Al020198zee
commited on
Commit
•
58a3f00
1
Parent(s):
c250e0f
Test
Browse files- .gitattributes +1 -0
- README.md +1 -1
- config.json +1 -1
- ppo-Walker2DBulletEnv-v0.zip +2 -2
- ppo-Walker2DBulletEnv-v0/data +21 -21
- ppo-Walker2DBulletEnv-v0/policy.optimizer.pth +2 -2
- ppo-Walker2DBulletEnv-v0/policy.pth +2 -2
- ppo-Walker2DBulletEnv-v0/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 1993.03 +/- 11.92
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5dd8545ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5dd8545f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5dd854d050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5dd854d0e0>", "_build": "<function ActorCriticPolicy._build at 0x7f5dd854d170>", "forward": "<function ActorCriticPolicy.forward at 0x7f5dd854d200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5dd854d290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5dd854d320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5dd854d3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5dd854d440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5dd854d4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5dd8586f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658403505.294959, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAArsK1PgAAAAB3MP03irrhvwAAAADj3jq9AAAAALztNT8KKGA/ulW4PgmbAT11WwHAyz2VviBHkj9vcDQ/wq0Xv/9hp75I3Cu9I8c0P4f0Cz8TtmU/l8eSv0oJhD4AAAAAdzD9N+r+jL8AAAAAer0EvQAAAAC77ac+G78pPyc6ij+SBbi9XPsHwN6hVj9I0q0/cbCCP9IN6T5o8Am/fvkkv6sOlb2ytaE+E7ZlP5fHkr++VXw/AAAAAHcw/TeOoZU/AAAAAL6EgD8AAAAAvD2XP52Qjj+/Fus+AVQTPxAkOz/I922/e/b0vlOQOz/SDek+NCpZP0xhPj8ePzC/GHzmvg+mjr+Xx5K/rom4vgAAAAB3MP03KeZ6vQAAAADFuyQ+AAAAADnUmb8W/2W/USmjPA12Bb9D4j4/kPWQvFVojz7KG9C/BfFjPxLlo715f62/SJOGP75gt78TtmU/Bz9fP8MEOz8AAAAAdzD9N+WaDT0AAAAActuNPQAAAABPZoM/CDCMPxOkxD4uYE0/9Mg4vnNwEL+V6Zk/06RTP+f95T58RQ8/ykCTvv7Yw75+Nti+D6aOv5fHkr8krWs/AAAAAHcw/TfGCNU9AAAAAI941z4AAAAA88FxP7pBET9xz/u+cGw/P9w9Oj+dcxm/H4p6v/GF2z5tRfG+YLlIP7orEz+ijIO/ZGZPPw+mjr+Xx5K/lQFtPwAAAAB3MP038ibIPgAAAACtAwU/AAAAAPM2hD+bQ8g+gkNJvlWgVj8UYTc/VudGvyOKxL7LBn8/PFhVvg5cRj+6kCY/kUUNv1cnq74Ppo6/l8eSvx7Erj4AAAAAdzD9N1bEbj0AAAAAzilAPwAAAABli/A+A7RZP6hz6j5PvRS/ibqev59ADD5vmZ2+XZ75vrn2rb7QfEM/WyE+P5aMqD3rTyq9D6aOvwc/Xz+kJVPAAAAAAHcw/TeBeYC+AAAAALL7LcAAAAAAxvjav10SFT/m1oy+sd0fwLR3c79CXBRACoYCv+kusD2PKzy/MTkmwPT/tr4CawRAJSvCPxO2ZT8HP18/DVFOwAAAAAB3MP03kGWovwAAAADiFQzAAAAAACco779fo1k/JRXrPqTUD8DhKV6/Hr2FP5mhSb/Iqz4/Wqx6P00UQ8C/be+/fHKnPsVnUsATtmU/l8eSv4R7wz4AAAAAdzD9Nw5cAr4AAAAA/QYwPwAAAADZ/rw+t0kqPnyb1L7wWTA/+tXMPr/4qb0CFpe/VnLpPdA6hb9o0zc9ZYnnP+PkuDuB/v2+E7ZlPwc/Xz9OZlW/AAAAAHcw/Td/ZgnAAAAAAPY35L8AAAAAm7mtvvqmWT8v5+o+okyvv5mb+78oAIs/ECmJPwU7Cj/71w8+0bHLv2Mdpr/o4nA/EAA9Pw+mjr8HP18/5V3ZvwAAAAB3MP03trUgvgAAAAB4NPq/AAAAAPBJq7/7MIA/pBbrPoJYV8BxAJm/WepJwPuqxT3oY/u+EPuEP36W/r+9PSHA4seNP2h+WL8Ppo6/Bz9fP3kAGz8AAAAAdzD9N7E/pDwAAAAA1StbPAAAAADEBRA/NcK4PSTtqL4Sdzk/A4aYPkNpg79S2o4/dWXcvplGM7+7GCk/fnSWP49q8r60OAU/D6aOvwc/Xz+7mKs9AAAAAHcw/TeBXdU/AAAAAHpBGT8AAAAA0rR7vkM6tb+inFe+2VA/P14sOz9wIii+/EN5vjguFj/JhYK9P7aAv5Wv3T5dapu+0haYvhO2ZT8HP18/ZFiPPgAAAAB3MP039K4rPwAAAAADYjA/AAAAAA+gdrw8MHI+wEhvv5Uivb4WCbY/3+2Ivlpyeb46WdG+xFScPqXUP74peLq/9BSHPwzPQz8Ppo6/l8eSv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAQAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA7Knc/AAAAAMvffD8AAAAA1uAIvQAAAAAZO4A/AAAAANZzdz8AAAAA+3qgPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACArhaGPwAAAABRCIE/AAAAAHPvv7sAAAAAJud6PwAAAADVDW8/AAAAAO/Pir0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEy5eD8AAAAAdiyEPwAAAAC4UbW6AAAAAFgOdz8AAAAALEp2PwAAAABpbee7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDme4Q/AAAAAPEFiT8AAAAA32e9PQAAAAC+eXA/AAAAAOvNdT8AAAAA8JqRPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuQSGPwAAAAAGHXE/AAAAAIzc/b0AAAAAYihuPwAAAADGnXY/AAAAAAD6xD