{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b693c1f1cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b693c1f1d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b693c1f1e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b693c1f1ea0>", "_build": "<function ActorCriticPolicy._build at 0x7b693c1f1f30>", "forward": "<function ActorCriticPolicy.forward at 0x7b693c1f1fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b693c1f2050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b693c1f20e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b693c1f2170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b693c1f2200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b693c1f2290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b693c1f2320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b69454a1cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692523143158195975, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrgsL2ahSo+HBeEPhUZeL4+cAc+qsfQOwAAAAAAAAAAAEDTuTCfqT+qBsg7TycAv9t4HzrUhyK9AAAAAAAAAACaMNi9FLyBuvyoJLPBg+uw6bYxOQVPxTMAAIA/AACAP0CJu73F4Mc+5ksHPlX4rr5ANue6aoaCOwAAAAAAAAAAs0VNvh8llj+EJ6++ejECv/GQOb6ur469AAAAAAAAAAAme5Q+IjAiP/GzAb5wRPi+hl/5PYbHJL4AAAAAAAAAAOO6gT5hq/o+MMt6vtmNrb4hJIo9tkAFvgAAAAAAAAAAc4I5vg1UCD7Ndlk+ztNRvjnGATzzXTY9AAAAAAAAAABzkDm+MOy0PgjVTj4W8K2+3BUUvZAemD0AAAAAAAAAAM02LzycvY0/5Z/zPNfcH7/Sypc71sGwPAAAAAAAAAAAgDxJPeZnpj9OvrY+u9sJv2ImUj0eRhY+AAAAAAAAAABm44q81+56u/brM73x0II97aIHvCg267sAAIA/AACAPwBA0bqJ0bQ/E5wlvnv0nD0nX/M6Yg0WPQAAAAAAAAAA7W1vPtTlVT8moMk86dMLv1VEvT5AgnK+AAAAAAAAAAAzhOe9Bda/PJqhqj3EcB++nSQguyqAlT0AAAAAAAAAAJNWF75pew28xkRpvNqrtro1oWU93Y2YOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOsm8mKIi2MAWyUS9CMAXSUR0CP//amoBJadX2UKGgGR0ByXGABkqc3aAdL6mgIR0CQACu5SWJKdX2UKGgGR0BwW2G9HtngaAdL9GgIR0CQAF9kjHGTdX2UKGgGR0BusAV0tAcDaAdL7mgIR0CQAH+NLlFMdX2UKGgGR0Bw2ivyLAHnaAdL/2gIR0CQAlIQe3hGdX2UKGgGR0Bwm5oZhrnDaAdNAwFoCEdAkALC7GvOhXV9lChoBkdAcy11qnFYMmgHS/1oCEdAkANxR64Ue3V9lChoBkdAce7bOu7pV2gHS+5oCEdAkAOqn3ta6nV9lChoBkdAcFB0mMOwxGgHTQEBaAhHQJADrYL9deJ1fZQoaAZHQHKi/DP4VRFoB0v/aAhHQJAD1YGMXJp