a2c-PandaReachDense-v2 / config.json
AhsanZaidi's picture
Initial commit
bf7160c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc70ad197e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc70ad1cb80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687309518971056026, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqSjyPqiYy7xV4BQ/qSjyPqiYy7xV4BQ/qSjyPqiYy7xV4BQ/qSjyPqiYy7xV4BQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+fnEP/cM3T5bvCC+O6zHv7TjH79d156/EOCav0LozL/macW/3huNvx1+vL7Ir1U8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpKPI+qJjLvFXgFD+x8GQ8KXhzu5IgLDypKPI+qJjLvFXgFD+x8GQ8KXhzu5IgLDypKPI+qJjLvFXgFD+x8GQ8KXhzu5IgLDypKPI+qJjLvFXgFD+x8GQ8KXhzu5IgLDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.47296646 -0.02485307 0.58154804]\n [ 0.47296646 -0.02485307 0.58154804]\n [ 0.47296646 -0.02485307 0.58154804]\n [ 0.47296646 -0.02485307 0.58154804]]", "desired_goal": "[[ 1.5388786 0.43173954 -0.15696852]\n [-1.5599436 -0.6245682 -1.2409474 ]\n [-1.2099628 -1.600838 -1.5422943 ]\n [-1.1024129 -0.36814967 0.0130424 ]]", "observation": "[[ 0.47296646 -0.02485307 0.58154804 0.0139734 -0.00371505 0.01050581]\n [ 0.47296646 -0.02485307 0.58154804 0.0139734 -0.00371505 0.01050581]\n [ 0.47296646 -0.02485307 0.58154804 0.0139734 -0.00371505 0.01050581]\n [ 0.47296646 -0.02485307 0.58154804 0.0139734 -0.00371505 0.01050581]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAD/BxO+Hw6Dwj8nA+61e2vRlPS729C809Z/zvO3Qe471la4I+wRyPvXVDAb5rVqc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00369168 0.02843517 0.23529868]\n [-0.08903488 -0.04963598 0.10012005]\n [ 0.00732379 -0.11089793 0.2547256 ]\n [-0.06987906 -0.12623389 0.0817078 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyXGndLB+8b+UhpRSlIwBbJRLMowBdJRHQKlvvo371qZ1fZQoaAZoCWgPQwhcdLLUen/wv5SGlFKUaBVLMmgWR0Cpb4NNzr/sdX2UKGgGaAloD0MIYJFfP8QG7b+UhpRSlGgVSzJoFkdAqW9Kf+S8rnV9lChoBmgJaA9DCLubpzrkZuO/lIaUUpRoFUsyaBZHQKlvD3TNMXd1fZQoaAZoCWgPQwhtrS8S2nLpv5SGlFKUaBVLMmgWR0CpcZ539rGjdX2UKGgGaAloD0MIj1AzpIri4L+UhpRSlGgVSzJoFkdAqXFjP0I1L3V9lChoBmgJaA9DCJkOnZ534++/lIaUUpRoFUsyaBZHQKlxKlhw2l51fZQoaAZoCWgPQwiiX1s//efkv5SGlFKUaBVLMmgWR0CpcO85jpcHdX2UKGgGaAloD0MIntLB+j8H47+UhpRSlGgVSzJoFkdAqXN/qeK8+XV9lChoBmgJaA9DCFuaWyGsxua/lIaUUpRoFUsyaBZHQKlzRFocrAh1fZQoaAZoCWgPQwir6Xqi60Lpv5SGlFKUaBVLMmgWR0CpcwsTN+spdX2UKGgGaAloD0MIPPpfrkWL57+UhpRSlGgVSzJoFkdAqXLQEbHZK3V9lChoBmgJaA9DCOli00ohkPC/lIaUUpRoFUsyaBZHQKl1pSLIgeR1fZQoaAZoCWgPQwj0iqceaXDmv5SGlFKUaBVLMmgWR0CpdWoDHOrydX2UKGgGaAloD0MI/reSHRsB4r+UhpRSlGgVSzJoFkdAqXUxZW7vonV9lChoBmgJaA9DCMx5xr5kI/S/lIaUUpRoFUsyaBZHQKl09mOEM9d1fZQoaAZoCWgPQwjdXz3uW63dv5SGlFKUaBVLMmgWR0Cpd6fDUExJdX2UKGgGaAloD0MIGf7TDRQ49b+UhpRSlGgVSzJoFkdAqXdsl1KXfXV9lChoBmgJaA9DCLw+c9anHOW/lIaUUpRoFUsyaBZHQKl3M9US7Gx1fZQoaAZoCWgPQwi77Ned7jzrv5SGlFKUaBVLMmgWR0CpdvkyckMTdX2UKGgGaAloD0MIsyjsougB5r+UhpRSlGgVSzJoFkdAqXmzrcCYC3V9lChoBmgJaA9DCGtEMA4uneS/lIaUUpRoFUsyaBZHQKl5eHN5dGB1fZQoaAZoCWgPQwjIluXrMjz0v5SGlFKUaBVLMmgWR0CpeT/Sx7iRdX2UKGgGaAloD0MIIXh8e9fg9r+UhpRSlGgVSzJoFkdAqXkFFfAsTXV9lChoBmgJaA9DCNHN/kC57ea/lIaUUpRoFUsyaBZHQKl7UZrHlwN1fZQoaAZoCWgPQwgU7Sqk/KTtv5SGlFKUaBVLMmgWR0CpexVmrbQDdX2UKGgGaAloD0MIZRniWBe34b+UhpRSlGgVSzJoFkdAqXrbuBtk4HV9lChoBmgJaA9DCO4HPDCA8Oe/lIaUUpRoFUsyaBZHQKl6n7qIJqt1fZQoaAZoCWgPQwjDKt7IPHLhv5SGlFKUaBVLMmgWR0CpfGr9ETg3dX2UKGgGaAloD0MI88e0No3t27+UhpRSlGgVSzJoFkdAqXwvL9uP3nV9lChoBmgJaA9DCNLgtrbwvPS/lIaUUpRoFUsyaBZHQKl79WYnfEZ1fZQoaAZoCWgPQwgJ+gs9YvTcv5SGlFKUaBVLMmgWR0Cpe7mC7K7qdX2UKGgGaAloD0MIED0pkxra2b+UhpRSlGgVSzJoFkdAqX2GM4tHx3V9lChoBmgJaA9DCEROX8/XLOa/lIaUUpRoFUsyaBZHQKl9SetCAtp1fZQoaAZoCWgPQwjZtb3dkpzgv5SGlFKUaBVLMmgWR0CpfQ/nGKhtdX2UKGgGaAloD0MIQswlVdtN3b+UhpRSlGgVSzJoFkdAqXzT5j6N2nV9lChoBmgJaA9DCE8EcR5O4OG/lIaUUpRoFUsyaBZHQKl+mIcinpB1fZQoaAZoCWgPQwi/gcmNImvjv5SGlFKUaBVLMmgWR0CpflxNRFZxdX2UKGgGaAloD0MI4L4OnDOi1r+UhpRSlGgVSzJoFkdAqX4iYsunM3V9lChoBmgJaA9DCBb8NsR4zdW/lIaUUpRoFUsyaBZHQKl95lar3kB1fZQoaAZoCWgPQwgF+69z02bkv5SGlFKUaBVLMmgWR0Cpf7DQZ4wAdX2UKGgGaAloD0MIjiJrDaV25r+UhpRSlGgVSzJoFkdAqX90iyIHknV9lChoBmgJaA9DCJ+OxwxUxtm/lIaUUpRoFUsyaBZHQKl/OrU9ZA91fZQoaAZoCWgPQwihavRqgFLkv5SGlFKUaBVLMmgWR0Cpfv7A1vVFdX2UKGgGaAloD0MIdvpBXaTQ4L+UhpRSlGgVSzJoFkdAqYDEV+I/JXV9lChoBmgJaA9DCEG8rl+wm+a/lIaUUpRoFUsyaBZHQKmAiBlMAWB1fZQoaAZoCWgPQwgHl445zxjzv5SGlFKUaBVLMmgWR0CpgE5BTn7pdX2UKGgGaAloD0MIjup0IOup3r+UhpRSlGgVSzJoFkdAqYASRp1zQ3V9lChoBmgJaA9DCIgs0sQ7QOG/lIaUUpRoFUsyaBZHQKmB3AsTWXl1fZQoaAZoCWgPQwi7fsFu2Dbgv5SGlFKUaBVLMmgWR0CpgZ/I0ZWJdX2UKGgGaAloD0MIMEj6tIr+5L+UhpRSlGgVSzJoFkdAqYFl92HLzXV9lChoBmgJaA9DCEG8rl+wG9e/lIaUUpRoFUsyaBZHQKmBKhW5pal1fZQoaAZoCWgPQwhQptHkYgzjv5SGlFKUaBVLMmgWR0Cpgu/SpiqidX2UKGgGaAloD0MIoYMu4dBb4L+UhpRSlGgVSzJoFkdAqYKzbBXS0HV9lChoBmgJaA9DCBrEB3b8F+a/lIaUUpRoFUsyaBZHQKmCeYIjW091fZQoaAZoCWgPQwhjQzf7AyXwv5SGlFKUaBVLMmgWR0Cpgj2OIZZTdX2UKGgGaAloD0MIv9TPm4pU3b+UhpRSlGgVSzJoFkdAqYQFPJq7AnV9lChoBmgJaA9DCAHBHD1+b+m/lIaUUpRoFUsyaBZHQKmDyV3Ux211fZQoaAZoCWgPQwiHiQYpeIriv5SGlFKUaBVLMmgWR0Cpg5BiCrcTdX2UKGgGaAloD0MIeNFXkGYs77+UhpRSlGgVSzJoFkdAqYNVMRHww3V9lChoBmgJaA9DCJZcxeI3hdW/lIaUUpRoFUsyaBZHQKmFKC6pYLd1fZQoaAZoCWgPQwgvbw7Xag/rv5SGlFKUaBVLMmgWR0CphOv+4smOdX2UKGgGaAloD0MIB5eOOc/Y2L+UhpRSlGgVSzJoFkdAqYSyN0eU6nV9lChoBmgJaA9DCFzHuOLiKOa/lIaUUpRoFUsyaBZHQKmEdkhib2F1fZQoaAZoCWgPQwhLXMe44mLjv5SGlFKUaBVLMmgWR0CphkTqbBoFdX2UKGgGaAloD0MIzm4tk+H46b+UhpRSlGgVSzJoFkdAqYYIyTINmXV9lChoBmgJaA9DCE8IHXQJh+m/lIaUUpRoFUsyaBZHQKmFzvRZ2ZB1fZQoaAZoCWgPQwi3KLNBJhnav5SGlFKUaBVLMmgWR0CphZLh73PBdX2UKGgGaAloD0MIvAM8aeGy5b+UhpRSlGgVSzJoFkdAqYdfZqVQh3V9lChoBmgJaA9DCCxGXWvvU9+/lIaUUpRoFUsyaBZHQKmHIzgMtsh1fZQoaAZoCWgPQwh4QxoVOFngv5SGlFKUaBVLMmgWR0Cphulm4AjqdX2UKGgGaAloD0MI3C3JAbua37+UhpRSlGgVSzJoFkdAqYateF+NLnV9lChoBmgJaA9DCKBvC5bqguW/lIaUUpRoFUsyaBZHQKmIdH1e0HB1fZQoaAZoCWgPQwjAB69d2nDjv5SGlFKUaBVLMmgWR0CpiDgvL5h0dX2UKGgGaAloD0MIhuKON/kt1r+UhpRSlGgVSzJoFkdAqYf+XXyy2XV9lChoBmgJaA9DCNSbUfNVcui/lIaUUpRoFUsyaBZHQKmHwn1nM+x1fZQoaAZoCWgPQwg8hVypZ8Htv5SGlFKUaBVLMmgWR0CpiY/Kp1ifdX2UKGgGaAloD0MIHH433bLD4L+UhpRSlGgVSzJoFkdAqYlTynUDuHV9lChoBmgJaA9DCAuYwK27ed+/lIaUUpRoFUsyaBZHQKmJGg3974V1fZQoaAZoCWgPQwjXijbHuU3av5SGlFKUaBVLMmgWR0CpiN4xtYSydX2UKGgGaAloD0MIYjHqWnuf4b+UhpRSlGgVSzJoFkdAqYqshHLA6HV9lChoBmgJaA9DCEZ9kjtsIuW/lIaUUpRoFUsyaBZHQKmKcFCb+cZ1fZQoaAZoCWgPQwgpPGh23dvkv5SGlFKUaBVLMmgWR0CpijZE+gUUdX2UKGgGaAloD0MIwLSoT3IH7b+UhpRSlGgVSzJoFkdAqYn6QgcLjXV9lChoBmgJaA9DCMnJxK2CGO2/lIaUUpRoFUsyaBZHQKmLyKneizt1fZQoaAZoCWgPQwhaKQRyiaP2v5SGlFKUaBVLMmgWR0Cpi4x8D0UXdX2UKGgGaAloD0MIGsQHdvwX+7+UhpRSlGgVSzJoFkdAqYtSt5le4XV9lChoBmgJaA9DCHcTfNP02dy/lIaUUpRoFUsyaBZHQKmLFwJgLJF1fZQoaAZoCWgPQwgk0csoltvwv5SGlFKUaBVLMmgWR0CpjOsir1dxdX2UKGgGaAloD0MIh2u1h71Q47+UhpRSlGgVSzJoFkdAqYyu3azu4XV9lChoBmgJaA9DCOfib3uCROa/lIaUUpRoFUsyaBZHQKmMdSc9W6t1fZQoaAZoCWgPQwjBcK5hhkbqv5SGlFKUaBVLMmgWR0CpjDk1uR9xdX2UKGgGaAloD0MIL96P2y+f5b+UhpRSlGgVSzJoFkdAqY4SzAvcrXV9lChoBmgJaA9DCBaJCWr4Fta/lIaUUpRoFUsyaBZHQKmN1rX18LN1fZQoaAZoCWgPQwhiLqnabgLrv5SGlFKUaBVLMmgWR0CpjZztb9qDdX2UKGgGaAloD0MIK2nFNxQ+67+UhpRSlGgVSzJoFkdAqY1hFEy+H3V9lChoBmgJaA9DCPYoXI/C9eS/lIaUUpRoFUsyaBZHQKmPZD0lJH11fZQoaAZoCWgPQwgWbvlISnrpv5SGlFKUaBVLMmgWR0CpjyjUmUnpdX2UKGgGaAloD0MIGxGMg0vH3b+UhpRSlGgVSzJoFkdAqY7vwTdtVXV9lChoBmgJaA9DCJrQJLGkXOG/lIaUUpRoFUsyaBZHQKmOtKr7wa11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}