSlGgVTegDaBZHQJGOYYht+Ct1fZQoaAZoCWgPQwizX3e6c7dhQJSGlFKUaBVN6ANoFkdAkZbUkKNQ03V9lChoBmgJaA9DCKyMRj6vylRAlIaUUpRoFU3oA2gWR0CRn7S619fDdX2UKGgGaAloD0MIx/DYz2LtR8CUhpRSlGgVTZ4BaBZHQJGi5NEgGKR1fZQoaAZoCWgPQwhFSUikbcNhQJSGlFKUaBVN6ANoFkdAkaus9jgAInV9lChoBmgJaA9DCHwnZr0YGkjAlIaUUpRoFU1HAWgWR0CRrSRKHwgDdX2UKGgGaAloD0MIW3heKracZUCUhpRSlGgVTegDaBZHQJG0y2H+Idl1ZS4="
75
+ },
76
+ "ep_success_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
79
+ },
80
+ "_n_updates": 1956,
81
+ "n_steps": 1024,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 4,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gASVCgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxMQzpcUHJvZ3JhbURhdGFcQW5hY29uZGEzXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpRLAX2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMCHF1YWxuYW1llIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMCmt3ZGVmYXVsdHOUTnV0Ui4="
92
+ },
93
+ "clip_range_vf": null,
94
+ "target_kl": null
95
+ }
Lunar_Lander_trained_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f7bf6b5382e18c6fb36ae87182aa9f519f3f81d2a9ebf2240af12f5a9d6b4ff
3
+ size 84573
Lunar_Lander_trained_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f81d61e3408c0f8acd757169a51b348fa6f6e5ff68c16aa6c7e2210aed50473c
3
+ size 43073
Lunar_Lander_trained_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunar_Lander_trained_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.19041-SP0 10.0.19041
2
+ Python: 3.6.5
3
+ Stable-Baselines3: 1.3.0
4
+ PyTorch: 1.10.2+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.17.4
7
+ Gym: 0.17.1
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 92.59 +/- 132.90
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000214E3CA5400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000214E3CA5488>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000214E3CA5510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000214E3CA5598>", "_build": "<function ActorCriticPolicy._build at 0x00000214E3CA5620>", "forward": "<function ActorCriticPolicy.forward at 0x00000214E3CA56A8>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000214E3CA5730>", "_predict": "<function ActorCriticPolicy._predict at 