Aitor commited on
Commit
18476bc
1 Parent(s): a570be3

3rd chance

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -3.29 +/- 1.38
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.16 +/- 0.68
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:02b2ca15fae8a6fa0b75d8e6f9eee5af457244ff54cc1363eccf7ff92da73a5b
3
- size 108961
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd8ed36f21229267256a96d1d65f85c5f073c3e0e988794733cd01ab32704eb5
3
+ size 107816
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f03cc0efb80>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f03cc0ebab0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -40,36 +40,36 @@
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
- "n_envs": 6,
44
- "num_timesteps": 500010,
45
- "_total_timesteps": 500010,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1678273439972030059,
50
- "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAApdVAPjDV8b1dNEq/nB+5v04IGL8u+E2/h9yIv6qbbr+17cm+wuIjPy28pz6D4ic/G7kov7pdWr3kpH29zgaZvzDZK788ymw9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAbOdzPzpMYL+N/IW/YB8/v/rUz7+0GKe/zoYvvoUA2L/hbl2/hbgBP8WENj8g+Yw/sVHRvkhtP7/Llfe+aCZZv+JU1r+6L5y+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAACl1UA+MNXxvV00Sr9jCHI/FROZv4wirj6cH7m/TggYvy74Tb+AUwe/EgWXPuzvnj6H3Ii/qptuv7Xtyb4C4/C90lLBPj2clr7C4iM/LbynPoPiJz/c2n69bnZwPzwro7sbuSi/ul1aveSkfb1ZEMO/U6TFvdbtbL7OBpm/MNkrvzzKbD3v9Lu+Rxz6vvjJ8z6UaA5LBksGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 0.18831499 -0.1180824 -0.7898615 ]\n [-1.4462771 -0.5938767 -0.8045682 ]\n [-1.06923 -0.93206275 -0.3943917 ]\n [ 0.6401788 0.32760754 0.65580004]\n [-0.6590745 -0.05331204 -0.06192483]\n [-1.1955202 -0.67128277 0.05781005]]",
60
- "desired_goal": "[[ 0.95274997 -0.8761631 -1.0467697 ]\n [-0.7465725 -1.623687 -1.3054414 ]\n [-0.17141268 -1.6875159 -0.8649731 ]\n [ 0.5067218 0.7129634 1.1013527 ]\n [-0.40882638 -0.74776125 -0.4835647 ]\n [-0.8482423 -1.6744654 -0.30505162]]",
61
- "observation": "[[ 0.18831499 -0.1180824 -0.7898615 0.9454405 -1.1958948 0.34010732]\n [-1.4462771 -0.5938767 -0.8045682 -0.52861786 0.29496056 0.3104242 ]\n [-1.06923 -0.93206275 -0.3943917 -0.11762048 0.377585 -0.29416075]\n [ 0.6401788 0.32760754 0.65580004 -0.06222044 0.9393071 -0.00497952]\n [-0.6590745 -0.05331204 -0.06192483 -1.5239364 -0.09650483 -0.23137602]\n [-1.1955202 -0.67128277 0.05781005 -0.36710307 -0.488497 0.47615027]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
- ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAUuR+u7jj7L2ur9c96SiYPOL6xDwyxUA8h4PePIhJOTvbYRw+vA3WvQn2Nj358cw9k0UcPcvAqT18AHM9B/cDvr7mFT4NLhY+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==",
70
- "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.00388934 -0.11566871 0.10531555]\n [ 0.01857419 0.02404541 0.01176577]\n [ 0.02716233 0.00282726 0.15271704]\n [-0.10451838 0.04466823 0.1000709 ]\n [ 0.03815229 0.08288725 0.05932663]\n [-0.12887202 0.14638802 0.14666004]]",
72
- "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMZQT7SrkB8CUhpRSlIwBbJRLMowBdJRHQJWAVRuTA311fZQoaAZoCWgPQwiYT1YMV0cLwJSGlFKUaBVLMmgWR0CVf9aLGaQWdX2UKGgGaAloD0MIvtpRnKNuE8CUhpRSlGgVSzJoFkdAlX9fpD/lyXV9lChoBmgJaA9DCAq5Us+CUA/AlIaUUpRoFUsyaBZHQJV+4ZbY9Pl1fZQoaAZoCWgPQwis5jki34UHwJSGlFKUaBVLMmgWR0CVhvIIF/x2dX2UKGgGaAloD0MI5WIMrOM48L+UhpRSlGgVSzJoFkdAlYZ2elKsdXV9lChoBmgJaA9DCAlTlEvjFw3AlIaUUpRoFUsyaBZHQJWF+NXHR1J1fZQoaAZoCWgPQwiPxMvTuZIbwJSGlFKUaBVLMmgWR0CVhXsdkrf+dX2UKGgGaAloD0MII4Wy8PX1DMCUhpRSlGgVSzJoFkdAlYUHG4qgAnV9lChoBmgJaA9DCAVu3c1THfy/lIaUUpRoFUsyaBZHQJWEiwOe8PF1fZQoaAZoCWgPQwiUvaWcL3YZwJSGlFKUaBVLMmgWR0CVjDSkj5bhdX2UKGgGaAloD0MIPUM4ZtkzBsCUhpRSlGgVSzJoFkdAlYu4sRQJonV9lChoBmgJaA9DCMO5hhkaXxbAlIaUUpRoFUsyaBZHQJWLO+QEIPd1fZQoaAZoCWgPQwjkEdxI2TIWwJSGlFKUaBVLMmgWR0CVir74zrNXdX2UKGgGaAloD0MIzNB4IojDE8CUhpRSlGgVSzJoFkdAlYpJPVNHpnV9lChoBmgJaA9DCOoI4GbxIv6/lIaUUpRoFUsyaBZHQJWJyx2St/