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFMhdT8AAAAAHHN2PwAAAADmhx+9AAAAAB2MhD8AAAAA4gWHPwAAAAAoJKc7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBOt3Q/AAAAADqXhz8AAAAAQi2wPAAAAACGvXk/AAAAAPxGgD8AAAAAQDaIvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAceyDPwAAAAAxHIk/AAAAAHnCfr0AAAAADXt8PwAAAAAOdHo/AAAAANiW5DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFA2iT8AAAAAx4yCPwAAAACC4n48AAAAACw4dT8AAAAAHJ+CPwAAAAB33/q9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA1P4M/AAAAAKLahT8AAAAAvS5tvQAAAADQF4k/AAAAAL5LcT8AAAAA3jb+vQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3/l4PwAAAADgeXU/AAAAACisJT0AAAAAUIJzPwAAAADZLW4/AAAAAGHjnL0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM/Pbj8AAAAAmBZ7PwAAAAAez1Y9AAAAAO8fhj8AAAAA8OSIPwAAAAAnuo46AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAkqXo/AAAAALDsdz8AAAAAjZTCvQAAAAC7NW4/AAAAAGqkgj8AAAAAvYXfvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXpSEPwAAAADd9H0/AAAAAKk4+bwAAAAAfRJ7PwAAAACzyX0/AAAAANzfhD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEegcD8AAAAAiNl9PwAAAACJJWi9AAAAAIP3hz8AAAAAU9l1PwAAAAC7mu09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQk4c/AAAAAIhfdz8AAAAAWqAZPAAAAACHrHY/AAAAADx0iT8AAAAAibJqPQAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDu8P9UCJXSMAWyUSxeMAXSUR0BSJc/Y8Md+dX2UKGgGR0AxqbM5fdAPaAdLDWgIR0BSJz+3pfQbdX2UKGgGR0AwbT850bLmaAdLCmgIR0BSKHlXA/LUdX2UKGgGR0BBAxw6ySmqaAdLI2gIR0BSKfHktEofdX2UKGgGR0Arq7KaG5+ZaAdLCGgIR0BSK0jcEeQudX2UKGgGR0AzB4sEq2BraAdLD2gIR0BSLXQla8pTdX2UKGgGR0Ao+0xdpqREaAdLB2gIR0BSL0lE7W/bdX2UKGgGR0A/HVXV9Wp7aAdLHmgIR0BSNGVqveP8dX2UKGgGR0A6MxbSqlxfaAdLGWgIR0BSNIZQ53kgdX2UKGgGR0A4nTIvJzT4aAdLGGgIR0BSOI150KZ2dX2UKGgGR0A6KNiH6/IsaAdLFmgIR0BSP+45Lh73dX2UKGgGR0BFblNDc/MXaAdLLWgIR0BSRJ2U0Nz9dX2UKGgGR0A7a08eS0SiaAdLG2gIR0BSQ94RmK64dX2UKGgGR0A24hUR3/xUaAdLEGgIR0BSRUPxx1gZdX2UKGgGR0A6r8/UvwmWaAdLF2gIR0BSRT2nKnvVdX2UKGgGR0BCwDKoybhFaAdLJmgIR0BSR4WYWtU5dX2UKGgGR0A9+Ot4iX6ZaAdLG2gIR0BSSUzXSSeRdX2UKGgGR0A4nNfw7T2GaAdLGWgIR0BSSoSDh99ddX2UKGgGR0A17V2zOX3QaAdLEWgIR0BSS9m+TNdJdX2UKGgGR0AxCAnlXA/LaAdLEmgIR0BSTVhXr+o+dX2UKGgGR0A1AJdSl3yJaAdLEWgIR0BST9iQT238dX2UKGgGR0BCHbu2JBPbaAdLH2gIR0BSU5u/DcdpdX2UKGgGR0BA5lcY64lQaAdLH2gIR0BSVNdzGPxQdX2UKGgGR0BB9U8NhE0BaAdLI2gIR0BSViwr1/UfdX2UKGgGR0A1iq0MPSUkaAdLE2gIR0BSWMebNKRMdX2UKGgGR0A3NRnOB19waAdLEGgIR0BSWLr5ZbIMdX2UKGgGR0AyXXbM5fdAaAdLDGgIR0BSW1Ed/8VIdX2UKGgGR0AxQeGfwqiHaAdLD2gIR0BSXl5B1LamdX2UKGgGR0A6EAsCkoF3aAdLL2gIR0BSXnPiT+vRdX2UKGgGR0AyyqUu+RHPaAdLEGgIR0BSXpY9xIatdX2UKGgGR0BFEN9x6v7naAdLJmgIR0BSYKzu4PPLdX2UKGgGR0A9ptQKrq+raAdLF2gIR0BSYznied08dX2UKGgGR0A7NqWTot+TaAdLFmgIR0BSYoZl4C6pdX2UKGgGR0A8VzJp35eraAdLHGgIR0BSaror4FibdX2UKGgGR0Ao82kzoEB9aAdLB2gIR0BSbEBGQSzxdX2UKGgGR0A9ZUPhAGB4aAdLGWgIR0BSbswL3K0VdX2UKGgGR0A4u9vS+g14aAdLE2gIR0BScAg1WKdhdX2UKGgGR0BBWiKBNEgGaAdLHWgIR0BSd6REF4cFdX2UKGgGR0AwB8Z1mrbQaAdLC2gIR0BSejW9US7HdX2UKGgGR0A3j7r9l2/0aAdLFmgIR0BSfupfhMrVdX2UKGgGR0A5YSzw+dK/aAdLF2gIR0BSfh5gPVd5dX2UKGgGR0BBE9lNDc/MaAdLHmgIR0BSfjg/C66KdX2UKGgGR0A/QXN1QqI8aAdLH2gIR0BSflWjoIOZdX2UKGgGR0BG5nNgSeyzaAdLK2gIR0BSgim2sq8UdX2UKGgGR0A/pJp35eqraAdLGWgIR0BSgX3pOerddX2UKGgGR0A8a87ZFocraAdLHGgIR0BShYtUXHindX2UKGgGR0BA186/7BO6aAdLIGgIR0BSiAmNR3vAdX2UKGgGR0A6L9Vmz0HyaAdLFmgIR0BSjp9d/rjYdX2UKGgGR0A/MrH2h7E6aAdLGGgIR0BSkAKWszVMdX2UKGgGR0AzmZgXuVopaAdLDmgIR0BSkU2xY7q6dX2UKGgGR0BFck/KQq7RaAdLKmgIR0BSkpmmLtNSdX2UKGgGR0BCl1HOKO1faAdLJGgIR0BSlNbX6InCdX2UKGgGR0A3yjIJZ4fPaAdLEWgIR0BSlhtpEhJRdX2UKGgGR0A/uadc0LtvaAdLHmgIR0BSlWKdhAnldX2UKGgGR0A1hKOT7l7uaAdLEGgIR0BSl3eN1hb4dX2UKGgGR0A4WyjpLVWkaAdLE2gIR0BSmrLpzLfUdX2UKGgGR0AycEb5uZTiaAdLC2gIR0BSnWPtD2J0dX2UKGgGR0BJQ56dDpkgaAdLMmgIR0BSnYNVinYQdX2UKGgGR0A5CX7cfvF4aAdLF2gIR0BSnYL9deIEdX2UKGgGR0AxSjY7JW/8aAdLDGgIR0BSoELUkOZtdX2UKGgGR0AweFfzBhx6aAdLCmgIR0BSok2cawUydX2UKGgGR0A6V0xM36yjaAdLFmgIR0BSosHGCI1tdX2UKGgGR0A9ifWtlqagaAdLIGgIR0BSpSzgMtsfdX2UKGgGR0BB2p5E+gUUaAdLH2gIR0BSp7nLaEi/dX2UKGgGR0AruDEFW4mUaAdLC2gIR0BSqQTufEn9dX2UKGgGR0A2Y2q1gH/taAdLE2gIR0BSrzINmUW3dX2UKGgGR0A4Qb961LJ0aAdLEmgIR0BSr0UTL4etdX2UKGgGR0A0guyu6mO3aAdLEGgIR0BSsmTC+De1dX2UKGgGR0A1JxjriVB2aAdLEWgIR0BSs8bJfYz0dX2UKGgGR0A2n/20zCUHaAdLEWgIR0BSs+fVZs9CdX2UKGgGR0A7Au3+dbxFaAdLGmgIR0BStSwnpjc3dX2UKGgGR0A1+xyGSIP9aAdLEmgIR0BSuio4uK4ydX2UKGgGR0A9ajJdSl3yaAdLG2gIR0BSuXkgfU4JdX2UKGgGR0BEvoHcDbJwaAdLJmgIR0BSurVJ+UhWdX2UKGgGR0BOts+V1Oj7aAdLMmgIR0BSusOskpqidX2UKGgGR0BA6hDPWxyGaAdLIWgIR0BSvUiILw4LdX2UKGgGR0A9Lkk8ifQKaAdLGmgIR0BSwvm5lOGkdX2UKGgGR0A+cxu89Oh1aAdLGmgIR0BSxYjv/io9dX2UKGgGR0A1vpB5X2dvaAdLEGgIR0BSyBR64UeudX2UKGgGR0A4JwFTvRZ2aAdLEWgIR0BSy/BFd9lVdX2UKGgGR0AyQT5ftx+8aAdLEGgIR0BSz1X/5tWNdX2UKGgGR0A4HXgLqlguaAdLFWgIR0BSz+eOGTLXdX2UKGgGR0BACD0UXYUWaAdLHGgIR0BS1OfZmI0qdX2UKGgGR0A7lvkiliz+aAdLI2gIR0BS1Aj6eoUBdX2UKGgGR0A7vcinpB5YaAdLFGgIR0BS1Wk8A7xNdX2UKGgGR0A59aNuLrHEaAdLE2gIR0BS1rr9l2/0dX2UKGgGR0BA9Pi1iONpaAdLI2gIR0BS1/zOHFgldX2UKGgGR0A7YxJNCZ4OaAdLGGgIR0BS2r2criEQdX2UKGgGR0A+vD4QBgeBaAdLKWgIR0BS3nW4EwFldX2UKGgGR0BAjhmwqy4XaAdLHWgIR0BS3+P/7zkIdX2UKGgGR0A3PjSXt0FKaAdLFWgIR0BS4Vyq+8GtdX2UKGgGR0A6JYA80UGnaAdLF2gIR0BS4XDaXa8IdX2UKGgGR0BAn25xzaK2aAdLJ2gIR0BS43+Q2dd3dX2UKGgGR0Ax7QyyleniaAdLC2gIR0BS4/f0mMOxdX2UKGgGR0A0grfcer+6aAdLEWgIR0BS5gzP8hs7dX2UKGgGR0A4u7ALy+YdaAdLF2gIR0BS5odQwblzdX2UKGgGR0BAK+5WilBQaAdLJ2gIR0BS59ucc2itdX2UKGgGR0AtT/sE7nxKaAdLCGgIR0BS6nxe9i+ddX2UKGgGR0A4J0D2alUIaAdLFGgIR0BS6pk078vVdX2UKGgGR0A6Nsny/bj+aAdLE2gIR0BS7hJNCZ4OdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7902214200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7902214290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7902214320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79022143b0>", "_build": "<function ActorCriticPolicy._build at 0x7f7902214440>", "forward": "<function ActorCriticPolicy.forward at 0x7f79022144d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7902214560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f79022145f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7902214680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7902214710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79022147a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7902257d20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658409884.222429, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAZ9cEPAAAAADJ6YM1F7msPwAAAAANAWc/AAAAAGhdnj1kwEs/nyWQPUqPS74pB8M+n+WjPo7uvD7uFVm/GoxuP8YsKL6XPIu+3WadvxdNlz8Wfi4/2uQQP1TB5b4AAAAAyemDNd31Yj8AAAAAqdVavwAAAAChLY6/OM9LP1OIjT2r5n2//bLBP37eaj/iHa2+Ju4EwJ+zkr7XkbI/eIKpvyQDOT4JEzW/T8q7v9rkED92UDe/AAAAAMnpgzWF7tI/AAAAAPKUwD8AAAAA3BXEvvDDSz+Ea5I9qOYTv261Fj+Rxis/DMPPPmn8zr8F+LM/xlmBPlLK7r5R6cW/rkrJPxZ+Lj/a5BA/Nt+lPgAAAADJ6YM1+w2TPwAAAABk+se+AAAAAEG2Fj7h/5g/ceyQPVffG78s5ec/tU1eP/zggL04bPG+33d4vuHrHL48DV29G5PRvUlPJT9Pyru/0Cbivy1Igb8AAAAAyemDNeGffD8AAAAA5GilvgAAAADM2sK/hcdLPzEfkT0Msw6/f70nvg3u2r20eIo/dYL2v3Fc4j46plY+25C+v7rcWL4GdMG/Fn4uP9rkED9ZfBJAAAAAAMnpgzW1NwvAAAAAAK5GBMAAAAAAyYP2P2MLTD9MFYM9Ad69P472McCjLx89w+CGQOUOMz/Aqwq/EOn5P/cfwb51fwLA6QrzP0/Ku7/QJuK/b7sCvwAAAADJ6YM1gU2WPwAAAAAQLHo/AAAAAHwTBb83yEs/+hqQPS+Z7b6kCZM+tUphPxtlA76iM+2/u8uXP8F5Tz9OUqu/El1bv2tWAL4Wfi4/2uQQP+8vDL8AAAAAyemDNVkrYT8AAAAABip5vwAAAADViui/lb5LP4F1kD05mEe/L221P/BGXj9hcn+9kRUowJGytrxiuts/di6gvx10hr7yf/U7T8q7v9rkED/ClW8+AAAAAMnpgzUA81U/AAAAAD/qxr8AAAAAlidFPubNXb8q2DPAwIk1Py2Cqz8xzTw/MYHlPYUxTD9Q/7W+JtQFv5lUq75V7jg/KKsCvhZ+Lj/QJuK/b4lxPgAAAADJ6YM1Ok6DPwAAAACYA80/AAAAAH1C4z4ucni+8LGKvzoZ3j7lc9s/wig9P0Ok+b6gXry9gF8dP3XPnL4fqYE/ujFDP3TLML4Wfi4/0CbivzraFL8AAAAAyemDNYKssz8AAAAAjCMOPwAAAADLS5a/BV0rwK6eIj/uSDQ/Fppkv0VUPb9pDrW/wBhZP4l6nj3h8EC/rh/PvWf9ZL5FeYM/Fn4uP9rkED9CPV++AAAAAMnpgzWt7IU/AAAAAO2ztDwAAAAA37Civnnh1L+Sihc/ABT0Pg61kb/LabC9utVyv80YWT854J09Lx80v81tbT2ogUc+oKjBPxZ+Lj/a5BA/vgWnPQAAAADJ6YM1eF7XPwAAAACxebA/AAAAAHVoqj/80jA/B8nqP4NQ3L54uKA+CLlpP3KOoL4