0x00000214E3CA57B8>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000214E3CA5840>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000214E3CA58C8>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000214E3CA5950>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x00000214E3CA3208>", "_abc_cache": "<_weakrefset.WeakSet object at 0x00000214E3CA3240>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x00000214E3CA3278>", "_abc_negative_cache_version": 85}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVXQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lEsASwGHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowFc2hhcGWUSwiFlIwDbG93lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAaMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLCIWUaAuJQyAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBNoFUsAhZRoF4eUUpQoSwFLCIWUaAuJQyAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBNoFUsAhZRoF4eUUpQoSwFLCIWUaAiMAmIxlEsASwGHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoE2gVSwCFlGgXh5RSlChLAUsIhZRoK4lDCAAAAAAAAAAAlHSUYowJbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoO4wFc3RhdGWUfZQojANrZXmUaBNoFUsAhZRoF4eUUpQoSwFNcAKFlGgIjAJ1NJRLAEsBh5RSlChLA2gMTk5OSv////9K/////0sAdJRiiULACQAAAAAAgE7NSFjAQ9HFqym1VsBr4cUMTxD/u3Aa+FbQhb8cuoU09v99SewuXPH4tdbDHK8at042Ve2ItuugS8d/l8HFrUiqzpt8M6RI6OjqJoDiZEEjYQ6ywe1H1AVRw6S8rBmXN5ix64A6cJxy9o8ZY84i2k62kF5mMk8+ZdJ0eCLZlYAV2jHHDqdkdZqfvE3vzw/a70OM6b2+NEqZL6+EBIMZm633ca0FaGQT/fHP6fgQMO6TpGXGsZ9f21vt0TckE/BRiKXWFA1ezruyAVr0tNoMKXnWrJTZIeOUvUaQTU0SB+LyT8H3DxN9Z+R9R856ClH6xgMBLD1HmSGNAqBbQmx+WfBPyFqQyU+/QILpN+41cbt0w08bcCzlDfLb5mnRWf729nhYhFjR6cpQoMcAW2Z/3rhcmo88Tcye/vy4lfQXUa3WmBckKEOHPyTtV9WWsrgIf7831xbm8mHJu0rvmhVIMMM+xnDczRy2EB5PTUheUZu2nMgFvyU4KTzFn3rbdcpC2DBVEI0uyAhCJ9at+NAAplXb3//7UpWzdIyeG5bc4PrkFEjtc6uHu+5e65CzWXvrASuFXpoeqHr0KW+SYL2iBERHZJGuBisqBr6Iztl81gmvvT9Ou78E+CM+cpMH+ERbQz7D01i2txLh+jJYyUfMVj2QmQ3xd+zMUlKmhdc8vq958Ey7UG0FUdsXw/xK2GYyThJbUQQOaq3XG2KzagIEvf9e5nKwaYsQ9Ibodc8uhg8U5NxneenvhLljuX4dGHNp57mVbGyxbobigMOJZy9XiPKj0XD29MgCJ6JUb/Ziyjdxevc90s6Rjyi6fuLy8Dj0ZN0Su6xYCLqt7FWuhqKN3/R55oFKps7M6BHRJIXZ5rR2aq+8MEvK31wVKUbeuMWb3j0lmFB3r79dtl01yCbWGTYGl92Le+NWltbfSictIZ19xqbtE6qxx1PB4Hwf1C0GHzZ75tFKG7M1LWo5ihuNXfvgs9OBNvOALg+wDto2RjR18Cy3DN0Keel6JKMWR6E7C2aHdGDki0zj9qVdte78uHsnwnfXiph9HSFR2FGnEeRFyjWG37ELIz4W8uEflrbG3sxz07YXq0QKgm/7cf+nDofIk81HbKaLjoZBPkyWj/BkVrgq1rSN5ixWzjr70IGKdy8gOxQl+EimcD488bQU39qMnYFODqHz6WoeLpAmX2UvW4Xsob0TI7JYiY3wEf6wF4qIInS5qn6/ipZ2YFjKaW/1Rr2di+eTVvMQCgb4ZClfuUQiN0Yk8uS7pPeTI/00s96nBf7kR/eVhPzxlP1195Mhg7GXSXFtcvNCI4MYgnt4kTw06AZqfBdeQUF/ibzKp/6yEEwO1iFX+m2PjwNGGptLbKL8moqVcX4WUY6tGNqrmdse9dIN3dTy4CKLUqnnn1fjfGJc2D/ruj7vVXdcL3dbPdSrO/9719JQSFYaiNduxL61lnQZyKYGw7ZqqNdlOW1R3eeXlIgYRTyOfB2gMTJWoDxL/9e3daqaXitMaYr4Im7aSh+f0ph+v5DnZp0PN+lMkagYox4A9uuI19P01komLtc89hn4DgDQaP6rqOvorpkEmSLqRtNJ8ynEt4w0tnn620XcdNouGWatYKGHcy9UrzJDdsW844a1mV9MrcYNUVIVXBeRDB29ULENsIlqvzTTRBovQl1Hb5vPz/ps5cSl0Tx6k6Ud0eOm2JBsc6V4hqkTG1cmy91c4OBR/G5YuRTzL0/U8CT2P1XMnCngax+J9yqTpozxWv882qBgg/flAadDLkKkT3dEG5/Hed6Vjmz4hJz+KA96tEQLHslAM0/M95Vv2UshK2i6nQkbBFehEPJpHxdqRl55sNG/OT1jhO+q16eqvh7JitgyRSv6W023FWLI/X5eVmtCV3hFNw0rQhQHvCAcg8pqQ6zU9I9PEj3NG8CxM2V0Y6UAtVe2EMtRaMgMWaq1gw5mBb41j4QnoZ6NtLYRUKx7n2REb5yxjcntN/13JxA9FUPK31yT0NwhNnRKL1Vw5z+yn9gVwjhMXEFD9V8sa3AtTjCorusN8625JwpkLwYjUJfRbga5CqJcDO/aF/QmOjreTz5W8QWiici05cj+rg2ac4CLKKel/OUhGw2yimFX8VBux89UaxQlUMvjajRbe2pBu84tn8hA7Q2blLqDYQad2+2osnFFHhlPWaFCWL9mucqVwuw+7kCnvR8TcpldcnMGnST249665u+LQUU7vbGDuXSDc4eh7oi3X3+vOSwa9MLSI5WMVL/DMX4xEfmPWlq7uFoUFaNhKiq8f8a8c1VdNLB3p+WtQB7wtAi8i6/C5CAmW7fY1tc3bmBJG09SkVMrlMDcSohbxOYiHPe3950xWm/Vns0da4rEfaicDujxLGRXMokSPT5OE/YyLWg14pTjJ7zxkqWz0/kouj1sQ+iXtPLWYv9N2bYuKBEWt6e8ciWCa43KTfOqUIIcOsrjuvFrKNX/fdocFANUvpeKYE0naB0Od4eUVLfTK3Kex+teIdDF+q3FJs0+YLvv2BfB8F4lM4moHoaw0EIe3CqHk3i+iC+RJocmi/ENpPV2uLjcntg7gvR9GkYU+GDsUgP6aIKrTl+LT4sVe7cFsUSbft6cncEjFHyQJt2wtTs8ME/uJrgjfzY+6dTBIMrZOQkAyWgbCvh6wcdVxwMxiUQuKXqLGcQF7Orkw9TKaz/nlM2PhNlt710Sa588tU/pm93FWAPeYQzHevCal25BFZpwZyTQ5I1gEAcByV0zy+265pSXyqBs+JElNkSmlTQn7R8Yy/ya2gaxXve0A9m37rllfVC2FqBoi1HQKttyxX4aiLbLCnJqmP1a7KEnasSbiOpW7NO+YLdICkU8IkugXFeEX+vhC2pWmlSu9+ryEAFFVDF89hELCZEqs/e0xieU0eVaWdZpMHKhdO5qSfniNE5uVFGnGuBsxSBIJY3OqNEqJ1INPnvCrZaT51ArRW6GchyRhqLUXFntES7bCYTbDMRkLNhJVDY0ecplD0abOJuRrAa2BjH8ShhTcD36XSQ5615k8+Zju1tSlnANGNlwF9PTR1z7ffaBsL3/Gsz0E3DmL6tzSgkAlnp0xQWkc9jRb+kP2hsGEbPMGPlLXfvb508KXBI8SefKvWA6LY4KSC8sa4iA5qbf2hFeO94yMiV9xvsYh6/s+dR5ky9lw9aUuKNEZkvl+81DCP7qYHnWnKy2JP35uCaq9vLC64k1LUHNzC285RrOM5+s0PRXm9+6Nox+1hMCkwYMkcJ2