51fZQoaAZoCWgPQwjJ5xVPPRIHwJSGlFKUaBVLMmgWR0CVkTZa3ZwodX2UKGgGaAloD0MIkNyadFsi/L+UhpRSlGgVSzJoFkdAlZC628Zk1HV9lChoBmgJaA9DCP5HpkOnBwbAlIaUUpRoFUsyaBZHQJWQPPWxyGV1fZQoaAZoCWgPQwhj8ZvCSmUHwJSGlFKUaBVLMmgWR0CVj7+SbH6udX2UKGgGaAloD0MIswxxrIt7AcCUhpRSlGgVSzJoFkdAlY9JyEL6UXV9lChoBmgJaA9DCDf/rzpyJAXAlIaUUpRoFUsyaBZHQJWOyzcAR051fZQoaAZoCWgPQwimttRBXg8DwJSGlFKUaBVLMmgWR0CVlTYTTOPedX2UKGgGaAloD0MIiQrVzcU/DsCUhpRSlGgVSzJoFkdAlZS43Jgb63V9lChoBmgJaA9DCPpjWpvGthDAlIaUUpRoFUsyaBZHQJWUOZ4Oc2B1fZQoaAZoCWgPQwhOJm4VxMANwJSGlFKUaBVLMmgWR0CVk7oX9BKMdX2UKGgGaAloD0MI+YbCZ+vAEsCUhpRSlGgVSzJoFkdAlZNCQo1DSnV9lChoBmgJaA9DCNS19j5VBQzAlIaUUpRoFUsyaBZHQJWSwntv4ud1fZQoaAZoCWgPQwg6IAn7dsIQwJSGlFKUaBVLMmgWR0CVl/Pjn3cpdX2UKGgGaAloD0MIzSA+sOPfEcCUhpRSlGgVSzJoFkdAlZd2eDnNgXV9lChoBmgJaA9DCJTeN772rALAlIaUUpRoFUsyaBZHQJWW+X2M85l1fZQoaAZoCWgPQwi/1TpxOd7zv5SGlFKUaBVLMmgWR0CVlnubZvkzdX2UKGgGaAloD0MIk4rG2t/5BcCUhpRSlGgVSzJoFkdAlZYFnZkCm3V9lChoBmgJaA9DCKsi3GRU2fW/lIaUUpRoFUsyaBZHQJWVhrXUYsN1fZQoaAZoCWgPQwgYsrrVc5IQwJSGlFKUaBVLMmgWR0CVmrjTKDChdX2UKGgGaAloD0MIn5RJDW1gD8CUhpRSlGgVSzJoFkdAlZo74vexfXV9lChoBmgJaA9DCJeuYBvx5AHAlIaUUpRoFUsyaBZHQJWZvSofjjt1fZQoaAZoCWgPQwhHAaJgxlQJwJSGlFKUaBVLMmgWR0CVmT3R5TqCdX2UKGgGaAloD0MIMlUwKqkzAcCUhpRSlGgVSzJoFkdAlZjFXq7iAHV9lChoBmgJaA9DCIwv2uOFdBHAlIaUUpRoFUsyaBZHQJWYRSk0rLB1fZQoaAZoCWgPQwgJwhVQqIcHwJSGlFKUaBVLMmgWR0CVnZhQFcIJdX2UKGgGaAloD0MIIjfDDfgcEcCUhpRSlGgVSzJoFkdAlZ0bD2rXDnV9lChoBmgJaA9DCF8n9WVp5xDAlIaUUpRoFUsyaBZHQJWcm6tknTl1fZQoaAZoCWgPQwhlNPJ5xdMCwJSGlFKUaBVLMmgWR0CVnB0b961LdX2UKGgGaAloD0MITfilft4U/b+UhpRSlGgVSzJoFkdAlZul58jRlnV9lChoBmgJaA9DCMPX17rUaALAlIaUUpRoFUsyaBZHQJWbJe1KGtZ1fZQoaAZoCWgPQwhtxf6ye5IOwJSGlFKUaBVLMmgWR0CVoG9roGILdX2UKGgGaAloD0MIM8FwrmEmE8CUhpRSlGgVSzJoFkdAlZ/yGi5/b3V9lChoBmgJaA9DCBLb3QN0X/a/lIaUUpRoFUsyaBZHQJWfcw22oeh1fZQoaAZoCWgPQwgdccgG0gUNwJSGlFKUaBVLMmgWR0CVnvQHRkVfdX2UKGgGaAloD0MIR3U6kPXU/7+UhpRSlGgVSzJoFkdAlZ57v1DjR3V9lChoBmgJaA9DCKzHfat1IgTAlIaUUpRoFUsyaBZHQJWd+5/b0vp1fZQoaAZoCWgPQwizfjMxXagJwJSGlFKUaBVLMmgWR0CVo1sgdOqOdX2UKGgGaAloD0MIvOoB85DpEMCUhpRSlGgVSzJoFkdAlaLeCf6Gg3V9lChoBmgJaA9DCM0/+iZNUxXAlIaUUpRoFUsyaBZHQJWiXuTibUh1fZQoaAZoCWgPQwgplfCEXj8JwJSGlFKUaBVLMmgWR0CVod+WWyC4dX2UKGgGaAloD0MI0VlmEYpNBMCUhpRSlGgVSzJoFkdAlaFnxri2lXV9lChoBmgJaA9DCMeCwqBM4wnAlIaUUpRoFUsyaBZHQJWg56ol2Nh1fZQoaAZoCWgPQwi+2HvxRTsGwJSGlFKUaBVLMmgWR0CVpj5ksjFAdX2UKGgGaAloD0MIN/qYDwgUC8CUhpRSlGgVSzJoFkdAlaXBCtzS1HV9lChoBmgJaA9DCAfSxaaVYgzAlIaUUpRoFUsyaBZHQJWlQWGh24d1fZQoaAZoCWgPQwgLtaZ5x4kEwJSGlFKUaBVLMmgWR0CVpMItUXHjdX2UKGgGaAloD0MIZK4Mqg3uAMCUhpRSlGgVSzJoFkdAlaRJvDP4VXV9lChoBmgJaA9DCHLfap243ArAlIaUUpRoFUsyaBZHQJWjyhmGucN1fZQoaAZoCWgPQwgKn62Dg73/v5SGlFKUaBVLMmgWR0CVqW3qiXY2dX2UKGgGaAloD0MIVg+Yh0wZC8CUhpRSlGgVSzJoFkdAlajxJiAlOXV9lChoBmgJaA9DCLr0L0llyg/AlIaUUpRoFUsyaBZHQJWocwSJ0nx1fZQoaAZoCWgPQwi29GiqJ1MJwJSGlFKUaBVLMmgWR0CVp/QK8cuKdX2UKGgGaAloD0MIBHRfzmy3CMCUhpRSlGgVSzJoFkdAlad8CkoF3nV9lChoBmgJaA9DCLYtymyQyQnAlIaUUpRoFUsyaBZHQJWm/iWE9Md1fZQoaAZoCWgPQwgijnVxGy0cwJSGlFKUaBVLMmgWR0CVrO1wYLssdX2UKGgGaAloD0MIcw8J3/s7EsCUhpRSlGgVSzJoFkdAlaxv73wkPnV9lChoBmgJaA9DCBmveVVnNQfAlIaUUpRoFUsyaBZHQJWr8LJCBwx1fZQoaAZoCWgPQwjA6siRzqAMwJSGlFKUaBVLMmgWR0CVq3MZP2wndX2UKGgGaAloD0MIaqZ7ndQ3D8CUhpRSlGgVSzJoFkdAlar6wljVhHV9lChoBmgJaA9DCNSZe0j4HgXAlIaUUpRoFUsyaBZHQJWqfLcKw6h1fZQoaAZoCWgPQwjaxTTTvX4QwJSGlFKUaBVLMmgWR0CVr7Dbah6CdX2UKGgGaAloD0MI9fHQd7fCEsCUhpRSlGgVSzJoFkdAla8zOkcjq3V9lChoBmgJaA9DCBu62R8oVxLAlIaUUpRoFUsyaBZHQJWus96kZaV1fZQoaAZoCWgPQwhoyk4/qCsSwJSGlFKUaBVLMmgWR0CVrjTXarWAdX2UKGgGaAloD0MIVdy4xfzcF8CUhpRSlGgVSzJoFkdAla28iOearnV9lChoBmgJaA9DCNap8j0jEQLAlIaUUpRoFUsyaBZHQJWtPNpudf91fZQoaAZoCWgPQwg4hgDg2CMawJSGlFKUaBVLMmgWR0CVsny5qdpZdX2UKGgGaAloD0MIUl+Wdmqu8r+UhpRSlGgVSzJoFkdAlbH/jXFtK3V9lChoBmgJaA9DCGX8+4wLNxDAlIaUUpRoFUsyaBZHQJWxgGKQ7tB1fZQoaAZoCWgPQwjVPEfku1QKwJSGlFKUaBVLMmgWR0CVsQDaXa8IdX2UKGgGaAloD0MIBoVBmUYzAsCUhpRSlGgVSzJoFkdAlbCIjrzGxXV9lChoBmgJaA9DCF8JpMSuDQLAlIaUUpRoFUsyaBZHQJWwCHpKSPl1fZQoaAZoCWgPQwi+g584gF4PwJSGlFKUaBVLMmgWR0CVtUseGO+7dX2UKGgGaAloD0MIL6LtmLrrEcCUhpRSlGgVSzJoFkdAlbTNiMHbAXV9lChoBmgJaA9DCEfGavP/KgLAlIaUUpRoFUsyaBZHQJW0Tj6vaDh1fZQoaAZoCWgPQwjdskP8w+YRwJSGlFKUaBVLMmgWR0CVs86NVBD5dX2UKGgGaAloD0MItkjajT5m/b+UhpRSlGgVSzJoFkdAlbNWQCCBgHV9lChoBmgJaA9DCNxGA3gLJP6/lIaUUpRoFUsyaBZHQJWy1lnRLK51fZQoaAZoCWgPQwguq7AZ4CIJwJSGlFKUaBVLMmgWR0CVuBx3mmtRdX2UKGgGaAloD0MIZD+LpUjeD8CUhpRSlGgVSzJoFkdAlbeftY0VJ3V9lChoBmgJaA9DCFVMpZ9wZhXAlIaUUpRoFUsyaBZHQJW3IH7gsK91fZQoaAZoCWgPQwiGqS11kHcAwJSGlFKUaBVLMmgWR0CVtqITXarWdX2UKGgGaAloD0MIaDwRxHkYEcCUhpRSlGgVSzJoFkdAlbYqAz544nV9lChoBmgJaA9DCImzImqiTw7AlIaUUpRoFUsyaBZHQJW1qj0th/l1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 16667,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f54adb040d0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f54adafd960>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1678279984483522923,
50
+ "learning_rate": 0.0003,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsNfHPoezFTymAgs/sNfHPoezFTymAgs/sNfHPoezFTymAgs/sNfHPoezFTymAgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbV7Nv7QIAT9WwdC/NLtdPoiY6btSLUy/memxPxaIgL58/WK+QK77vq7dAj+Pn4k/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.39031744 0.00913704 0.54300916]\n [0.39031744 0.00913704 0.54300916]\n [0.39031744 0.00913704 0.54300916]\n [0.39031744 0.00913704 0.54300916]]",
60
+ "desired_goal": "[[-1.6044441 0.50403905 -1.6309001 ]\n [ 0.21653444 -0.00712878 -0.79756653]\n [ 1.3899413 -0.25103825 -0.22167009]\n [-0.4915638 0.51119506 1.0751818 ]]",
61
+ "observation": "[[3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]\n [3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]\n [3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]\n [3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA58QSvtcaKL0i1FA+TeHMPS+T+Tx2leY8hucDvunG8z3cHtU9K7AWPh47V71cfP49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.14332925 -0.04104122 0.20393422]\n [ 0.1000391 0.03046569 0.02814744]\n [-0.12881288 0.11903173 0.10406277]\n [ 0.1471564 -0.05254661 0.12426063]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpyA/G7nu5r+UhpRSlIwBbJRLMowBdJRHQKuzri++M611fZQoaAZoCWgPQwhz9s5oq1L1v5SGlFKUaBVLMmgWR0Crs19QwblzdX2UKGgGaAloD0MIChLb3QMUAsCUhpRSlGgVSzJoFkdAq7MH+XJHRXV9lChoBmgJaA9DCKNYbmk1RAfAlIaUUpRoFUsyaBZHQKuys065oXd1fZQoaAZoCWgPQwj1ukVgrA8DwJSGlFKUaBVLMmgWR0CrtPkJ8fFKdX2UKGgGaAloD0MIVKuvrgr0AMCUhpRSlGgVSzJoFkdAq7SqGlANX3V9lChoBmgJaA9DCOmBj8GK0/6/lIaUUpRoFUsyaBZHQKu0Usny/bl1fZQoaAZoCWgPQwj1ZtR8ldwFwJSGlFKUaBVLMmgWR0Crs/4NqgyudX2UKGgGaAloD0MIHxK+9zfo/r+UhpRSlGgVSzJoFkdAq7YxyCFsYXV9lChoBmgJaA9DCLq/ety3GvG/lIaUUpRoFUsyaBZHQKu14sfaHsV1fZQoaAZoCWgPQwjzdoTTgtcNwJSGlFKUaBVLMmgWR0CrtYt2TxG2dX2UKGgGaAloD0MI7//jhAlDAsCUhpRSlGgVSzJoFkdAq7U2uzQeFXV9lChoBmgJaA9DCD//PXjtEgHAlIaUUpRoFUsyaBZHQKu3dJJXhfl1fZQoaAZoCWgPQwgbE2IuqboAwJSGlFKUaBVLMmgWR0CrtyWoNutPdX2UKGgGaAloD0MIcHfWbrtQBMCUhpRSlGgVSzJoFkdAq7bOU4aP0nV9lChoBmgJaA9DCPz/OGHCKP2/lIaUUpRoFUsyaBZHQKu2eb4rSVp1fZQoaAZoCWgPQwgs1nCRezr5v5SGlFKUaBVLMmgWR0CruLPZh8YydX2UKGgGaAloD0MIHRzsTQwJ87+UhpRSlGgVSzJoFkdAq7hk6kqMFXV9lChoBmgJaA9DCB6n6EgufwHAlIaUUpRoFUsyaBZHQKu4Daews5J1fZQoaAZoCWgPQwgejNgngGL5v5SGlFKUaBVLMmgWR0Crt7kHMUypdX2UKGgGaAloD0MI4gSm07rND8CUhpRSlGgVSzJoFkdAq7nv2kBS1nV9lChoBmgJaA9DCFAZ/z7j4gTAlIaUUpRoFUsyaBZHQKu5oMZxaPl1fZQoaAZoCWgPQwj0/dR46eb8v5SGlFKUaBVLMmgWR0CruUpCjUNKdX2UKGgGaAloD0MI2ZjXEYesB8CUhpRSlGgVSzJoFkdAq7j2NNrTIHV9lChoBmgJaA9DCEM4ZtmTQPq/lIaUUpRoFUsyaBZHQKu7NmozeoF1fZQoaAZoCWgPQwhfevtz0RD/v5SGlFKUaBVLMmgWR0CruudkJ8fFdX2UKGgGaAloD0MIOxkcJa+uAcCUhpRSlGgVSzJoFkdAq7qQHqu8snV9lChoBmgJaA9DCCrgnudPewDAlIaUUpRoFUsyaBZHQKu6O5Lh73R1fZQoaAZoCWgPQwhn74y2Kgn0v5SGlFKUaBVLMmgWR0CrvH1Euxr0dX2UKGgGaAloD0MI7PZZZaZ0AsCUhpRSlGgVSzJoFkdAq7wuTeO4onV9lChoBmgJaA9DCLxXrUz4pf+/lIaUUpRoFUsyaBZHQKu71wWFev91fZQoaAZoCWgPQwi3Xz5ZMXwAwJSGlFKUaBVLMmgWR0Cru4JFb3XadX2UKGgGaAloD0MIGHsvvmhPAcCUhpRSlGgVSzJoFkdAq73MQsf7rXV9lChoBmgJaA9DCFBSYAFM2QPAlIaUUpRoFUsyaBZHQKu9fUXpGF11fZQoaAZoCWgPQwjPoQxVMdX6v5SGlFKUaBVLMmgWR0CrvSXuNPxhdX2UKGgGaAloD0MI0SSxpNy9AMCUhpRSlGgVSzJoFkdAq7zRLPD503V9lChoBmgJaA9DCGDNAYI5mgPAlIaUUpRoFUsyaBZHQKu/FTXJ5mh1fZQoaAZoCWgPQwhRa5p3nCIEwJSGlFKUaBVLMmgWR0CrvsYpUgjhdX2UKGgGaAloD0MIqyaIug+gA8CUhpRSlGgVSzJoFkdAq75uh0yP/HV9lChoBmgJaA9DCI3vi0tVOgbAlIaUUpRoFUsyaBZHQKu+GfPomol1fZQoaAZoCWgPQwhgkPRpFR0EwJSGlFKUaBVLMmgWR0CrwFggPmPpdX2UKGgGaAloD0MIKzHPSlpxA8CUhpRSlGgVSzJoFkdAq8AJLsa86HV9lChoBmgJaA9DCJQXmYBfYwDAlIaUUpRoFUsyaBZHQKu/sdaMaS91fZQoaAZoCWgPQwiKkSVzLK//v5SGlFKUaBVLMmgWR0Crv10nw5NodX2UKGgGaAloD0MIxMw+j1E+AMCUhpRSlGgVSzJoFkdAq8GSJ/G2kXV9lChoBmgJaA9DCHLdlPJaSfm/lIaUUpRoFUsyaBZHQKvBQzTnaFp1fZQoaAZoCWgPQwgj3GRUGUb1v5SGlFKUaBVLMmgWR0CrwOvjOs1bdX2UKGgGaAloD0MIi4ujchO1C8CUhpRSlGgVSzJoFkdAq8CWyiVSoHV9lChoBmgJaA9DCNaoh2h0hwHAlIaUUpRoFUsyaBZHQKvC6K8cuJ11fZQoaAZoCWgPQwhosn+eBoz/v5SGlFKUaBVLMmgWR0Crwpm+K0ladX2UKGgGaAloD0MI7KF9rODXBMCUhpRSlGgVSzJoFkdAq8JCkhzNlnV9lChoBmgJaA9DCPSo+L8javy/lIaUUpRoFUsyaBZHQKvB7dAxBVx1fZQoaAZoCWgPQwi5bkp5rcT6v5SGlFKUaBVLMmgWR0CrxCPUz9CNdX2UKGgGaAloD0MI4IPXLm2497+UhpRSlGgVSzJoFkdAq8PU1O0sv3V9lChoBmgJaA9DCKotdZDXwwXAlIaUUpRoFUsyaBZHQKvDfYHPeHl1fZQoaAZoCWgPQwiWP98WLBUGwJSGlFKUaBVLMmgWR0CrwyjMFEApdX2UKGgGaAloD0MIoS5SKAuf+L+UhpRSlGgVSzJoFkdAq8VfAGjbjHV9lChoBmgJaA9DCCdsPxnjg/m/lIaUUpRoFUsyaBZHQKvFD8twrDt1fZQoaAZoCWgPQwhM+nspPOj1v5SGlFKUaBVLMmgWR0CrxLhPbfxddX2UKGgGaAloD0MIP5EnSdcsDMCUhpRSlGgVSzJoFkdAq8RjpTuOTHV9lChoBmgJaA9DCKZjzjP25QjAlIaUUpRoFUsyaBZHQKvHJihFmWd1fZQoaAZoCWgPQwhHBU62gbv2v5SGlFKUaBVLMmgWR0Crxte1rqMWdX2UKGgGaAloD0MIXJAty9clBcCUhpRSlGgVSzJoFkdAq8aBfF72MHV9lChoBmgJaA9DCCR9WkV/CALAlIaUUpRoFUsyaBZHQKvGLXV9Wp91fZQoaAZoCWgPQwgYQs77/7gDwJSGlFKUaBVLMmgWR0CryRthmXgMdX2UKGgGaAloD0MIPL1SliEuBcCUhpRSlGgVSzJoFkdAq8jNb1RLsnV9lChoBmgJaA9DCMOAJVex+AHAlIaUUpRoFUsyaBZHQKvId30PH1h1fZQoaAZoCWgPQwjeHoSAfCkFwJSGlFKUaBVLMmgWR0CryCbbtZ3cdX2UKGgGaAloD0MIKZZbWg0J/7+UhpRSlGgVSzJoFkdAq8sjV4HHFXV9lChoBmgJaA9DCLmJWppbYfe/lIaUUpRoFUsyaBZHQKvK1fdhy811fZQoaAZoCWgPQwgfniXICIgGwJSGlFKUaBVLMmgWR0CryoE+otL+dX2UKGgGaAloD0MILuOmBppvAsCUhpRSlGgVSzJoFkdAq8otM0xdp3V9lChoBmgJaA9DCB7dCIuKuAHAlIaUUpRoFUsyaBZHQKvNRp22Xsx1fZQoaAZoCWgPQwgaNPRPcNEBwJSGlFKUaBVLMmgWR0CrzPjEm6XjdX2UKGgGaAloD0MIG53zUxynA8CUhpRSlGgVSzJoFkdAq8yixNZeRnV9lChoBmgJaA9DCF0z+WabG/y/lIaUUpRoFUsyaBZHQKvMTxZMcp91fZQoaAZoCWgPQwibOSS1UFIMwJSGlFKUaBVLMmgWR0Crz2gXVLBbdX2UKGgGaAloD0MI6njMQGU8/7+UhpRSlGgVSzJoFkdAq88aLwWnCXV9lChoBmgJaA9DCHegTnl04wjAlIaUUpRoFUsyaBZHQKvOw7xusLh1fZQoaAZoCWgPQwh3uvPEc1YIwJSGlFKUaBVLMmgWR0CrznBGQSzxdX2UKGgGaAloD0MIvmplwi+VAcCUhpRSlGgVSzJoFkdAq9GOeYlY2nV9lChoBmgJaA9DCPUqMjogSfe/lIaUUpRoFUsyaBZHQKvRQJCSidt1fZQoaAZoCWgPQwgDmZ1F77QKwJSGlFKUaBVLMmgWR0Cr0OpRwZO0dX2UKGgGaAloD0MIBkzg1t18BcCUhpRSlGgVSzJoFkdAq9CWYF7laXV9lChoBmgJaA9DCEMaFTjZ5gDAlIaUUpRoFUsyaBZHQKvS6QuEmIF1fZQoaAZoCWgPQwiMg0vHnGfev5SGlFKUaBVLMmgWR0Cr0poLw4KhdX2UKGgGaAloD0MI6Zyf4jgw/7+UhpRSlGgVSzJoFkdAq9JCunuRcXV9lChoBmgJaA9DCFwAGqVLvwDAlIaUUpRoFUsyaBZHQKvR7fcer+51fZQoaAZoCWgPQwg49YHknYMJwJSGlFKUaBVLMmgWR0Cr1DDqOcUedX2UKGgGaAloD0MI6DI1Cd7QA8CUhpRSlGgVSzJoFkdAq9Ph/ustCnV9lChoBmgJaA9DCJYEqKllKwXAlIaUUpRoFUsyaBZHQKvTitRNyo51fZQoaAZoCWgPQwiS6ju/KIH4v5SGlFKUaBVLMmgWR0Cr0zY//vORdX2UKGgGaAloD0MIOBPThVj99b+UhpRSlGgVSzJoFkdAq9Wd8b70nXV9lChoBmgJaA9DCC6thsQ9dg7AlIaUUpRoFUsyaBZHQKvVTt+Csfd1fZQoaAZoCWgPQwjp7c9FQ+YDwJSGlFKUaBVLMmgWR0Cr1PiADq4ZdX2UKGgGaAloD0MIhzYAGxChBMCUhpRSlGgVSzJoFkdAq9Sj2i+L33V9lChoBmgJaA9DCM8yi1BsBfi/lIaUUpRoFUsyaBZHQKvW4EgW8Ad1fZQoaAZoCWgPQwhxkuaPaW38v5SGlFKUaBVLMmgWR0Cr1pFjurp8dX2UKGgGaAloD0MIhXgkXp7O/b+UhpRSlGgVSzJoFkdAq9Y6VdHDrXV9lChoBmgJaA9DCIj3HFiO0APAlIaUUpRoFUsyaBZHQKvV5bC79Q51ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:17f51bb664c6a3df69e32a26c55b112105431e63ca524451f82da7e34496dd9b
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be5448b3fc2c3261dd40b8e9a3b1617292308c257de720083b599754ad2c17b4
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1937fb9746bdc482fe9ce18cf7e10b559073140b045f730e9fc456676f159740
