td3-PandaReachDense-v3 / config.json
Aggarwal21's picture
Initial commit
3c0a466 verified
raw
history blame
17.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7fe984e8a170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe984e8c140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": {":type:": "<class 'stable_baselines3.common.noise.VectorizedActionNoise'>", ":serialized:": "gAWVPAMAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMFVZlY3Rvcml6ZWRBY3Rpb25Ob2lzZZSTlCmBlH2UKIwGbl9lbnZzlEsEjAtfYmFzZV9ub2lzZZRoAIwRTm9ybWFsQWN0aW9uTm9pc2WUk5QpgZR9lCiMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMBl9zaWdtYZRoDiiWGAAAAAAAAACamZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+UaBVLA4WUaBl0lFKUjAZfZHR5cGWUaBCMB2Zsb2F0MzKUk5R1YowHX25vaXNlc5RdlChoCCmBlH2UKGgLaA4olhgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSwOFlGgZdJRSlGgcaA4olhgAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgVSwOFlGgZdJRSlGghaCN1YmgIKYGUfZQoaAtoDiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLA4WUaBl0lFKUaBxoDiiWGAAAAAAAAACamZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+UaBVLA4WUaBl0lFKUaCFoI3ViaAgpgZR9lChoC2gOKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoFUsDhZRoGXSUUpRoHGgOKJYYAAAAAAAAAJqZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5RoFUsDhZRoGXSUUpRoIWgjdWJoCCmBlH2UKGgLaA4olhgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSwOFlGgZdJRSlGgcaA4olhgAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgVSwOFlGgZdJRSlGghaCN1YmV1Yi4=", "n_envs": 4, "_base_noise": "NormalActionNoise(mu=[0. 0. 0.], sigma=[0.1 0.1 0.1])", "_noises": "[NormalActionNoise(mu=[0. 0. 0.], sigma=[0.1 0.1 0.1]), NormalActionNoise(mu=[0. 0. 0.], sigma=[0.1 0.1 0.1]), NormalActionNoise(mu=[0. 0. 0.], sigma=[0.1 0.1 0.1]), NormalActionNoise(mu=[0. 0. 0.], sigma=[0.1 0.1 0.1])]"}, "start_time": 1717136767168178199, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/QdJPxEl078jfcO/Gdg7vwYQGL9cMrQ+Prm6PhBFXjx7A+c+GyWOPwmF3D8JNce/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAepNJP5kxwb8E1Y2/J4iZvw8Igr/VlIw/3XOovwVZML2ZhQ0/BYKSP0pEpz97zo6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD9B0k/ESXTvyN9w7/PnSE/PzZov0Qjw78Z2Du/BhAYv1wytD4Sz0S/Pkr0v9X+ez8+ubo+EEVePHsD5z66JxU/PKIku+XizD4bJY4/CYXcPwk1x785TM0+9ZNmPzKq2r+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.78527814 -1.6495687 -1.5272564 ]\n [-0.73376614 -0.5939945 0.3519467 ]\n [ 0.36469454 0.01356627 0.45119843]\n [ 1.1105074 1.7228099 -1.556306 ]]", "desired_goal": "[[ 0.78740656 -1.5093261 -1.1080632 ]\n [-1.1994675 -1.0158709 1.098292 ]\n [-1.3160359 -0.04305365 0.5528198 ]\n [ 1.1445929 1.3067715 -1.1156763 ]]", "observation": "[[ 0.78527814 -1.6495687 -1.5272564 0.6313142 -0.9070777 -1.5245137 ]\n [-0.73376614 -0.5939945 0.3519467 -0.76878464 -1.9085157 0.9843572 ]\n [ 0.36469454 0.01356627 0.45119843 0.5826374 -0.00251211 0.40016857]\n [ 1.1105074 1.7228099 -1.556306 0.40097216 0.90069515 -1.708319 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGFFfPex3j703nvY9H09pu2Sk0bzmLkY+6nIdPRlsGqxDI0o+JiCJPSpykz2bTfQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ+KCPUdiDL7YDiQ9tULyvT0Tvb2CUng+iRMEvgbwhLvvEUU+8fbFPT2D8j1cMiE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAYUV897HePvTee9j04TJw8EzETv0pRpr8fT2m7ZKTRvOYuRj6Zmge/whKbvwntyT7qch09GWwarEMjSj4AAAAAAAAAgAAAAAAmIIk9KnKTPZtN9D0o1JG9ffgSP2Eztr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 5.45206964e-02 -7.00529516e-02 1.20418958e-01]\n [-3.56001384e-03 -2.55910829e-02 1.93538278e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 6.69558495e-02 7.19950944e-02 1.19288646e-01]]", "desired_goal": "[[ 0.06390791 -0.13709365 0.04005322]\n [-0.1182913 -0.09232185 0.24250224]\n [-0.12898077 -0.00405693 0.19245122]\n [ 0.09666241 0.11841438 0.03935467]]", "observation": "[[ 5.45206964e-02 -7.00529516e-02 1.20418958e-01 1.90793127e-02\n -5.74967563e-01 -1.29935575e+00]\n [-3.56001384e-03 -2.55910829e-02 1.93538278e-01 -5.29702723e-01\n -1.21150994e+00 3.94386560e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 6.69558495e-02 7.19950944e-02 1.19288646e-01 -7.12054372e-02\n 5.74104130e-01 -1.42344296e+00]]"}, "_episode_num": 367561, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6KP4mCyyD+MAWyUSwGMAXSUR0Cx+EWdd3SsdX2UKGgGR7/IHGCI1tO3aAdLA2gIR0Cx+JNJJ5E/dX2UKGgGR7+v2TPjXFtLaAdLAmgIR0Cx+E+LNwBHdX2UKGgGR7/TNO/L1VYIaAdLA2gIR0Cx+C8Pe54GdX2UKGgGR7/QSeiBXjlxaAdLA2gIR0Cx+HdYGMXKdX2UKGgGR7+2OvMbFS88aAdLAmgIR0Cx+J7u2JBPdX2UKGgGR7+9S4vvjOs1aAdLAmgIR0Cx+FthJAdGdX2UKGgGR7/M4iHIp6QeaAdLA2gIR0Cx+EECeVcEdX2UKGgGR7/DaY/mknCwaAdLAmgIR0Cx+KoCIUJwdX2UKGgGR7/MYc/+sHSnaAdLA2gIR0Cx+IepS75EdX2UKGgGR7+GDg62fChwaAdLAWgIR0Cx+I0ZWJaadX2UKGgGR7/YY8uBczInaAdLBGgIR0Cx+HDafzz3dX2UKGgGR7/KH58BuGbkaAdLA2gIR0Cx+FBb0OEvdX2UKGgGR7/QU83dbgTAaAdLA2gIR0Cx+LpMtbs4dX2UKGgGR7/OA9V3ljmTaAdLA2gIR0Cx+JwUYbbUdX2UKGgGR7+8Swnpjc2zaAdLAmgIR0Cx+FpAt4A0dX2UKGgGR7++vQnhKlHjaAdLAmgIR0Cx+MTps41hdX2UKGgGR7/M9ECvHLidaAdLA2gIR0Cx+IFERaoudX2UKGgGR7/Bah6By0a7aAdLAmgIR0Cx+KbgTAWSdX2UKGgGR7/VtsvZh8YyaAdLA2gIR0Cx+NPwy6+WdX2UKGgGR7/KDcM3IdU9aAdLA2gIR0Cx+JCV0Lc9dX2UKGgGR7/fqTKT0QK8aAdLBGgIR0Cx+HAIhQnAdX2UKGgGR7/Tu3+dbxEwaAdLA2gIR0Cx+LgTqSowdX2UKGgGR7/CspXp4bCKaAdLAmgIR0Cx+OAyEcsEdX2UKGgGR7/Cmnfl6qsEaAdLAmgIR0Cx+MWEPDpDdX2UKGgGR7/J4A0bcXWOaAdLA2gIR0Cx+KSiZfD2dX2UKGgGR7/SXtBv73wkaAdLA2gIR0Cx+IRTwUg0dX2UKGgGR7/APEKmbb1zaAdLAmgIR0Cx+O5K8L8adX2UKGgGR7/DsHB1s+FDaAdLAmgIR0Cx+LCf16E8dX2UKGgGR7/CUO/cnE2paAdLAmgIR0Cx+JAsoUi7dX2UKGgGR7/EIY3vQWvbaAdLAmgIR0Cx+PnrdFfBdX2UKGgGR7/VSA6Mir1eaAdLBGgIR0Cx+N8DfWMCdX2UKGgGR7+3m1YyO7xvaAdLAmgIR0Cx+QZ6yB07dX2UKGgGR7/RksjFAE+xaAdLA2gIR0Cx+KMW9DhMdX2UKGgGR7/gMtCiRGMGaAdLBGgIR0Cx+MqAjIJadX2UKGgGR7/TD50r9VFQaAdLA2gIR0Cx+RqV6eGxdX2UKGgGR7/XLVWjoIOZaAdLBGgIR0Cx+Pg/TspodX2UKGgGR7/Eg2606YE4aAdLAmgIR0Cx+NctkFwDdX2UKGgGR7/NDDTBqKxcaAdLA2gIR0Cx+LbcoH9ndX2UKGgGR7+3kPtlZowmaAdLAmgIR0Cx+MMPe54GdX2UKGgGR7/TBUJfICEIaAdLA2gIR0Cx+SvTLGJfdX2UKGgGR7/IlzEJjUd8aAdLA2gIR0Cx+OgVKwpwdX2UKGgGR7/YyKvV3EAHaAdLBGgIR0Cx+Q/vWpZPdX2UKGgGR7+2ZSeiBXjmaAdLAmgIR0Cx+M4ppeu3dX2UKGgGR7+6fthNM496aAdLAmgIR0Cx+Palk6LgdX2UKGgGR7/KnUlRgqmTaAdLA2gIR0Cx+UB60IC2dX2UKGgGR7/GAEt/WlMzaAdLA2gIR0Cx+SOMZP2xdX2UKGgGR7/TG34Kx9ofaAdLA2gIR0Cx+OGqT8pDdX2UKGgGR7/F0ZFXq7iAaAdLA2gIR0Cx+Qlx82JjdX2UKGgGR7/HOvdM0xdqaAdLA2gIR0Cx+VIxxkupdX2UKGgGR7+5e/pMYdhiaAdLAmgIR0Cx+S/rGBFvdX2UKGgGR7/ASidrftQbaAdLAmgIR0Cx+RnC9AX3dX2UKGgGR7/SsZ5zHS4OaAdLA2gIR0Cx+Pls54nndX2UKGgGR7+7XpW3jMmnaAdLAmgIR0Cx+UC4z7/GdX2UKGgGR7+gJ1JUYKplaAdLAWgIR0Cx+R/atcOcdX2UKGgGR7/OYzi0fHPvaAdLA2gIR0Cx+WwmVqvedX2UKGgGR7+8Hnlnyup0aAdLAmgIR0Cx+S08eS0TdX2UKGgGR7/R5bQkX1rZaAdLA2gIR0Cx+QzMFEApdX2UKGgGR7/HO2RaHKwIaAdLA2gIR0Cx+VSPuG9IdX2UKGgGR7/Qu4gA6uGLaAdLA2gIR0Cx+X2CROk+dX2UKGgGR7++Ogg5imVJaAdLAmgIR0Cx+RpUgjhUdX2UKGgGR7/IhtcfNiYtaAdLA2gIR0Cx+WiXt0FKdX2UKGgGR7/TTfR/mT1TaAdLBGgIR0Cx+UfRJEpidX2UKGgGR7/MU47zTWoWaAdLA2gIR0Cx+TASWZ7YdX2UKGgGR7/aIQOFxn3+aAdLBGgIR0Cx+ZkiILw4dX2UKGgGR7+mAVfu1F6SaAdLAWgIR0Cx+TUjcEeRdX2UKGgGR7+ntlZowmE5aAdLAWgIR0Cx+aBKL877dX2UKGgGR7/UPEbYK6WgaAdLBGgIR0Cx+YVo+OfedX2UKGgGR7/gVbA1vVEvaAdLBGgIR0Cx+WSD/VAidX2UKGgGR7+/lkpZwGW2aAdLAmgIR0Cx+UQJXyRTdX2UKGgGR7/A6q814xDcaAdLAmgIR0Cx+a8houf3dX2UKGgGR7+1v3rUsnRcaAdLAmgIR0Cx+VG0NSZSdX2UKGgGR7/M0sOG0u14aAdLA2gIR0Cx+Zns5XEJdX2UKGgGR7/Kslsxfv4NaAdLA2gIR0Cx+cEaAFxGdX2UKGgGR7/XC0F8ohIOaAdLBGgIR0Cx+X3ARChOdX2UKGgGR7/Qjh1klNUPaAdLA2gIR0Cx+WW3jMmndX2UKGgGR7/H5YYBNmDlaAdLA2gIR0Cx+axw2l2vdX2UKGgGR7+zDye7L+xXaAdLAmgIR0Cx+YvEwWWQdX2UKGgGR7/JHc1wYLssaAdLA2gIR0Cx+dahHskZdX2UKGgGR7+0VTJhfBvaaAdLAmgIR0Cx+ZixqwhXdX2UKGgGR7/Mg/TspoboaAdLA2gIR0Cx+XgzguRLdX2UKGgGR7/NsTnJT2nLaAdLA2gIR0Cx+cB51Ng0dX2UKGgGR7/T24/eLvTgaAdLA2gIR0Cx+ehLCemOdX2UKGgGR7/OVQAMlTm5aAdLA2gIR0Cx+avtY0VKdX2UKGgGR7/S4VARkEs8aAdLA2gIR0Cx+YtxAB1cdX2UKGgGR7+xEc81XNkfaAdLAmgIR0Cx+fTJMg2ZdX2UKGgGR7/S4YJmdy1eaAdLA2gIR0Cx+dKVII4VdX2UKGgGR7+SblRxcVxkaAdLAWgIR0Cx+fyUC7sfdX2UKGgGR7/HKcurZJ05aAdLA2gIR0Cx+b60dBBzdX2UKGgGR7/N8v24/eLvaAdLA2gIR0Cx+ea/qPfbdX2UKGgGR7/XEG7jDKoyaAdLBGgIR0Cx+aVHz6JqdX2UKGgGR7/Tv4dp7CzkaAdLA2gIR0Cx+g8nAqNIdX2UKGgGR7+UnkT6BRQ8aAdLAWgIR0Cx+eztb9qDdX2UKGgGR7/NXmvGIbfhaAdLA2gIR0Cx+dKujh1ldX2UKGgGR7+3HLidat9yaAdLAmgIR0Cx+bI60Y0mdX2UKGgGR7/QUqhDgIhRaAdLA2gIR0Cx+iKJZW7wdX2UKGgGR7+5du5z5oGqaAdLAmgIR0Cx+b6oZQ54dX2UKGgGR7/VmseXAuZkaAdLBGgIR0Cx+gYnSfDldX2UKGgGR7/IAR02cawVaAdLA2gIR0Cx+eUl3QlbdX2UKGgGR7+mzyBkI5YHaAdLAWgIR0Cx+e2C/XXidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7fe985035f30>", "add": "<function DictReplayBuffer.add at 0x7fe985035fc0>", "sample": "<function DictReplayBuffer.sample at 0x7fe985036050>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7fe9850360e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe98502f000>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 2, "target_noise_clip": 0.5, "target_policy_noise": 0.2, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVYQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihCq6iqtKkxRJsUw0smFwXEbjANpbmOUihHNmFIyyXme2OSYmBDezBD2AHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVoAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCRoPn2UfZQoaBhoNWgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWgZaC5OaC9oMUc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}