OrlXk7Se5r3rx6OJWh/giHMxD5TrqfbwbntXKiDtQeCVSGPB82kTOkxJSIFRlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVTwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJRLAEsBh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCW5wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgKjAJ1NJRLAEsBh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAAAAAAgKruq4EMwPca6QNLBDAZQSleePyEkb7v9MC4Sn3OhzroegAiUXxpAt/REz/E8nMJWRDPFDIdDOUAXo+MUNo9OdPJDQYsdzqbyeCY1jlfODge4WQVbd+6HtaNnNwTRzsm7Jy/aqZR4xn5uCea5dhK4Isz4HZL9kQxb6pbqfJNYt+rHn7yt/vOi6sDbzeiQcq7NBLzQwVeGu/uWCf8CJ3nKsrxSURLiOYttwTtawxAZC+cQZr6/A9VlkzCbedAmS6d3pXFehwoYNfHzOQ/NscaWiZ2yrwXZVPThBlPjRhP/jaYO5uS6Vx4Gze0lm6dB5rvc2O+gsjfRobu8/6SoIJuSltAk4TYSYr5gvvf6oAfRZa8+yOaILRodFFN8NtEsoK76mpv85G4oDJzIFkrTPdb03ohm/rQWAe8Y2GgSm9VTs3OYiItcmSvflXA3Zl4M+iluc2h2LwcbCkNk9iYKt+BeJkf3vV8Jn19xZcjvpZvz6Aey8sNvDFrASeis2TZcamj2TmBDoRvXP5x6JlBQNQ4FK5i2bjmYtnVwidMMpX1FlmeNWTVUDnsET4+Ia1CVG361SH939xxAg77C3tXds6po5J8sHVLCH/HffYB+xM3BpnftGJu+j8HYYZYN7aTdtOzYKpbwpmBGHw29/TX4Iw2kNB351mDG6tv7ngFq66gl3velBhCydLL9gQV0DY5RpxZsREwT/wWM94Kpf7qhT8ZBLoPXJqRyYoK3IPEdZE22nApJoJc48qHia3gy4hsYoTsVWTSWDxpXewz3CU0duYcGBbYJv1sXf1KETGrZIrE+ZgHXeeQY2y7cwZ6eBzSy9uLPcESUiLkthjjxgwySoK5F9JnLtYH7XORvv9H++fGZWfQpwnMAjoUay/uBpg2pVDUqW1xklhiHUf1cpAxwPGZt/YEM9FWtX1StpA8q46SjNYukfH3hBCWotpGR70wig/zN2w9zefhOWy1LjIltb5Nmrc5gt4IclCkUVUWODlc/cN27FCwtvMpTxWmWz/9DANliHmOHV/qzMcTrhPDrFOGvYiCvrH4DS+zbriAyYytHYnS0oLTS68HfuulVYJVjZ67OhV9XEVKL4qPDxR3TE6bEOBDN8acUDvJ368JQJNfzzrG33aF9Bps8n4wwuJF+CyYw1C5L0iVQIbYprS6aslTYmRbQJdKKKNWD1yB+249B++bysBzctNVXYc7jVqH0xA8b7UGW3s3C6rudKiW6T7r6QftcD6abemBKIyTXZfGP++xNk/Bbr+l50kAO84MNjFCr84ZALUZ4W7WmSGuU1XkHlr2wOkvvGrjMbxM0UwW+cy34TtI4R72ZeYcm4zKzIAjDtnVezgTkqdZOYgjqfktKWqqswlOGPasX559kizj1tEkJrLAcWhpuA9JyzM6bOdMYkAlF90fEMTI3s//FdLQnQctF4xxf+Jq1v2G3K6Nk3TT23GNyvzYk3fZ3BINTNN/lCD7PCRGm1p2HDdnJtoZSAM26wupyTJ/gcWumXNDON1fPgxlAkES+UYdfQUoy2KMAuZ1m95fvRFn04FH/VpKDb9JpP5c7uKyrJIlhaHczil+5L9q+nXThoQ4Wh1Syezc4Y7YXxeacZEMMM0e+ZgNTV/7sCD/3paTvXwVWuZD/VR7pk9zczef3dzR3Odu7+eySS232Hvv25mofBg7YOd4UtwApmZNym5qGmtgg6Ll92DfaXYui5ijsMmkihoF4GGU62SCre5fk463tu6Y+iIkM/eq7mpAO/6xpIoIBo3YDRzD3ims3WX5A1KPAfn3mM3AWDtj/z+U11vUdSTU79Pr70VxVfk9B8d4fctOM3v9K79tFiBRgS4whEfxSgJpV/6qpS0IODieR6xa4XTiLRyzoPiTO6y6+O07JjtnmgXLgcb42s8HaePkdnQ9Tkv0eS13D1lZHCF1TxljqWKLd07Tyhc8YFLO/0CPT6LDqIcx5wxBRJxUgq36FCDVSKvTz/VI5IHEg98jTD3/NCRlILramf0PVSPs/uwaEDKeISbDf2Q/z0/4sbYXbwZdqTIxd1R/OxZ8S3nEhYEE9SQdHqByVVfYPrRRUZXGao/tz4lViEYSRcvnPBi9flEjr6RQv4LOm+rgG7CCdPz/GgpXIl4oh0NSIzr4+UrPedkXfsFXIw0MOy5qOyHrQdfV0lrfxpV9rh7KG4Wbu+oYT40TFR6xdtT3gPGKnK5KmaSUtZ6jczXKs6G5K4EAQsJntuuLq5nP9Qmy9siNXI7+9THAkQY0Rhs1zI+SOxX/i9OlOfAKmoM0h/FWyiHfyQEcR3N9B2w7ZBppHFzuKZt2Q6OzUsQM/JSZlCjNqgZNsF4meyZ2cdecwHvXBGc9B3bVIJViwaauoavxniYMpbggadsgUx8B2m4VHwCwlIXLmMlxAvwylh0B6jQZsvOgToKsYLQKeZO1mczEWrxglmDjg7fvuJ+jglqaAedaZMKj7Zs1yHocco8JbGoqA8U18AVwv0zd+24RVeuh7LkykkqCkvgiU4/tn45blJZ1IErXjbpICrjP4DxhjLoYTH3K3J9A+RK40Ye6Sfg0QDT5MMXi7yIDZpo3qoGhgwfUafk8hxZ9+kao/sfydYLhHv1nhXE+qV/HfcvGdP/dP2RoqL1Dk3XlM5Mll6KeGKWWH1H7GkUvlXKlTOn7RAqBym7hIp9UnIqhLgBjLhjfYLHP6oNlO2bMNOBkBn+yDvAWfKMm8IowQsKsptNRTCP/9G7SoZFLY2ElwdZEXDNDySYqxu2WQEKo8Nl5oGM4H1NdUvtaklEfvOcvDXBZE5fgHoJitQo4ErFajllWwmOIJyZGQWneSWNt3QWzGlzosQ3DsBhvBrjJhSpcbQXZavxKs1fQNZFb3+45g/aBJOS2DTdEOPeWn2xtn8R+q0kPrGXFqezTWTvpJdX2Iu7eLyRiyZOzGk1dIc1FskXAjVJb7kzhkxhTsaae1WuRfsRzwjcL+xE2VWfsM9aFghxWDJgis/9ZXl9ofy8bhQSgqtWN2T3jeXcGxc51kScmr0/PLzSdJs9T+zcwtZejHR0O7ENQpagdTXA+UvfyIkws6oOv18nfniypSxb+Lige6XQ+nJavTswjvYhwoldbzufKH+8ChaOla9DD4WVkucxUIRUjs29KOAaNaWdjB5wxpr5hy07n2p78ZoMcfdcFGmE834ifW2HGw7fDw2AxOshYd6JyTvcLsetWIstzS8VGzhoILxzK7j6k9bFksizazAbNnQy7tAWXvD1/MB6JJ0tv1oh9+a6Y81XvuCsZFGTAC5zsaSYj5lLyFuAyKfiodYKto08NsURrO/OQe0tQlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "shape": [], "dtype": "int64", "np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "seed": null, "action_noise": null, "start_time": 1652914764.5823133, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVCgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxMQzpcUHJvZ3JhbURhdGFcQW5hY29uZGEzXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpRLAX2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz8zqSowVTJhYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMCHF1YWxuYW1llIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMCmt3ZGVmYXVsdHOUTnV0Ui4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVrAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJRLAEsBh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQyCtjyA+Lof1O2cRTLnkMnK3QreJPTFuhDgAAIA/AACAP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViwAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUSwBLAYeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMBAJR0lGIu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVgxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUSwBLAYeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiQwiPAG4WL7hsQJSGlFKUjAFslE3mAYwBdJRHQIzC/wPRRdh1fZQoaAZoCWgPQwgqcoi4OdRrQJSGlFKUaBVNlAFoFkdAjMqRYaHbh3V9lChoBmgJaA9DCAR1yqObA2RAlIaUUpRoFU3oA2gWR0CM3DNB4UvgdX2UKGgGaAloD0MIct2U8tqVYECUhpRSlGgVTegDaBZHQIzvGU4aP0Z1fZQoaAZoCWgPQwipiT4f5X1jQJSGlFKUaBVN6ANoFkdAjQBF0o0ALnV9lChoBmgJaA9DCCKphZLJD2NAlIaUUpRoFU3oA2gWR0CNEppQk5ZKdX2UKGgGaAloD0MIGZEotCy3aUCUhpRSlGgVTT8CaBZHQI0be5H3Del1fZQoaAZoCWgPQwgmb4CZ7z9jQJSGlFKUaBVN6ANoFkdAjS7E7nxJ/XV9lChoBmgJaA9DCNRDNLqDHmNAlIaUUpRoFU3oA2gWR0CNQG6/7BO6dX2UKGgGaAloD0MIzGCMSBS+XUCUhpRSlGgVTegDaBZHQI1UWGKyfL91fZQoaAZoCWgPQwi688RzNqpjQJSGlFKUaBVN6ANoFkdAjWeGU4aP0nV9lChoBmgJaA9DCJ92+GuycFtAlIaUUpRoFU3oA2gWR0CNeGXuVopQdX2UKGgGaAloD0MINum2RK7bYECUhpRSlGgVTegDaBZHQI2Pg6XBxgl1fZQoaAZoCWgPQwiOzY5U379pQJSGlFKUaBVNtwFoFkdAjZe5p8F6iXV9lChoBmgJaA9DCLeXNEbrB2BAlIaUUpRoFU3oA2gWR0CNq2CQLeANdX2UKGgGaAloD0MIj/0sliLpRcCUhpRSlGgVTYoBaBZHQI2wQBV+7UZ1fZQoaAZoCWgPQwgpeXWOAQdcQJSGlFKUaBVN6ANoFkdAjcS1tGd7OXV9lChoBmgJaA9DCHukwW1tMlxAlIaUUpRoFU3oA2gWR0CN1as5n13/dX2UKGgGaAloD0MICyQofowbY0CUhpRSlGgVTegDaBZHQI3rq1b7j1h1fZQoaAZoCWgPQwh+ObNdoQcnwJSGlFKUaBVNLQFoFkdAje5erMkhR3V9lChoBmgJaA9DCEgyq3e4zSFAlIaUUpRoFU1ZAWgWR0CN9NQGfPHDdX2UKGgGaAloD0MI1nJnJhhbUECUhpRSlGgVTegDaBZHQI4E1sWO6up1fZQoaAZoCWgPQwgYtJCA0VZcQJSGlFKUaBVN6ANoFkdAjhmGPo3aSXV9lChoBmgJaA9DCP1s5Lop5fS/lIaUUpRoFU1OAWgWR0COINA1vVEvdX2UKGgGaAloD0MIuCIxQQ2PYUCUhpRSlGgVTegDaBZHQI415FmWdEt1fZQoaAZoCWgPQwhnX3mQnp5gQJSGlFKUaBVN6ANoFkdAjksFWXC0nnV9lChoBmgJaA9DCJ27XS/NrGtAlIaUUpRoFU0yAmgWR0COUkxvegtfdX2UKGgGaAloD0MIWRZM/FFAW0CUhpRSlGgVTegDaBZHQI5n+GATZg51fZQoaAZoCWgPQwixUGua96piQJSGlFKUaBVN6ANoFkdAjoKkhJRO13V9lChoBmgJaA9DCEMDsWzm115AlIaUUpRoFU3oA2gWR0COmWe4kNWmdX2UKGgGaAloD0MImwEuyJbJQsCUhpRSlGgVTXcBaBZHQI6g6eRPoFF1fZQoaAZoCWgPQwjqew3BcYRbQJSGlFKUaBVN6ANoFkdAjrPW74BV/HV9lChoBmgJaA9DCLTmx1/ahmJAlIaUUpRoFU3oA2gWR0COx74k/r0KdX2UKGgGaAloD0MIIeaSqu1AYkCUhpRSlGgVTegDaBZHQI7hDmwJPZZ1fZQoaAZoCWgPQwi5xfzc0IxFwJSGlFKUaBVNjwFoFkdAjuZ3Q+lj3HV9lChoBmgJaA9DCJ0v9l589TTAlIaUUpRoFU2wAWgWR0CO6+mIj4YadX2UKGgGaAloD0MIL6UuGccwV0CUhpRSlGgVTegDaBZHQI7/VkvsZ511fZQoaAZoCWgPQwiorKbrCW1iQJSGlFKUaBVN6ANoFkdAjxKX2VVxTHV9lChoBmgJaA9DCLN9yFuuBiFAlIaUUpRoFU1FAWgWR0CPGa6Zpi7TdX2UKGgGaAloD0MISG+4j9x3VUCUhpRSlGgVTegDaBZHQI8yXrrxAjZ1fZQoaAZoCWgPQwhzg6EOK7ZcQJSGlFKUaBVN6ANoFkdAj0xmrS3LFHV9lChoBmgJaA9DCD0LQnkfV1FAlIaUUpRoFU3oA2gWR0CPYbzJ6po9dX2UKGgGaAloD0MIdA0zNJ6EWkCUhpRSlGgVTegDaBZHQI94YRh+fAd1fZQoaAZoCWgPQwhzS6shcRdVQJSGlFKUaBVN6ANoFkdAj5JmipNsWXV9lChoBmgJaA9DCFvR5ji3RltAlIaUUpRoFU3oA2gWR0CPsRcB2fTTdX2UKGgGaAloD0MIa32R0JbmYECUhpRSlGgVTegDaBZHQI/Cy3XqZ+h1fZQoaAZoCWgPQwijztxDwn1ZQJSGlFKUaBVN6ANoFkdAj9l4pMHryHV9lChoBmgJaA9DCNLFppVCplpAlIaUUpRoFU3oA2gWR0CP8A1CPZIydX2UKGgGaAloD0MIr+sX7Ib8W0CUhpRSlGgVTegDaBZHQJAAk3XI2fl1fZQoaAZoCWgPQwi8kA4P4TtiQJSGlFKUaBVN6ANoFkdAkAsc9B8hLXV9lChoBmgJaA9DCExUbw1soVBAlIaUUpRoFU3oA2gWR0CQGXAEdNnHdX2UKGgGaAloD0MIwsBz7+GAYUCUhpRSlGgVTegDaBZHQJAi893bEgp1fZQoaAZoCWgPQwjpuvCD88BbQJSGlFKUaBVN6ANoFkdAkCtFEVnEl3V9lChoBmgJaA9DCPQ2NjtS6VlAlIaUUpRoFU3oA2gWR0CQNgnNgSezdX2UKGgGaAloD0MIOX8TChE2WUCUhpRSlGgVTegDaBZHQJBESB3A2yd1fZQoaAZoCWgPQwh+j/rrFRJVQJSGlFKUaBVN6ANoFkdAkE8dCzC1qnV9lChoBmgJaA9DCNtpa0Sw6WJAlIaUUpRoFU3oA2gWR0CQWAFLWZqmdX2UKGgGaAloD0MI9rcE4J+qQsCUhpRSlGgVTaIBaBZHQJBcCozeoDR1fZQoaAZoCWgPQwjkh0ojZvY4wJSGlFKUaBVNggFoFkdAkF5foNd7fHV9lChoBmgJaA9DCP94r1oZRGBAlIaUUpRoFU3oA2gWR0CQaOKzzErHdX2UKGgGaAloD0MIHCYapOAmXkCUhpRSlGgVTegDaBZHQJB0n4sVclh1fZQoaAZoCWgPQwhbIhecwRJjQJSGlFKUaBVN6ANoFkdAkH1u7g88tHV9lChoBmgJaA9DCJLqO78oSFlAlIaUUpRoFU3oA2gWR0CQiWYU34sVdX2UKGgGaAloD0MIsAER4kqrYECUhpRSlGgVTegDaBZHQJCVWNS619h1fZQoaAZoCWgPQwhzZyYYzj5bQJSGlFKUaBVN6ANoFkdAkKBYbjtG/nV9lChoBmgJaA9DCO5brROXoylAlIaUUpRoFU1JAWgWR0CQok0e2d/bdX2UKGgGaAloD0MIdhiT/t70YkCUhpRSlGgVTegDaBZHQJCqtWkrPMV1fZQoaAZoCWgPQwh1kNeDSRVaQJSGlFKUaBVN6ANoFkdAkLb+LWI42nV9lChoBmgJaA9DCP1pozqdRmtAlIaUUpRoFU2XAWgWR0CQuVM+/xlQdX2UKGgGaAloD0MIUFCKVu74Y0CUhpRSlGgVTegDaBZHQJDB8Tg2qDN1fZQoaAZoCWgPQwgx0ovafcFjQJSGlFKUaBVN6ANoFkdAkMq0JF9a2XV9lChoBmgJaA9DCNKnVfSH1lRAlIaUUpRoFU3oA2gWR0CQ00FG5MDfdX2UKGgGaAloD0MIRKURM/v9YkCUhpRSlGgVTegDaBZHQJDb7iaRZEF1fZQoaAZoCWgPQwgKZHYWvdhbQJSGlFKUaBVN6ANoFkdAkOQ/1tfoinV9lChoBmgJaA9DCBdky/J1/1