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a62bc248531612820769c009b640f7defd911cd72ef2c108897a2ae389631b8
3
+ size 45886
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -2,6 +2,6 @@
2
  - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
- - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
2
  - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f03cc0efb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f03cc0ebab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 6, "num_timesteps": 500010, "_total_timesteps": 500010, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678273439972030059, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAApdVAPjDV8b1dNEq/nB+5v04IGL8u+E2/h9yIv6qbbr+17cm+wuIjPy28pz6D4ic/G7kov7pdWr3kpH29zgaZvzDZK788ymw9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAbOdzPzpMYL+N/IW/YB8/v/rUz7+0GKe/zoYvvoUA2L/hbl2/hbgBP8WENj8g+Yw/sVHRvkhtP7/Llfe+aCZZv+JU1r+6L5y+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAACl1UA+MNXxvV00Sr9jCHI/FROZv4wirj6cH7m/TggYvy74Tb+AUwe/EgWXPuzvnj6H3Ii/qptuv7Xtyb4C4/C90lLBPj2clr7C4iM/LbynPoPiJz/c2n69bnZwPzwro7sbuSi/ul1aveSkfb1ZEMO/U6TFvdbtbL7OBpm/MNkrvzzKbD3v9Lu+Rxz6vvjJ8z6UaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.18831499 -0.1180824 -0.7898615 ]\n [-1.4462771 -0.5938767 -0.8045682 ]\n [-1.06923 -0.93206275 -0.3943917 ]\n [ 0.6401788 0.32760754 0.65580004]\n [-0.6590745 -0.05331204 -0.06192483]\n [-1.1955202 -0.67128277 0.05781005]]", "desired_goal": "[[ 0.95274997 -0.8761631 -1.0467697 ]\n [-0.7465725 -1.623687 -1.3054414 ]\n [-0.17141268 -1.6875159 -0.8649731 ]\n [ 0.5067218 0.7129634 1.1013527 ]\n [-0.40882638 -0.74776125 -0.4835647 ]\n [-0.8482423 -1.6744654 -0.30505162]]", "observation": "[[ 0.18831499 -0.1180824 -0.7898615 0.9454405 -1.1958948 0.34010732]\n [-1.4462771 -0.5938767 -0.8045682 -0.52861786 0.29496056 0.3104242 ]\n [-1.06923 -0.93206275 -0.3943917 -0.11762048 0.377585 -0.29416075]\n [ 0.6401788 0.32760754 0.65580004 -0.06222044 0.9393071 -0.00497952]\n [-0.6590745 -0.05331204 -0.06192483 -1.5239364 -0.09650483 -0.23137602]\n [-1.1955202 -0.67128277 0.05781005 -0.36710307 -0.488497 0.47615027]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAUuR+u7jj7L2ur9c96SiYPOL6xDwyxUA8h4PePIhJOTvbYRw+vA3WvQn2Nj358cw9k0UcPcvAqT18AHM9B/cDvr7mFT4NLhY+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00388934 -0.11566871 0.10531555]\n [ 0.01857419 0.02404541 0.01176577]\n [ 0.02716233 0.00282726 0.15271704]\n [-0.10451838 0.04466823 0.1000709 ]\n [ 0.03815229 0.08288725 0.05932663]\n [-0.12887202 0.14638802 0.14666004]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMZQT7SrkB8CUhpRSlIwBbJRLMowBdJRHQJWAVRuTA311fZQoaAZoCWgPQwiYT1YMV0cLwJSGlFKUaBVLMmgWR0CVf9aLGaQWdX2UKGgGaAloD0MIvtpRnKNuE8CUhpRSlGgVSzJoFkdAlX9fpD/lyXV9lChoBmgJaA9DCAq5Us+CUA/AlIaUUpRoFUsyaBZHQJV+4ZbY9Pl1fZQoaAZoCWgPQwis5jki34UHwJSGlFKUaBVLMmgWR0CVhvIIF/x2dX2UKGgGaAloD0MI5WIMrOM48L+UhpRSlGgVSzJoFkdAlYZ2elKsdXV9lChoBmgJaA9DCAlTlEvjFw3AlIaUUpRoFUsyaBZHQJWF+NXHR1J1fZQoaAZoCWgPQwiPxMvTuZIbwJSGlFKUaBVLMmgWR0CVhXsdkrf+dX2UKGgGaAloD0MII4Wy8PX1DMCUhpRSlGgVSzJoFkdAlYUHG4qgAnV9lChoBmgJaA9DCAVu3c1THfy/lIaUUpRoFUsyaBZHQJWEiwOe8PF1fZQoaAZoCWgPQwiUvaWcL3YZwJSGlFKUaBVLMmgWR0CVjDSkj5bhdX2UKGgGaAloD0MIPUM4ZtkzBsCUhpRSlGgVSzJoFkdAlYu4sRQJonV9lChoBmgJaA9DCMO5hhkaXxbAlIaUUpRoFUsyaBZHQJWLO+QEIPd1fZQoaAZoCWgPQwjkEdxI2TIWwJSGlFKUaBVLMmgWR0CVir74zrNXdX2UKGgGaAloD0MIzNB4IojDE8CUhpRSlGgVSzJoFkdAlYpJPVNHpnV9lChoBmgJaA9DCOoI4GbxIv6/lIaUUpRoFUsyaBZHQJWJyx2St/51fZQoaAZoCWgPQwjJ5xVPPRIHwJSGlFKUaBVLMmgWR0CVkTZa3ZwodX2UKGgGaAloD0MIkNyadFsi/L+UhpRSlGgVSzJoFkdAlZC628Zk1HV9lChoBmgJaA9DCP5HpkOnBwbAlIaUUpRoFUsyaBZHQJWQPPWxyGV1fZQoaAZoCWgPQwhj8ZvCSmUHwJSGlFKUaBVLMmgWR0CVj7+SbH6udX2UKGgGaAloD0MIswxxrIt7AcCUhpRSlGgVSzJoFkdAlY9JyEL6UXV9lChoBmgJaA9DCDf/rzpyJAXAlIaUUpRoFUsyaBZHQJWOyzcAR051fZQoaAZoCWgPQwimttRBXg8DwJSGlFKUaBVLMmgWR0CVlTYTTOPedX2UKGgGaAloD0MIiQrVzcU/DsCUhpRSlGgVSzJoFkdAlZS43Jgb63V9lChoBmgJaA9DCPpjWpvGthDAlIaUUpRoFUsyaBZHQJWUOZ4Oc2B1fZQoaAZoCWgPQwhOJm4VxMANwJSGlFKUaBVLMmgWR0CVk7oX9BKMdX2UKGgGaAloD0MI+YbCZ+vAEsCUhpRSlGgVSzJoFkdAlZNCQo1DSnV9lChoBmgJaA9DCNS19j5VBQzAlIaUUpRoFUsyaBZHQJWSwntv4ud1fZQoaAZoCWgPQwg6IAn7dsIQwJSGlFKUaBVLMmgWR0CVl/Pjn3cpdX2UKGgGaAloD0MIzSA+sOPfEcCUhpRSlGgVSzJoFkdAlZd2eDnNgXV9lChoBmgJaA9DCJTeN772rALAlIaUUpRoFUsyaBZHQJWW+X2M85l1fZQoaAZoCWgPQwi/1TpxOd7zv5SGlFKUaBVLMmgWR0CVlnubZvkzdX2UKGgGaAloD0MIk4rG2t/5BcCUhpRSlGgVSzJoFkdAlZYFnZkCm3V9lChoBmgJaA9DCKsi3GRU2fW/lIaUUpRoFUsyaBZHQJWVhrXUYsN1fZQoaAZoCWgPQwgYsrrVc5IQwJSGlFKUaBVLMmgWR0CVmrjTKDChdX2UKGgGaAloD0MIn5RJDW1gD8CUhpRSlGgVSzJoFkdAlZo74vexfXV9lChoBmgJaA9DCJeuYBvx5AHAlIaUUpRoFUsyaBZHQJWZvSofjjt1fZQoaAZoCWgPQwhHAaJgxlQJwJSGlFKUaBVLMmgWR0CVmT3R5TqCdX2UKGgGaAloD0MIMlUwKqkzAcCUhpRSlGgVSzJoFkdAlZjFXq7iAHV9lChoBmgJaA9DCIwv2uOFdBHAlIaUUpRoFUsyaBZHQJWYRSk0rLB1fZQoaAZoCWgPQwgJwhVQqIcHwJSGlFKUaBVLMmgWR0CVnZhQFcIJdX2UKGgGaAloD0MIIjfDDfgcEcCUhpRSlGgVSzJoFkdAlZ0bD2rXDnV9lChoBmgJaA9DCF8n9WVp5xDAlIaUUpRoFUsyaBZHQJWcm6tknTl1fZQoaAZoCWgPQwhlNPJ5xdMCwJSGlFKUaBVLMmgWR0CVnB0b961LdX2UKGgGaAloD0MITfilft4U/b+UhpRSlGgVSzJoFkdAlZul58jRlnV9lChoBmgJaA9DCMPX17rUaALAlIaUUpRoFUsyaBZHQJWbJe1KGtZ1fZQoaAZoCWgPQwhtxf6ye5IOwJSGlFKUaBVLMmgWR0CVoG9roGILdX2UKGgGaAloD0MIM8FwrmEmE8CUhpRSlGgVSzJoFkdAlZ/yGi5/b3V9lChoBmgJaA9DCBLb3QN0X/a/lIaUUpRoFUsyaBZHQJWfcw22oeh1fZQoaAZoCWgPQwgdccgG0gUNwJSGlFKUaBVLMmgWR0CVnvQHRkVfdX2UKGgGaAloD0MIR3U6kPXU/7+UhpRSlGgVSzJoFkdAlZ57v1DjR3V9lChoBmgJaA9DCKzHfat1IgTAlIaUUpRoFUsyaBZHQJWd+5/b0vp1fZQoaAZoCWgPQwizfjMxXagJwJSGlFKUaBVLMmgWR0CVo1sgdOqOdX2UKGgGaAloD0MIvOoB85DpEMCUhpRSlGgVSzJoFkdAlaLeCf6Gg3V9lChoBmgJaA9DCM0/+iZNUxXAlIaUUpRoFUsyaBZHQJWiXuTibUh1fZQoaAZoCWgPQwgplfCEXj8JwJSGlFKUaBVLMmgWR0CVod+WWyC4dX2UKGgGaAloD0MI0VlmEYpNBMCUhpRSlGgVSzJoFkdAlaFnxri2lXV9lChoBmgJaA9DCMeCwqBM4wnAlIaUUpRoFUsyaBZHQJWg56ol2Nh1fZQoaAZoCWgPQwi+2HvxRTsGwJSGlFKUaBVLMmgWR0CVpj5ksjFAdX2UKGgGaAloD0MIN/qYDwgUC8CUhpRSlGgVSzJoFkdAlaXBCtzS1HV9lChoBmgJaA9DCAfSxaaVYgzAlIaUUpRoFUsyaBZHQJWlQWGh24d1fZQoaAZoCWgPQwgLtaZ5x4kEwJSGlFKUaBVLMmgWR0CVpMItUXHjdX2UKGgGaAloD0MIZK4Mqg3uAMCUhpRSlGgVSzJoFkdAlaRJvDP4VXV9lChoBmgJaA9DCHLfap243ArAlIaUUpRoFUsyaBZHQJWjyhmGucN1fZQoaAZoCWgPQwgKn62Dg73/v5SGlFKUaBVLMmgWR0CVqW3qiXY2dX2UKGgGaAloD0MIVg+Yh0wZC8CUhpRSlGgVSzJoFkdAlajxJiAlOXV9lChoBmgJaA9DCLr0L0llyg/AlIaUUpRoFUsyaBZHQJWocwSJ0nx1fZQoaAZoCWgPQwi29GiqJ1MJwJSGlFKUaBVLMmgWR0CVp/QK8cuKdX2UKGgGaAloD0MIBHRfzmy3CMCUhpRSlGgVSzJoFkdAlad8CkoF3nV9lChoBmgJaA9DCLYtymyQyQnAlIaUUpRoFUsyaBZHQJWm/iWE9Md1fZQoaAZoCWgPQwgijnVxGy0cwJSGlFKUaBVLMmgWR0CVrO1wYLssdX2UKGgGaAloD0MIcw8J3/s7EsCUhpRSlGgVSzJoFkdAlaxv73wkPnV9lChoBmgJaA9DCBmveVVnNQfAlIaUUpRoFUsyaBZHQJWr8LJCBwx1fZQoaAZoCWgPQwjA6siRzqAMwJSGlFKUaBVLMmgWR0CVq3MZP2wndX2UKGgGaAloD0MIaqZ7ndQ3D8CUhpRSlGgVSzJoFkdAlar6wljVhHV9lChoBmgJaA9DCNSZe0j4HgXAlIaUUpRoFUsyaBZHQJWqfLcKw6h1fZQoaAZoCWgPQwjaxTTTvX4QwJSGlFKUaBVLMmgWR0CVr7Dbah6CdX2UKGgGaAloD0MI9fHQd7fCEsCUhpRSlGgVSzJoFkdAla8zOkcjq3V9lChoBmgJaA9DCBu62R8oVxLAlIaUUpRoFUsyaBZHQJWus96kZaV1fZQoaAZoCWgPQwhoyk4/qCsSwJSGlFKUaBVLMmgWR0CVrjTXarWAdX2UKGgGaAloD0MIVdy4xfzcF8CUhpRSlGgVSzJoFkdAla28iOearnV9lChoBmgJaA9DCNap8j0jEQLAlIaUUpRoFUsyaBZHQJWtPNpudf91fZQoaAZoCWgPQwg4hgDg2CMawJSGlFKUaBVLMmgWR0CVsny5qdpZdX2UKGgGaAloD0MIUl+Wdmqu8r+UhpRSlGgVSzJoFkdAlbH/jXFtK3V9lChoBmgJaA9DCGX8+4wLNxDAlIaUUpRoFUsyaBZHQJWxgGKQ7tB1fZQoaAZoCWgPQwjVPEfku1QKwJSGlFKUaBVLMmgWR0CVsQDaXa8IdX2UKGgGaAloD0MIBoVBmUYzAsCUhpRSlGgVSzJoFkdAlbCIjrzGxXV9lChoBmgJaA9DCF8JpMSuDQLAlIaUUpRoFUsyaBZHQJWwCHpKSPl1fZQoaAZoCWgPQwi+g584gF4PwJSGlFKUaBVLMmgWR0CVtUseGO+7dX2UKGgGaAloD0MIL6LtmLrrEcCUhpRSlGgVSzJoFkdAlbTNiMHbAXV9lChoBmgJaA9DCEfGavP/KgLAlIaUUpRoFUsyaBZHQJW0Tj6vaDh1fZQoaAZoCWgPQwjdskP8w+YRwJSGlFKUaBVLMmgWR0CVs86NVBD5dX2UKGgGaAloD0MItkjajT5m/b+UhpRSlGgVSzJoFkdAlbNWQCCBgHV9lChoBmgJaA9DCNxGA3gLJP6/lIaUUpRoFUsyaBZHQJWy1lnRLK51fZQoaAZoCWgPQwguq7AZ4CIJwJSGlFKUaBVLMmgWR0CVuBx3mmtRdX2UKGgGaAloD0MIZD+LpUjeD8CUhpRSlGgVSzJoFkdAlbeftY0VJ3V9lChoBmgJaA9DCFVMpZ9wZhXAlIaUUpRoFUsyaBZHQJW3IH7gsK91fZQoaAZoCWgPQwiGqS11kHcAwJSGlFKUaBVLMmgWR0CVtqITXarWdX2UKGgGaAloD0MIaDwRxHkYEcCUhpRSlGgVSzJoFkdAlbYqAz544nV9lChoBmgJaA9DCImzImqiTw7AlIaUUpRoFUsyaBZHQJW1qj0th/l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16667, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f54adb040d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54adafd960>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678279984483522923, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsNfHPoezFTymAgs/sNfHPoezFTymAgs/sNfHPoezFTymAgs/sNfHPoezFTymAgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbV7Nv7QIAT9WwdC/NLtdPoiY6btSLUy/memxPxaIgL58/WK+QK77vq7dAj+Pn4k/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyw18c+h7MVPKYCCz8D/DE8iTW9ObWZgzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39031744 0.00913704 0.54300916]\n [0.39031744 0.00913704 0.54300916]\n [0.39031744 0.00913704 0.54300916]\n [0.39031744 0.00913704 0.54300916]]", "desired_goal": "[[-1.6044441 0.50403905 -1.6309001 ]\n [ 0.21653444 -0.00712878 -0.79756653]\n [ 1.3899413 -0.25103825 -0.22167009]\n [-0.4915638 0.51119506 1.0751818 ]]", "observation": "[[3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]\n [3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]\n [3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]\n [3.9031744e-01 9.1370409e-03 5.4300916e-01 1.0863307e-02 3.6088776e-04\n 1.6064504e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA58QSvtcaKL0i1FA+TeHMPS+T+Tx2leY8hucDvunG8z3cHtU9K7AWPh47V71cfP49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14332925 -0.04104122 0.20393422]\n [ 0.1000391 0.03046569 0.02814744]\n [-0.12881288 0.11903173 0.10406277]\n [ 0.1471564 -0.05254661 0.12426063]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpyA/G7nu5r+UhpRSlIwBbJRLMowBdJRHQKuzri++M611fZQoaAZoCWgPQwhz9s5oq1L1v5SGlFKUaBVLMmgWR0Crs19QwblzdX2UKGgGaAloD0MIChLb3QMUAsCUhpRSlGgVSzJoFkdAq7MH+XJHRXV9lChoBmgJaA9DCKNYbmk1RAfAlIaUUpRoFUsyaBZHQKuys065oXd1fZQoaAZoCWgPQwj1ukVgrA8DwJSGlFKUaBVLMmgWR0CrtPkJ8fFKdX2UKGgGaAloD0MIVKuvrgr0AMCUhpRSlGgVSzJoFkdAq7SqGlANX3V9lChoBmgJaA9DCOmBj8GK0/6/lIaUUpRoFUsyaBZHQKu0Usny/bl1fZQoaAZoCWgPQwj1ZtR8ldwFwJSGlFKUaBVLMmgWR0Crs/4NqgyudX2UKGgGaAloD0MIHxK+9zfo/r+UhpRSlGgVSzJoFkdAq7YxyCFsYXV9lChoBmgJaA9DCLq/ety3GvG/lIaUUpRoFUsyaBZHQKu14sfaHsV1fZQoaAZoCWgPQwjzdoTTgtcNwJSGlFKUaBVLMmgWR0CrtYt2TxG2dX2UKGgGaAloD0MI7//jhAlDAsCUhpRSlGgVSzJoFkdAq7U2uzQeFXV9lChoBmgJaA9DCD//PXjtEgHAlIaUUpRoFUsyaBZHQKu3dJJXhfl1fZQoaAZoCWgPQwgbE2IuqboAwJSGlFKUaBVLMmgWR0CrtyWoNutPdX2UKGgGaAloD0MIcHfWbrtQBMCUhpRSlGgVSzJoFkdAq7bOU4aP0nV9lChoBmgJaA9DCPz/OGHCKP2/lIaUUpRoFUsyaBZHQKu2eb4rSVp1fZQoaAZoCWgPQwgs1nCRezr5v5SGlFKUaBVLMmgWR0CruLPZh8YydX2UKGgGaAloD0MIHRzsTQwJ87+UhpRSlGgVSzJoFkdAq7hk6kqMFXV9lChoBmgJaA9DCB6n6EgufwHAlIaUUpRoFUsyaBZHQKu4Daews5J1fZQoaAZoCWgPQwgejNgngGL5v5SGlFKUaBVLMmgWR0Crt7kHMUypdX2UKGgGaAloD0MI4gSm07rND8CUhpRSlGgVSzJoFkdAq7nv2kBS1nV9lChoBmgJaA9DCFAZ/z7j4gTAlIaUUpRoFUsyaBZHQKu5oMZxaPl1fZQoaAZoCWgPQwj0/dR46eb8v5SGlFKUaBVLMmgWR0CruUpCjUNKdX2UKGgGaAloD0MI2ZjXEYesB8CUhpRSlGgVSzJoFkdAq7j2NNrTIHV9lChoBmgJaA9DCEM4ZtmTQPq/lIaUUpRoFUsyaBZHQKu7NmozeoF1fZQoaAZoCWgPQwhfevtz0RD/v5SGlFKUaBVLMmgWR0CruudkJ8fFdX2UKGgGaAloD0MIOxkcJa+uAcCUhpRSlGgVSzJoFkdAq7qQHqu8snV9lChoBmgJaA9DCCrgnudPewDAlIaUUpRoFUsyaBZHQKu6O5Lh73R1fZQoaAZoCWgPQwhn74y2Kgn0v5SGlFKUaBVLMmgWR0CrvH1Euxr0dX2UKGgGaAloD0MI7PZZZaZ0AsCUhpRSlGgVSzJoFkdAq7wuTeO4onV9lChoBmgJaA9DCLxXrUz4pf+/lIaUUpRoFUsyaBZHQKu71wWFev91fZQoaAZoCWgPQwi3Xz5ZMXwAwJSGlFKUaBVLMmgWR0Cru4JFb3XadX2UKGgGaAloD0MIGHsvvmhPAcCUhpRSlGgVSzJoFkdAq73MQsf7rXV9lChoBmgJaA9DCFBSYAFM2QPAlIaUUpRoFUsyaBZHQKu9fUXpGF11fZQoaAZoCWgPQwjPoQxVMdX6v5SGlFKUaBVLMmgWR0CrvSXuNPxhdX2UKGgGaAloD0MI0SSxpNy9AMCUhpRSlGgVSzJoFkdAq7zRLPD503V9lChoBmgJaA9DCGDNAYI5mgPAlIaUUpRoFUsyaBZHQKu/FTXJ5mh1fZQoaAZoCWgPQwhRa5p3nCIEwJSGlFKUaBVLMmgWR0CrvsYpUgjhdX2UKGgGaAloD