|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from typing import Dict, Optional |
|
|
|
import torch |
|
from torch import nn |
|
from torchmetrics import MetricCollection |
|
|
|
from dinov2.data import DatasetWithEnumeratedTargets, SamplerType, make_data_loader |
|
import dinov2.distributed as distributed |
|
from dinov2.logging import MetricLogger |
|
|
|
|
|
logger = logging.getLogger("dinov2") |
|
|
|
|
|
class ModelWithNormalize(torch.nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.model = model |
|
|
|
def forward(self, samples): |
|
return nn.functional.normalize(self.model(samples), dim=1, p=2) |
|
|
|
|
|
class ModelWithIntermediateLayers(nn.Module): |
|
def __init__(self, feature_model, n_last_blocks, autocast_ctx): |
|
super().__init__() |
|
self.feature_model = feature_model |
|
self.feature_model.eval() |
|
self.n_last_blocks = n_last_blocks |
|
self.autocast_ctx = autocast_ctx |
|
|
|
def forward(self, images): |
|
with torch.inference_mode(): |
|
with self.autocast_ctx(): |
|
features = self.feature_model.get_intermediate_layers( |
|
images, self.n_last_blocks, return_class_token=True |
|
) |
|
return features |
|
|
|
|
|
@torch.inference_mode() |
|
def evaluate( |
|
model: nn.Module, |
|
data_loader, |
|
postprocessors: Dict[str, nn.Module], |
|
metrics: Dict[str, MetricCollection], |
|
device: torch.device, |
|
criterion: Optional[nn.Module] = None, |
|
): |
|
model.eval() |
|
if criterion is not None: |
|
criterion.eval() |
|
|
|
for metric in metrics.values(): |
|
metric = metric.to(device) |
|
|
|
metric_logger = MetricLogger(delimiter=" ") |
|
header = "Test:" |
|
|
|
for samples, targets, *_ in metric_logger.log_every(data_loader, 10, header): |
|
outputs = model(samples.to(device)) |
|
targets = targets.to(device) |
|
|
|
if criterion is not None: |
|
loss = criterion(outputs, targets) |
|
metric_logger.update(loss=loss.item()) |
|
|
|
for k, metric in metrics.items(): |
|
metric_inputs = postprocessors[k](outputs, targets) |
|
metric.update(**metric_inputs) |
|
|
|
metric_logger.synchronize_between_processes() |
|
logger.info(f"Averaged stats: {metric_logger}") |
|
|
|
stats = {k: metric.compute() for k, metric in metrics.items()} |
|
metric_logger_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
return metric_logger_stats, stats |
|
|
|
|
|
def all_gather_and_flatten(tensor_rank): |
|
tensor_all_ranks = torch.empty( |
|
distributed.get_global_size(), |
|
*tensor_rank.shape, |
|
dtype=tensor_rank.dtype, |
|
device=tensor_rank.device, |
|
) |
|
tensor_list = list(tensor_all_ranks.unbind(0)) |
|
torch.distributed.all_gather(tensor_list, tensor_rank.contiguous()) |
|
return tensor_all_ranks.flatten(end_dim=1) |
|
|
|
|
|
def extract_features(model, dataset, batch_size, num_workers, gather_on_cpu=False): |
|
dataset_with_enumerated_targets = DatasetWithEnumeratedTargets(dataset) |
|
sample_count = len(dataset_with_enumerated_targets) |
|
data_loader = make_data_loader( |
|
dataset=dataset_with_enumerated_targets, |
|
batch_size=batch_size, |
|
num_workers=num_workers, |
|
sampler_type=SamplerType.DISTRIBUTED, |
|
drop_last=False, |
|
shuffle=False, |
|
) |
|
return extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu) |
|
|
|
|
|
@torch.inference_mode() |
|
def extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu=False): |
|
gather_device = torch.device("cpu") if gather_on_cpu else torch.device("cuda") |
|
metric_logger = MetricLogger(delimiter=" ") |
|
features, all_labels = None, None |
|
for samples, (index, labels_rank) in metric_logger.log_every(data_loader, 10): |
|
samples = samples.cuda(non_blocking=True) |
|
labels_rank = labels_rank.cuda(non_blocking=True) |
|
index = index.cuda(non_blocking=True) |
|
features_rank = model(samples).float() |
|
|
|
|
|
if features is None: |
|
features = torch.zeros(sample_count, features_rank.shape[-1], device=gather_device) |
|
labels_shape = list(labels_rank.shape) |
|
labels_shape[0] = sample_count |
|
all_labels = torch.full(labels_shape, fill_value=-1, device=gather_device) |
|
logger.info(f"Storing features into tensor of shape {features.shape}") |
|
|
|
|
|
index_all = all_gather_and_flatten(index).to(gather_device) |
|
features_all_ranks = all_gather_and_flatten(features_rank).to(gather_device) |
|
labels_all_ranks = all_gather_and_flatten(labels_rank).to(gather_device) |
|
|
|
|
|
if len(index_all) > 0: |
|
features.index_copy_(0, index_all, features_all_ranks) |
|
all_labels.index_copy_(0, index_all, labels_all_ranks) |
|
|
|
logger.info(f"Features shape: {tuple(features.shape)}") |
|
logger.info(f"Labels shape: {tuple(all_labels.shape)}") |
|
|
|
assert torch.all(all_labels > -1) |
|
|
|
return features, all_labels |
|
|