tAlIaUUpRoFU3oA2gWR0CQ77edkJ8fdX2UKGgGaAloD0MIHsAiv/6TYkCUhpRSlGgVTegDaBZHQJD6Z+iJwbV1fZQoaAZoCWgPQwjxtz1B4jhhQJSGlFKUaBVN6ANoFkdAkQm9+9allHV9lChoBmgJaA9DCIfguIybDGBAlIaUUpRoFU3oA2gWR0CRFHSSNfgKdX2UKGgGaAloD0MIBz9xAH3aYECUhpRSlGgVTegDaBZHQJEctrtVrAR1fZQoaAZoCWgPQwgZq83/q94gwJSGlFKUaBVNKAFoFkdAkR/NCJGe+XV9lChoBmgJaA9DCAfTMHxE4l5AlIaUUpRoFU3oA2gWR0CRKaJ+UhV3dX2UKGgGaAloD0MI66pALQZoXECUhpRSlGgVTegDaBZHQJExFr0rbxp1fZQoaAZoCWgPQwjfbkkO2IVfQJSGlFKUaBVN6ANoFkdAkTwt7rs0HnV9lChoBmgJaA9DCEC/7988Q2NAlIaUUpRoFU3oA2gWR0CRRaqvvBrOdX2UKGgGaAloD0MI5KCEmbYXMsCUhpRSlGgVTXYBaBZHQJFKLRBu4w11fZQoaAZoCWgPQwh/wAMDiNlhQJSGlFKUaBVN6ANoFkdAkVQS1Z1V53V9lChoBmgJaA9DCCOimLwBTVRAlIaUUpRoFU3oA2gWR0CRYSNgjQiSdX2UKGgGaAloD0MIstZQai9SE0CUhpRSlGgVTUkBaBZHQJFizh/Aj6h1fZQoaAZoCWgPQwi5NH7hlXhbQJSGlFKUaBVN6ANoFkdAkW3U4ecQRXV9lChoBmgJaA9DCEKz694KB2NAlIaUUpRoFU3oA2gWR0CRdMq7yxzJdX2UKGgGaAloD0MIC5jArbu1XkCUhpRSlGgVTegDaBZHQJF9fOGCZnd1fZQoaAZoCWgPQwi4sG68u4xhQJSGlFKUaBVN6ANoFkdAkYZVx4ptrXV9lChoBmgJaA9DCEpGzsKeZhlAlIaUUpRoFU0oAWgWR0CRh8DQ7cO9dX2UKGgGaAloD0MIPnjt0gbuYkCUhpRSlGgVTegDaBZHQJGOYYht+Ct1fZQoaAZoCWgPQwizX3e6c7dhQJSGlFKUaBVN6ANoFkdAkZbUkKNQ03V9lChoBmgJaA9DCKyMRj6vylRAlIaUUpRoFU3oA2gWR0CRn7S619fDdX2UKGgGaAloD0MIx/DYz2LtR8CUhpRSlGgVTZ4BaBZHQJGi5NEgGKR1fZQoaAZoCWgPQwhFSUikbcNhQJSGlFKUaBVN6ANoFkdAkaus9jgAInV9lChoBmgJaA9DCHwnZr0YGkjAlIaUUpRoFU1HAWgWR0CRrSRKHwgDdX2UKGgGaAloD0MIW3heKracZUCUhpRSlGgVTegDaBZHQJG0y2H+Idl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVCgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxMQzpcUHJvZ3JhbURhdGFcQW5hY29uZGEzXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpRLAX2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMCHF1YWxuYW1llIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMCmt3ZGVmYXVsdHOUTnV0Ui4="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.6.5", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cpu", "GPU Enabled": "False", "Numpy": "1.17.4", "Gym": "0.17.1"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5f727cd3aa2c2da986a755a8385b1ae597536ab2126fee67fa82a94a9ffb4e3
3
+ size 241847
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 92.5910610812429, "std_reward": 132.90325008128417, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-26T03:11:26.602496"}