skVo/5M42PQ7Nlb5mi4E/MitGPyqJ4L1Pyru/2uQQP5b1s74AAAAAyemDNWgBrD8AAAAAIPsqPwAAAABsJP49CvqVv611rT/pA/q9HLRSv4kVkL8RkDo+bytZPyLbnj2ZCUa/J32XPtKjFD8nTeE+Fn4uP9rkED+CHAw+AAAAAMnpgzV8YNK9AAAAAHukwb8AAAAAPyrJvh6O5L9wDJi8Su8+P8Zqx7+NxCq+M5gzvoQyWT9DrZk9z1/XvkmaHb+s3PI8D/oOwBZ+Lj/a5BA/SeYnvwAAAADJ6YM1ePRXPwAAAAD7/oU/AAAAAEqdHD6sgEk/aDr+vK0QF78n8Lw+UspmPx0Hgb26KiC/+ZLIP5i4UL8xe8G/4oulvqU1oz8Wfi4/0Cbiv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBNeIE/AAAAAJZDgD8AAAAAJL27vQAAAACfcoA/AAAAAHPChD8AAAAAqyV5vAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPOKGPwAAAAABtXY/AAAAAOdH7z0AAAAAgRV9PwAAAAAnRIU/AAAAAK73tL0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOGSgD8AAAAAosp5PwAAAAA0hjU9AAAAAPn+gD8AAAAAyJxsPwAAAADSTOM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDt4m4/AAAAAKjGcD8AAAAABs+BPQAAAAAEUYY/AAAAAArUcT8AAAAAHzMnvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQON9PwAAAADbqX4/AAAAAHCRyT0AAAAAp9V4PwAAAAC80m4/AAAAAAm+LT0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEdbhD8AAAAAzqR8PwAAAADDd7S9AAAAAFhZiD8AAAAA0aJ5PwAAAACjscs9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID59W8/AAAAAOwMgj8AAAAAsLr5PQAAAACQ5nk/AAAAAHyIdD8AAAAAXDWqvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+XWDPwAAAAD3oog/AAAAANdOEj0AAAAAexWHPwAAAAB7Bm0/AAAAAExHwb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgECSfz8AAAAApOtyPwAAAACJPzM9AAAAAENfhj8AAAAAUkiHPwAAAADfL6U9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBT7oA/AAAAAIi/bj8AAAAAPDhRvQAAAACo3nc/AAAAAHtcez8AAAAAg1KYvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhgeHPwAAAAAldoE/AAAAAC9K7r0AAAAAXciHPwAAAACaP3o/AAAAAIAM270AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBYwfj8AAAAAtziHPwAAAACYa5y8AAAAAPadhj8AAAAADq99PwAAAABjAAS9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID+dHI/AAAAAGvOeD8AAAAAWuXMPQAAAADiGYE/AAAAADhUhj8AAAAAnxLDvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAd+aAPwAAAACvTnw/AAAAALK6+DwAAAAAnsCBPwAAAADpCYI/AAAAAAP3AD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD2Kbz8AAAAAJ+1uPwAAAAAnuUY9AAAAAJjshz8AAAAAn8h8PwAAAABR31i8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAmrHE/AAAAAIdmgD8AAAAAtj+ZvAAAAADKDYI/AAAAAEWOgz8AAAAAHoXXPQAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIOGesvIwM+MAWyUTYgBjAF0lEdAmmdMEvCdjHV9lChoBkdAmpaARGtp22gHTegDaAhHQJpum5AhStN1fZQoaAZHQJqJy2QXAM5oB03oA2gIR0CabxVmz0HydX2UKGgGR0BrKHl6qsEJaAdLlWgIR0CacDztTkyUdX2UKGgGR0CBDS2LpA2RaAdNSAFoCEdAmnXurMkhR3V9lChoBkdAm2+s4YJmd2gHTegDaAhHQJp29FDv3Jx1fZQoaAZHQJlxWCL/CIloB02uA2gIR0CadwPk7wKCdX2UKGgGR0Ca4I8+zMRpaAdN6ANoCEdAmpOc41gpjXV9lChoBkdAmv3Net0V8GgHTegDaAhHQJqXZIDoyKx1fZQoaAZHQFmQl8gIQe5oB0tMaAhHQJqYVIGyHEd1fZQoaAZHQJrOvrkbPyFoB03oA2gIR0CanBKGL1mKdX2UKGgGR0Cb8aEh7mdRaAdN6ANoCEdAmp7wAU+LWXV9lChoBkdAmoBfvnbItGgHTb8DaAhHQJqoqWAwwkB1fZQoaAZHQJsp+2H+IdloB03oA2gIR0CarHH2RJVbdX2UKGgGR0CI8xTLGJemaAdN0gFoCEdAmq6euRs/IXV9lChoBkdAmzJ+8PFvRGgHTegDaAhHQJqwo3l0YCR1fZQoaAZHQJwjNYLb5/NoB03oA2gIR0CazszKcNH6dX2UKGgGR0CTsOIznA6/aAdNzAJoCEdAmtCV32VVxXV9lChoBkdAmtsVyFPBSGgHTegDaAhHQJrQl2cJ+lV1fZQoaAZHQJt/n3Zf2K5oB03oA2gIR0Ca1yUypJf6dX2UKGgGR0BgRo9TxXnyaAdLcGgIR0Ca10QVsUItdX2UKGgGR0CbjGwM6RyPaAdN6ANoCEdAmuIHYL9deXV9lChoBkdAm6dtFWn0kGgHTegDaAhHQJrjOaQV9F51fZQoaAZHQH+cRdIGyHFoB009AWgIR0Ca44vrnkksdX2UKGgGR0CcU8+ajN6gaAdN6ANoCEdAmukI/Z/Tb3V9lChoBkdAmjzr5AQg92gHTZgDaAhHQJrp0oMKCxx1fZQoaAZHQJvUd5mh/RVoB03oA2gIR0Ca6h1ejVQRdX2UKGgGR0CYhuRxcVxkaAdNiANoCEdAmwkuFtbcGnV9lChoBkdAi5HNke6qbWgHTQQCaAhHQJsJao/A0sR1fZQoaAZHQFigwx33YcxoB0tSaAhHQJsKaNn5BTp1fZQoaAZHQJvlTIJZ4fRoB03oA2gIR0CbCzB3A2ycdX2UKGgGR0Bc0v1pTMq0aAdLUmgIR0CbDg8Djin6dX2UKGgGR0Cb/Ztcv/R3aAdN6ANoCEdAmxHPIsAeaXV9lChoBkdAly05HRTjvWgHTTsDaAhHQJsZfsa86FN1fZQoaAZHQJvDgan7521oB03oA2gIR0CbG8eQMhHLdX2UKGgGR0CcCJy0KJEZaAdN6ANoCEdAmx+W/N7jUHV9lChoBkdAg/kZE2HclGgHTXABaAhHQJsgjnU2DQJ1fZQoaAZHQJqnmDbrTphoB03oA2gIR0CbIbeTV2A5dX2UKGgGR0CbKR/hVENOaAdN6ANoCEdAm0pbKNhmXnV9lChoBkdAnH4vHT7VKGgHTegDaAhHQJtKeE9Mbm51fZQoaAZHQJTkNOLzf79oB03nAmgIR0CbUXcM3IdVdX2UKGgGR0CLjWq3EyckaAdNBgJoCEdAm1QBgeA/cHV9lChoBkdAm9dgqd6LO2gHTegDaAhHQJtVRUhmoR91fZQoaAZHQJuBxOJtSAJoB03oA2gIR0CbVm8eS0SidX2UKGgGR0CbqE5HEuQIaAdN6ANoCEdAm1a8mF8G93V9lChoBkdALQ5XMhX8wmgHSxhoCEdAm1fYA80UGnV9lChoBkdAm6twTqSowWgHTegDaAhHQJtcDh5xBE91fZQoaAZHQJxEa8lHBk9oB03oA2gIR0CbXSCOWBz4dX2UKGgGR0Cb/5p7CzkZaAdN6ANoCEdAm33/n0TURXV9lChoBkdAm7y6ISDh+GgHTegDaAhHQJuAzXcxj8V1fZQoaAZHQJvmZcgQpWpoB03oA2gIR0CbhGODrZ8KdX2UKGgGR0BZuRv3rUsnaAdLUGgIR0CbhXwtrbg1dX2UKGgGR0CXeIHEdeY2aAdNUwNoCEdAm4kb6pHZsnV9lChoBkdAmZYEyk9EC2gHTYIDaAhHQJuNHS2H+Id1fZQoaAZHQGoqfVqesgdoB0uTaAhHQJuNVLK3d9F1fZQoaAZHQJwfbzoUzsRoB03oA2gIR0Cbjnod+5OKdX2UKGgGR0BY9bx/d69kaAdLUmgIR0CbkhD8+A3DdX2UKGgGR0CcggmL9/BnaAdN6ANoCEdAm5R5RKpT/HV9lChoBkdAlJDelGgBcWgHTcECaAhHQJu35a0QbuN1fZQoaAZHQJv1GhQFcIJoB03oA2gIR0CbvSi0fHPvdX2UKGgGR0Cc0p+0gKWtaAdN6ANoCEdAm71GYjSofnV9lChoBkdAmNlHUUfxMGgHTZwDaAhHQJu/twZOzpp1fZQoaAZHQJqAHCAMDwJoB02ZA2gIR0CbwgmseXAudX2UKGgGR0CcWe9cKPXDaAdN6ANoCEdAm8gBD1Gsm3V9lChoBkdAnBZ/qPfbbmgHTegDaAhHQJvKnaIvalF1fZQoaAZHQJyc2Ymb9ZRoB03oA2gIR0Cbzupda+vhdX2UKGgGR0CcgSPikwevaAdN6ANoCEdAm9AEiyIHknV9lChoBkdAnJ+8rmQr+mgHTegDaAhHQJvxKSPluFZ1fZQoaAZHQJ0tMxIre69oB03oA2gIR0Cb+MLUCq6wdX2UKGgGR0CbosZaV2RraAdN6ANoCEdAm/x6TfR/mXV9lChoBkdAVIOjXWe6I2gHS0poCEdAm/0x4ptrK3V9lChoBkdAnMQdOmBOHmgHTegDaAhHQJwAdL0z0pV1fZQoaAZHQJwNHG5tm+VoB03oA2gIR0CcAZEqlP8AdX2UKGgGR0Ccm4ZJTVDsaAdN6ANoCEdAnAVWYnfEXXV9lChoBkdAUzxJDmbLEGgHS0NoCEdAnAXIqLCN0nV9lChoBkdAm2+G/BWPtGgHTegDaAhHQJwHwrSVnmJ1fZQoaAZHQFW8/dIoVmBoB0tRaAhHQJwMrNr0rbx1fZQoaAZHQJy+VakhzNloB03oA2gIR0CcKyOq//NrdX2UKGgGR0AlJKQJXyRTaAdLCmgIR0CcK7k6cRUWdX2UKGgGR0COb9cAzYVZaAdNJAJoCEdAnC2wd8zAOHV9lChoBkdAnMT3Rw6ySmgHTegDaAhHQJwwYUlAu7J1fZQoaAZHQJxfLW5H3DhoB03oA2gIR0CcMH9/BnBddX2UKGgGR0CaVcesxO+JaAdN6ANoCEdAnDLxA4XGfnV9lChoBkdAlxBn3g1m8WgHTT4DaAhHQJwzui9Iwud1fZQoaAZHQJ1rwKfFrEdoB03oA2gIR0CcNUs2vStvdX2UKGgGR0Ajzi5NGmUGaAdLCmgIR0CcNeaFVT73dX2UKGgGR0CcKvu0CzTnaAdN6ANoCEdAnDsxj8UEgXV9lChoBkdAJXTGgi/wiWgHSwtoCEdAnDvWki2UjnV9lChoBkdAeiLU70WdmWgHS/hoCEdAnD9I8uBczXV9lChoBkdAnJJn05EMLGgHTegDaAhHQJxCH5dnkDJ1fZQoaAZHQJxSk5EMLF5oB03oA2gIR0CcQzHTqjagdX2UKGgGR0CVK1cEeQuFaAdN9gJoCEdAnEYrLMcIaHV9lChoBkdAmDh1fzBhyGgHTVYDaAhHQJxmw/Z/Tb51fZQoaAZHQJpLHhisnzBoB03oA2gIR0Ccc3pmVZ9vdX2UKGgGR0AwzSYPXkHVaAdLE2gIR0CcdJdo371qdX2UKGgGR0CW48Wu5jH5aAdNKANoCEdAnHd1gYxcmnV9lChoBkdAnL/1SGahH2gHTegDaAhHQJx4FMuez2R1fZQoaAZHQJzzq85CF9NoB03oA2gIR0CceHxD9fkWdX2UKGgGR0CbVf01IiC8aAdN6ANoCEdAnH+GhM8HOnV9lChoBkdAmLQ/BFd9lWgHTWUDaAhHQJyDcSSNfgJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2460, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-Walker2DBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e3f174a7a12bd59dd8e377daf9333152b2b7ac32bbaf477566763d4edf5cce3
|
3 |
+
size 1794913
|
ppo-Walker2DBulletEnv-v0/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
@@ -65,12 +65,12 @@
|
|
65 |
"_np_random": null
|
66 |
},
|
67 |
"n_envs": 16,
|
68 |
-
"num_timesteps":
|
69 |
-
"_total_timesteps":
|
70 |
"_num_timesteps_at_start": 0,
|
71 |
"seed": null,
|
72 |
"action_noise": null,
|
73 |
-
"start_time":
|
74 |
"learning_rate": 3e-05,
|
75 |
"tensorboard_log": "./tensorboard",
|
76 |
"lr_schedule": {
|
@@ -79,29 +79,29 @@
|
|
79 |
},
|
80 |
"_last_obs": {
|
81 |
":type:": "<class 'numpy.ndarray'>",
|
82 |
-
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
83 |
},
|
84 |
"_last_episode_starts": {
|
85 |
":type:": "<class 'numpy.ndarray'>",
|
86 |
-
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////
|
87 |
},
|
88 |
"_last_original_obs": {
|
89 |
":type:": "<class 'numpy.ndarray'>",
|
90 |
-
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/
|
91 |
},
|
92 |
"_episode_num": 0,
|
93 |
"use_sde": true,
|
94 |
"sde_sample_freq": 4,
|
95 |
-
"_current_progress_remaining": -0.
