Transformers
PyTorch
French
camembert
Inference Endpoints
Pavel Soriano commited on
Commit
a0bc241
·
1 Parent(s): 647da32

updated Readme

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -109,17 +109,17 @@ embeddings = model.forward(input_ids).pooler_output
109
  print(embeddings)
110
  ```
111
 
112
- And with `haystack` (using `transformers-3.3.1`), we use it as a retriever (**note that we reference it from a local path**):
113
  ```
114
- retriever = DensePassageRetriever(document_store=document_store,
115
- query_embedding_model="./etalab-ia/dpr-question_encoder-fr_qa-camembert",
116
- passage_embedding_model="./etalab-ia/dpr-ctx_encoder-fr_qa-camembert",
117
- use_gpu=True,
118
- embed_title=False,
119
- batch_size=16,
120
- use_fast_tokenizers=False
121
- )
122
  ```
 
123
  ## Acknowledgments
124
 
125
  This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224).
 
109
  print(embeddings)
110
  ```
111
 
112
+ And with `haystack`, we use it as a retriever:
113
  ```
114
+ retriever = DensePassageRetriever(
115
+ document_store=document_store,
116
+ query_embedding_model="etalab-ia/dpr-question_encoder-fr_qa-camembert",
117
+ passage_embedding_model="etalab-ia/dpr-ctx_encoder-fr_qa-camembert",
118
+ model_version=dpr_model_tag,
119
+ infer_tokenizer_classes=True,
120
+ )
 
121
  ```
122
+
123
  ## Acknowledgments
124
 
125
  This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224).