0MIqyaIug+gA8CUhpRSlGgVSzJoFkdAq75uh0yP/HV9lChoBmgJaA9DCI3vi0tVOgbAlIaUUpRoFUsyaBZHQKu+GfPomol1fZQoaAZoCWgPQwhgkPRpFR0EwJSGlFKUaBVLMmgWR0CrwFggPmPpdX2UKGgGaAloD0MIKzHPSlpxA8CUhpRSlGgVSzJoFkdAq8AJLsa86HV9lChoBmgJaA9DCJQXmYBfYwDAlIaUUpRoFUsyaBZHQKu/sdaMaS91fZQoaAZoCWgPQwiKkSVzLK//v5SGlFKUaBVLMmgWR0Crv10nw5NodX2UKGgGaAloD0MIxMw+j1E+AMCUhpRSlGgVSzJoFkdAq8GSJ/G2kXV9lChoBmgJaA9DCHLdlPJaSfm/lIaUUpRoFUsyaBZHQKvBQzTnaFp1fZQoaAZoCWgPQwgj3GRUGUb1v5SGlFKUaBVLMmgWR0CrwOvjOs1bdX2UKGgGaAloD0MIi4ujchO1C8CUhpRSlGgVSzJoFkdAq8CWyiVSoHV9lChoBmgJaA9DCNaoh2h0hwHAlIaUUpRoFUsyaBZHQKvC6K8cuJ11fZQoaAZoCWgPQwhosn+eBoz/v5SGlFKUaBVLMmgWR0Crwpm+K0ladX2UKGgGaAloD0MI7KF9rODXBMCUhpRSlGgVSzJoFkdAq8JCkhzNlnV9lChoBmgJaA9DCPSo+L8javy/lIaUUpRoFUsyaBZHQKvB7dAxBVx1fZQoaAZoCWgPQwi5bkp5rcT6v5SGlFKUaBVLMmgWR0CrxCPUz9CNdX2UKGgGaAloD0MI4IPXLm2497+UhpRSlGgVSzJoFkdAq8PU1O0sv3V9lChoBmgJaA9DCKotdZDXwwXAlIaUUpRoFUsyaBZHQKvDfYHPeHl1fZQoaAZoCWgPQwiWP98WLBUGwJSGlFKUaBVLMmgWR0CrwyjMFEApdX2UKGgGaAloD0MIoS5SKAuf+L+UhpRSlGgVSzJoFkdAq8VfAGjbjHV9lChoBmgJaA9DCCdsPxnjg/m/lIaUUpRoFUsyaBZHQKvFD8twrDt1fZQoaAZoCWgPQwhM+nspPOj1v5SGlFKUaBVLMmgWR0CrxLhPbfxddX2UKGgGaAloD0MIP5EnSdcsDMCUhpRSlGgVSzJoFkdAq8RjpTuOTHV9lChoBmgJaA9DCKZjzjP25QjAlIaUUpRoFUsyaBZHQKvHJihFmWd1fZQoaAZoCWgPQwhHBU62gbv2v5SGlFKUaBVLMmgWR0Crxte1rqMWdX2UKGgGaAloD0MIXJAty9clBcCUhpRSlGgVSzJoFkdAq8aBfF72MHV9lChoBmgJaA9DCCR9WkV/CALAlIaUUpRoFUsyaBZHQKvGLXV9Wp91fZQoaAZoCWgPQwgYQs77/7gDwJSGlFKUaBVLMmgWR0CryRthmXgMdX2UKGgGaAloD0MIPL1SliEuBcCUhpRSlGgVSzJoFkdAq8jNb1RLsnV9lChoBmgJaA9DCMOAJVex+AHAlIaUUpRoFUsyaBZHQKvId30PH1h1fZQoaAZoCWgPQwjeHoSAfCkFwJSGlFKUaBVLMmgWR0CryCbbtZ3cdX2UKGgGaAloD0MIKZZbWg0J/7+UhpRSlGgVSzJoFkdAq8sjV4HHFXV9lChoBmgJaA9DCLmJWppbYfe/lIaUUpRoFUsyaBZHQKvK1fdhy811fZQoaAZoCWgPQwgfniXICIgGwJSGlFKUaBVLMmgWR0CryoE+otL+dX2UKGgGaAloD0MILuOmBppvAsCUhpRSlGgVSzJoFkdAq8otM0xdp3V9lChoBmgJaA9DCB7dCIuKuAHAlIaUUpRoFUsyaBZHQKvNRp22Xsx1fZQoaAZoCWgPQwgaNPRPcNEBwJSGlFKUaBVLMmgWR0CrzPjEm6XjdX2UKGgGaAloD0MIG53zUxynA8CUhpRSlGgVSzJoFkdAq8yixNZeRnV9lChoBmgJaA9DCF0z+WabG/y/lIaUUpRoFUsyaBZHQKvMTxZMcp91fZQoaAZoCWgPQwibOSS1UFIMwJSGlFKUaBVLMmgWR0Crz2gXVLBbdX2UKGgGaAloD0MI6njMQGU8/7+UhpRSlGgVSzJoFkdAq88aLwWnCXV9lChoBmgJaA9DCHegTnl04wjAlIaUUpRoFUsyaBZHQKvOw7xusLh1fZQoaAZoCWgPQwh3uvPEc1YIwJSGlFKUaBVLMmgWR0CrznBGQSzxdX2UKGgGaAloD0MIvmplwi+VAcCUhpRSlGgVSzJoFkdAq9GOeYlY2nV9lChoBmgJaA9DCPUqMjogSfe/lIaUUpRoFUsyaBZHQKvRQJCSidt1fZQoaAZoCWgPQwgDmZ1F77QKwJSGlFKUaBVLMmgWR0Cr0OpRwZO0dX2UKGgGaAloD0MIBkzg1t18BcCUhpRSlGgVSzJoFkdAq9CWYF7laXV9lChoBmgJaA9DCEMaFTjZ5gDAlIaUUpRoFUsyaBZHQKvS6QuEmIF1fZQoaAZoCWgPQwiMg0vHnGfev5SGlFKUaBVLMmgWR0Cr0poLw4KhdX2UKGgGaAloD0MI6Zyf4jgw/7+UhpRSlGgVSzJoFkdAq9JCunuRcXV9lChoBmgJaA9DCFwAGqVLvwDAlIaUUpRoFUsyaBZHQKvR7fcer+51fZQoaAZoCWgPQwg49YHknYMJwJSGlFKUaBVLMmgWR0Cr1DDqOcUedX2UKGgGaAloD0MI6DI1Cd7QA8CUhpRSlGgVSzJoFkdAq9Ph/ustCnV9lChoBmgJaA9DCJYEqKllKwXAlIaUUpRoFUsyaBZHQKvTitRNyo51fZQoaAZoCWgPQwiS6ju/KIH4v5SGlFKUaBVLMmgWR0Cr0zY//vORdX2UKGgGaAloD0MIOBPThVj99b+UhpRSlGgVSzJoFkdAq9Wd8b70nXV9lChoBmgJaA9DCC6thsQ9dg7AlIaUUpRoFUsyaBZHQKvVTt+Csfd1fZQoaAZoCWgPQwjp7c9FQ+YDwJSGlFKUaBVLMmgWR0Cr1PiADq4ZdX2UKGgGaAloD0MIhzYAGxChBMCUhpRSlGgVSzJoFkdAq9Sj2i+L33V9lChoBmgJaA9DCM8yi1BsBfi/lIaUUpRoFUsyaBZHQKvW4EgW8Ad1fZQoaAZoCWgPQwhxkuaPaW38v5SGlFKUaBVLMmgWR0Cr1pFjurp8dX2UKGgGaAloD0MIhXgkXp7O/b+UhpRSlGgVSzJoFkdAq9Y6VdHDrXV9lChoBmgJaA9DCIj3HFiO0APAlIaUUpRoFUsyaBZHQKvV5bC79Q51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -3.294905109098181, "std_reward": 1.3825659253291358, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T11:27:15.003585"}
 
1
+ {"mean_reward": -2.155675202421844, "std_reward": 0.6819580999117936, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T13:54:52.875189"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5a8067f4fdaf931d8c02f87ca903a2d8cf76c2d507e8d3b9154967e559f2d8dc
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93146ae8a7e59ba6bd92556529daf5a82effade8b0ef56f6132840c49eeea195
3
  size 3056