|
96 |
"ep_info_buffer": {
|
97 |
":type:": "<class 'collections.deque'>",
|
98 |
-
":serialized:": "
|
99 |
},
|
100 |
"ep_success_buffer": {
|
101 |
":type:": "<class 'collections.deque'>",
|
102 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
103 |
},
|
104 |
-
"_n_updates":
|
105 |
"n_steps": 512,
|
106 |
"gamma": 0.99,
|
107 |
"gae_lambda": 0.92,
|
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7902214200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7902214290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7902214320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79022143b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7902214440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f79022144d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7902214560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f79022145f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7902214680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7902214710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79022147a0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7902257d20>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
|
|
65 |
"_np_random": null
|
66 |
},
|
67 |
"n_envs": 16,
|
68 |
+
"num_timesteps": 1007616,
|
69 |
+
"_total_timesteps": 1000000,
|
70 |
"_num_timesteps_at_start": 0,
|
71 |
"seed": null,
|
72 |
"action_noise": null,
|
73 |
+
"start_time": 1658409884.222429,
|
74 |
"learning_rate": 3e-05,
|
75 |
"tensorboard_log": "./tensorboard",
|
76 |
"lr_schedule": {
|
|
|
79 |
},
|
80 |
"_last_obs": {
|
81 |
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAZ9cEPAAAAADJ6YM1F7msPwAAAAANAWc/AAAAAGhdnj1kwEs/nyWQPUqPS74pB8M+n+WjPo7uvD7uFVm/GoxuP8YsKL6XPIu+3WadvxdNlz8Wfi4/2uQQP1TB5b4AAAAAyemDNd31Yj8AAAAAqdVavwAAAAChLY6/OM9LP1OIjT2r5n2//bLBP37eaj/iHa2+Ju4EwJ+zkr7XkbI/eIKpvyQDOT4JEzW/T8q7v9rkED92UDe/AAAAAMnpgzWF7tI/AAAAAPKUwD8AAAAA3BXEvvDDSz+Ea5I9qOYTv261Fj+Rxis/DMPPPmn8zr8F+LM/xlmBPlLK7r5R6cW/rkrJPxZ+Lj/a5BA/Nt+lPgAAAADJ6YM1+w2TPwAAAABk+se+AAAAAEG2Fj7h/5g/ceyQPVffG78s5ec/tU1eP/zggL04bPG+33d4vuHrHL48DV29G5PRvUlPJT9Pyru/0Cbivy1Igb8AAAAAyemDNeGffD8AAAAA5GilvgAAAADM2sK/hcdLPzEfkT0Msw6/f70nvg3u2r20eIo/dYL2v3Fc4j46plY+25C+v7rcWL4GdMG/Fn4uP9rkED9ZfBJAAAAAAMnpgzW1NwvAAAAAAK5GBMAAAAAAyYP2P2MLTD9MFYM9Ad69P472McCjLx89w+CGQOUOMz/Aqwq/EOn5P/cfwb51fwLA6QrzP0/Ku7/QJuK/b7sCvwAAAADJ6YM1gU2WPwAAAAAQLHo/AAAAAHwTBb83yEs/+hqQPS+Z7b6kCZM+tUphPxtlA76iM+2/u8uXP8F5Tz9OUqu/El1bv2tWAL4Wfi4/2uQQP+8vDL8AAAAAyemDNVkrYT8AAAAABip5vwAAAADViui/lb5LP4F1kD05mEe/L221P/BGXj9hcn+9kRUowJGytrxiuts/di6gvx10hr7yf/U7T8q7v9rkED/ClW8+AAAAAMnpgzUA81U/AAAAAD/qxr8AAAAAlidFPubNXb8q2DPAwIk1Py2Cqz8xzTw/MYHlPYUxTD9Q/7W+JtQFv5lUq75V7jg/KKsCvhZ+Lj/QJuK/b4lxPgAAAADJ6YM1Ok6DPwAAAACYA80/AAAAAH1C4z4ucni+8LGKvzoZ3j7lc9s/wig9P0Ok+b6gXry9gF8dP3XPnL4fqYE/ujFDP3TLML4Wfi4/0CbivzraFL8AAAAAyemDNYKssz8AAAAAjCMOPwAAAADLS5a/BV0rwK6eIj/uSDQ/Fppkv0VUPb9pDrW/wBhZP4l6nj3h8EC/rh/PvWf9ZL5FeYM/Fn4uP9rkED9CPV++AAAAAMnpgzWt7IU/AAAAAO2ztDwAAAAA37Civnnh1L+Sihc/ABT0Pg61kb/LabC9utVyv80YWT854J09Lx80v81tbT2ogUc+oKjBPxZ+Lj/a5BA/vgWnPQAAAADJ6YM1eF7XPwAAAACxebA/AAAAAHVoqj/80jA/B8nqP4NQ3L54uKA+CLlpP3KOoL4skVo/5M42PQ7Nlb5mi4E/MitGPyqJ4L1Pyru/2uQQP5b1s74AAAAAyemDNWgBrD8AAAAAIPsqPwAAAABsJP49CvqVv611rT/pA/q9HLRSv4kVkL8RkDo+bytZPyLbnj2ZCUa/J32XPtKjFD8nTeE+Fn4uP9rkED+CHAw+AAAAAMnpgzV8YNK9AAAAAHukwb8AAAAAPyrJvh6O5L9wDJi8Su8+P8Zqx7+NxCq+M5gzvoQyWT9DrZk9z1/XvkmaHb+s3PI8D/oOwBZ+Lj/a5BA/SeYnvwAAAADJ6YM1ePRXPwAAAAD7/oU/AAAAAEqdHD6sgEk/aDr+vK0QF78n8Lw+UspmPx0Hgb26KiC/+ZLIP5i4UL8xe8G/4oulvqU1oz8Wfi4/0Cbiv5R0lGIu"
|
83 |
},
|
84 |
"_last_episode_starts": {
|
85 |
":type:": "<class 'numpy.ndarray'>",
|
86 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
87 |
},
|
88 |
"_last_original_obs": {
|
89 |
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBNeIE/AAAAAJZDgD8AAAAAJL27vQAAAACfcoA/AAAAAHPChD8AAAAAqyV5vAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPOKGPwAAAAABtXY/AAAAAOdH7z0AAAAAgRV9PwAAAAAnRIU/AAAAAK73tL0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOGSgD8AAAAAosp5PwAAAAA0hjU9AAAAAPn+gD8AAAAAyJxsPwAAAADSTOM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDt4m4/AAAAAKjGcD8AAAAABs+BPQAAAAAEUYY/AAAAAArUcT8AAAAAHzMnvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQON9PwAAAADbqX4/AAAAAHCRyT0AAAAAp9V4PwAAAAC80m4/AAAAAAm+LT0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEdbhD8AAAAAzqR8PwAAAADDd7S9AAAAAFhZiD8AAAAA0aJ5PwAAAACjscs9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID59W8/AAAAAOwMgj8AAAAAsLr5PQAAAACQ5nk/AAAAAHyIdD8AAAAAXDWqvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+XWDPwAAAAD3oog/AAAAANdOEj0AAAAAexWHPwAAAAB7Bm0/AAAAAExHwb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgECSfz8AAAAApOtyPwAAAACJPzM9AAAAAENfhj8AAAAAUkiHPwAAAADfL6U9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBT7oA/AAAAAIi/bj8AAAAAPDhRvQAAAACo3nc/AAAAAHtcez8AAAAAg1KYvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhgeHPwAAAAAldoE/AAAAAC9K7r0AAAAAXciHPwAAAACaP3o/AAAAAIAM270AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBYwfj8AAAAAtziHPwAAAACYa5y8AAAAAPadhj8AAAAADq99PwAAAABjAAS9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID+dHI/AAAAAGvOeD8AAAAAWuXMPQAAAADiGYE/AAAAADhUhj8AAAAAnxLDvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAd+aAPwAAAACvTnw/AAAAALK6+DwAAAAAnsCBPwAAAADpCYI/AAAAAAP3AD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD2Kbz8AAAAAJ+1uPwAAAAAnuUY9AAAAAJjshz8AAAAAn8h8PwAAAABR31i8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAmrHE/AAAAAIdmgD8AAAAAtj+ZvAAAAADKDYI/AAAAAEWOgz8AAAAAHoXXPQAAAAAAAAAAAAAAAJR0lGIu"
|
91 |
},
|
92 |
"_episode_num": 0,
|
93 |
"use_sde": true,
|
94 |
"sde_sample_freq": 4,
|
95 |
+
"_current_progress_remaining": -0.007616000000000067,
|
96 |
"ep_info_buffer": {
|
97 |
":type:": "<class 'collections.deque'>",
|
98 |
+
":serialized:": "gASVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIOGesvIwM+MAWyUTYgBjAF0lEdAmmdMEvCdjHV9lChoBkdAmpaARGtp22gHTegDaAhHQJpum5AhStN1fZQoaAZHQJqJy2QXAM5oB03oA2gIR0CabxVmz0HydX2UKGgGR0BrKHl6qsEJaAdLlWgIR0CacDztTkyUdX2UKGgGR0CBDS2LpA2RaAdNSAFoCEdAmnXurMkhR3V9lChoBkdAm2+s4YJmd2gHTegDaAhHQJp29FDv3Jx1fZQoaAZHQJlxWCL/CIloB02uA2gIR0CadwPk7wKCdX2UKGgGR0Ca4I8+zMRpaAdN6ANoCEdAmpOc41gpjXV9lChoBkdAmv3Net0V8GgHTegDaAhHQJqXZIDoyKx1fZQoaAZHQFmQl8gIQe5oB0tMaAhHQJqYVIGyHEd1fZQoaAZHQJrOvrkbPyFoB03oA2gIR0CanBKGL1mKdX2UKGgGR0Cb8aEh7mdRaAdN6ANoCEdAmp7wAU+LWXV9lChoBkdAmoBfvnbItGgHTb8DaAhHQJqoqWAwwkB1fZQoaAZHQJsp+2H+IdloB03oA2gIR0CarHH2RJVbdX2UKGgGR0CI8xTLGJemaAdN0gFoCEdAmq6euRs/IXV9lChoBkdAmzJ+8PFvRGgHTegDaAhHQJqwo3l0YCR1fZQoaAZHQJwjNYLb5/NoB03oA2gIR0CazszKcNH6dX2UKGgGR0CTsOIznA6/aAdNzAJoCEdAmtCV32VVxXV9lChoBkdAmtsVyFPBSGgHTegDaAhHQJrQl2cJ+lV1fZQoaAZHQJt/n3Zf2K5oB03oA2gIR0Ca1yUypJf6dX2UKGgGR0BgRo9TxXnyaAdLcGgIR0Ca10QVsUItdX2UKGgGR0CbjGwM6RyPaAdN6ANoCEdAmuIHYL9deXV9lChoBkdAm6dtFWn0kGgHTegDaAhHQJrjOaQV9F51fZQoaAZHQH+cRdIGyHFoB009AWgIR0Ca44vrnkksdX2UKGgGR0CcU8+ajN6gaAdN6ANoCEdAmukI/Z/Tb3V9lChoBkdAmjzr5AQg92gHTZgDaAhHQJrp0oMKCxx1fZQoaAZHQJvUd5mh/RVoB03oA2gIR0Ca6h1ejVQRdX2UKGgGR0CYhuRxcVxkaAdNiANoCEdAmwkuFtbcGnV9lChoBkdAi5HNke6qbWgHTQQCaAhHQJsJao/A0sR1fZQoaAZHQFigwx33YcxoB0tSaAhHQJsKaNn5BTp1fZQoaAZHQJvlTIJZ4fRoB03oA2gIR0CbCzB3A2ycdX2UKGgGR0Bc0v1pTMq0aAdLUmgIR0CbDg8Djin6dX2UKGgGR0Cb/Ztcv/R3aAdN6ANoCEdAmxHPIsAeaXV9lChoBkdAly05HRTjvWgHTTsDaAhHQJsZfsa86FN1fZQoaAZHQJvDgan7521oB03oA2gIR0CbG8eQMhHLdX2UKGgGR0CcCJy0KJEZaAdN6ANoCEdAmx+W/N7jUHV9lChoBkdAg/kZE2HclGgHTXABaAhHQJsgjnU2DQJ1fZQoaAZHQJqnmDbrTphoB03oA2gIR0CbIbeTV2A5dX2UKGgGR0CbKR/hVENOaAdN6ANoCEdAm0pbKNhmXnV9lChoBkdAnH4vHT7VKGgHTegDaAhHQJtKeE9Mbm51fZQoaAZHQJTkNOLzf79oB03nAmgIR0CbUXcM3IdVdX2UKGgGR0CLjWq3EyckaAdNBgJoCEdAm1QBgeA/cHV9lChoBkdAm9dgqd6LO2gHTegDaAhHQJtVRUhmoR91fZQoaAZHQJuBxOJtSAJoB03oA2gIR0CbVm8eS0SidX2UKGgGR0CbqE5HEuQIaAdN6ANoCEdAm1a8mF8G93V9lChoBkdALQ5XMhX8wmgHSxhoCEdAm1fYA80UGnV9lChoBkdAm6twTqSowWgHTegDaAhHQJtcDh5xBE91fZQoaAZHQJxEa8lHBk9oB03oA2gIR0CbXSCOWBz4dX2UKGgGR0Cb/5p7CzkZaAdN6ANoCEdAm33/n0TURXV9lChoBkdAm7y6ISDh+GgHTegDaAhHQJuAzXcxj8V1fZQoaAZHQJvmZcgQpWpoB03oA2gIR0CbhGODrZ8KdX2UKGgGR0BZuRv3rUsnaAdLUGgIR0CbhXwtrbg1dX2UKGgGR0CXeIHEdeY2aAdNUwNoCEdAm4kb6pHZsnV9lChoBkdAmZYEyk9EC2gHTYIDaAhHQJuNHS2H+Id1fZQoaAZHQGoqfVqesgdoB0uTaAhHQJuNVLK3d9F1fZQoaAZHQJwfbzoUzsRoB03oA2gIR0Cbjnod+5OKdX2UKGgGR0BY9bx/d69kaAdLUmgIR0CbkhD8+A3DdX2UKGgGR0CcggmL9/BnaAdN6ANoCEdAm5R5RKpT/HV9lChoBkdAlJDelGgBcWgHTcECaAhHQJu35a0QbuN1fZQoaAZHQJv1GhQFcIJoB03oA2gIR0CbvSi0fHPvdX2UKGgGR0Cc0p+0gKWtaAdN6ANoCEdAm71GYjSofnV9lChoBkdAmNlHUUfxMGgHTZwDaAhHQJu/twZOzpp1fZQoaAZHQJqAHCAMDwJoB02ZA2gIR0CbwgmseXAudX2UKGgGR0CcWe9cKPXDaAdN6ANoCEdAm8gBD1Gsm3V9lChoBkdAnBZ/qPfbbmgHTegDaAhHQJvKnaIvalF1fZQoaAZHQJyc2Ymb9ZRoB03oA2gIR0Cbzupda+vhdX2UKGgGR0CcgSPikwevaAdN6ANoCEdAm9AEiyIHknV9lChoBkdAnJ+8rmQr+mgHTegDaAhHQJvxKSPluFZ1fZQoaAZHQJ0tMxIre69oB03oA2gIR0Cb+MLUCq6wdX2UKGgGR0CbosZaV2RraAdN6ANoCEdAm/x6TfR/mXV9lChoBkdAVIOjXWe6I2gHS0poCEdAm/0x4ptrK3V9lChoBkdAnMQdOmBOHmgHTegDaAhHQJwAdL0z0pV1fZQoaAZHQJwNHG5tm+VoB03oA2gIR0CcAZEqlP8AdX2UKGgGR0Ccm4ZJTVDsaAdN6ANoCEdAnAVWYnfEXXV9lChoBkdAUzxJDmbLEGgHS0NoCEdAnAXIqLCN0nV9lChoBkdAm2+G/BWPtGgHTegDaAhHQJwHwrSVnmJ1fZQoaAZHQFW8/dIoVmBoB0tRaAhHQJwMrNr0rbx1fZQoaAZHQJy+VakhzNloB03oA2gIR0CcKyOq//NrdX2UKGgGR0AlJKQJXyRTaAdLCmgIR0CcK7k6cRUWdX2UKGgGR0COb9cAzYVZaAdNJAJoCEdAnC2wd8zAOHV9lChoBkdAnMT3Rw6ySmgHTegDaAhHQJwwYUlAu7J1fZQoaAZHQJxfLW5H3DhoB03oA2gIR0CcMH9/BnBddX2UKGgGR0CaVcesxO+JaAdN6ANoCEdAnDLxA4XGfnV9lChoBkdAlxBn3g1m8WgHTT4DaAhHQJwzui9Iwud1fZQoaAZHQJ1rwKfFrEdoB03oA2gIR0CcNUs2vStvdX2UKGgGR0Ajzi5NGmUGaAdLCmgIR0CcNeaFVT73dX2UKGgGR0CcKvu0CzTnaAdN6ANoCEdAnDsxj8UEgXV9lChoBkdAJXTGgi/wiWgHSwtoCEdAnDvWki2UjnV9lChoBkdAeiLU70WdmWgHS/hoCEdAnD9I8uBczXV9lChoBkdAnJJn05EMLGgHTegDaAhHQJxCH5dnkDJ1fZQoaAZHQJxSk5EMLF5oB03oA2gIR0CcQzHTqjagdX2UKGgGR0CVK1cEeQuFaAdN9gJoCEdAnEYrLMcIaHV9lChoBkdAmDh1fzBhyGgHTVYDaAhHQJxmw/Z/Tb51fZQoaAZHQJpLHhisnzBoB03oA2gIR0Ccc3pmVZ9vdX2UKGgGR0AwzSYPXkHVaAdLE2gIR0CcdJdo371qdX2UKGgGR0CW48Wu5jH5aAdNKANoCEdAnHd1gYxcmnV9lChoBkdAnL/1SGahH2gHTegDaAhHQJx4FMuez2R1fZQoaAZHQJzzq85CF9NoB03oA2gIR0CceHxD9fkWdX2UKGgGR0CbVf01IiC8aAdN6ANoCEdAnH+GhM8HOnV9lChoBkdAmLQ/BFd9lWgHTWUDaAhHQJyDcSSNfgJ1ZS4="
|
99 |
},
|
100 |
"ep_success_buffer": {
|
101 |
":type:": "<class 'collections.deque'>",
|
102 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
103 |
},
|
104 |
+
"_n_updates": 2460,
|
105 |
"n_steps": 512,
|
106 |
"gamma": 0.99,
|
107 |
"gae_lambda": 0.92,
|
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5e2bfcabb0ebd2ae3f9fe218e783b33a7ca26a7fab3d41a2d043ecacd0eec53
|
3 |
+
size 1183984
|
ppo-Walker2DBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fd2f122117945625c073bd1f756a0c8428101623eac0fd29435837101e511d1
|
3 |
+
size 591102
|
ppo-Walker2DBulletEnv-v0/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PD
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.6.0
|
4 |
PyTorch: 1.12.0+cu113
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.7.13
|
3 |
Stable-Baselines3: 1.6.0
|
4 |
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1993.03197340779, "std_reward": 11.919261305991595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-21T13:57:53.902125"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3595
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1c7b7923bea1d862fe7ce95699b48b3d1a96fe45df310a41ec2dffb26e73aaf
|
3 |
size 3595
|