1fZQoaAZHQHHr8TFl05loB00FAWgIR0CQBAh7mdRSdX2UKGgGR0BwczYQJ5VwaAdL2GgIR0CQBBu/k/8mdX2UKGgGR0ByMJY8uBczaAdNAQFoCEdAkARmoaUA1nV9lChoBkdAcbtc0tRNy2gHS91oCEdAkATwf2bobHV9lChoBkdAcM1Fl05lv2gHS95oCEdAkAVnrD63zHV9lChoBkdAbs40P6KtP2gHTQABaAhHQJAFkksz2vl1fZQoaAZHQHEU0v0yxiZoB0vcaAhHQJAHZ2KVII51fZQoaAZHQGNqxHXmNipoB03oA2gIR0CQB71EmY0EdX2UKGgGR0BuGfzYmLLqaAdL4mgIR0CQB/m7aqS6dX2UKGgGR0BwwvAaef7KaAdL4WgIR0CQCKsySFGodX2UKGgGR0BzS1Jd0JWvaAdL6mgIR0CQCRRG+bmVdX2UKGgGR0Bt2sS26TW5aAdL32gIR0CQCT68xsVMdX2UKGgGR0Bxrk2bXpW4aAdL8WgIR0CQCUIz3yqddX2UKGgGR0Bu/uoUBXCCaAdLyGgIR0CQCaFpwjt5dX2UKGgGR0By7EgaFVT8aAdL82gIR0CQCcREnb7CdX2UKGgGR0BxctREWqLkaAdLyWgIR0CQChrGipNsdX2UKGgGR0BlNiro4dZJaAdN6ANoCEdAkAo704BFNXV9lChoBkdAcjudjG1hLGgHS/poCEdAkApQJkXk53V9lChoBkdAcURoPkJa7mgHS89oCEdAkAp2jXWe6XV9lChoBkdAcvvhegL7XWgHTf8BaAhHQJAL/w5NoJ11fZQoaAZHQHHVvJiiItVoB0vXaAhHQJAMsrd30PJ1fZQoaAZHQHJID4DcM3JoB0v0aAhHQJANEYtQKrt1fZQoaAZHQHEoNQwblzVoB0voaAhHQJANW1qnFYN1fZQoaAZHQHFPLA+IM0BoB0vwaAhHQJAOR4Pf8/F1fZQoaAZHQHI5UpAlfJFoB0vZaAhHQJAO9LZi/fx1fZQoaAZHQHIImXTmW+poB0v4aAhHQJAPLfaYeDF1fZQoaAZHQHBk158jRlZoB0vvaAhHQJAPZQpF1CB1fZQoaAZHQG8lsfzSThZoB00CAWgIR0CQD3WZJCjUdX2UKGgGR0BuOoPEsJ6ZaAdL5mgIR0CQD9cDbJwLdX2UKGgGR0BwJOEXcgyNaAdL6WgIR0CQD/yWiUPhdX2UKGgGR0BwschllK9PaAdL7GgIR0CQECp4rz5HdX2UKGgGR0Bwz07GNrCWaAdL/GgIR0CQEDx4ptrLdX2UKGgGR0BiLFNBWxQjaAdN6ANoCEdAkBCjj3mFJ3V9lChoBkdAcJyN9ph4MWgHTQEBaAhHQJASBvo/zJ91fZQoaAZHQHD7pGe+VTtoB0veaAhHQJASXPQfIS11fZQoaAZHQG9Ea5Gz8gpoB0v6aAhHQJASqx7iQ1d1fZQoaAZHQG9ETiS7oStoB02jAmgIR0CQE8+5vtMPdX2UKGgGR0ByPD4fwI+oaAdNDgFoCEdAkBP6hL5AQnV9lChoBkdAcj8Rm9QGfWgHS+9oCEdAkBQfE4vN/3V9lChoBkdAcT0aIeo1k2gHS9loCEdAkBQvjn3cpXV9lChoBkdAcDfmFajesWgHS9toCEdAkBSbuUliSnV9lChoBkdAbT/JOFg2ImgHS+loCEdAkBTeglF+eHV9lChoBkdAcpBRdyDIzWgHS95oCEdAkBT5s0pEyHV9lChoBkdAcsV5DZ13dWgHTQ8BaAhHQJAVfEsJ6Y51fZQoaAZHQG82/xtpEhJoB00lAmgIR0CQFf2OAAhjdX2UKGgGR0ByyRdyDIzWaAdL/2gIR0CQFglAu7HydX2UKGgGR0BzW96ol2NeaAdL7WgIR0CQFg9RaX8gdX2UKGgGR0ByWycBltj1aAdNGgFoCEdAkBZao2n89HV9lChoBkdAcQ3kauOjqWgHTSsBaAhHQJAW1sXSBsh1fZQoaAZHQHA+kRradtloB0vzaAhHQJAXwbm2b5N1fZQoaAZHQG5hKtozvZ1oB0v3aAhHQJAYJ/NJOFh1fZQoaAZHQHBJOJ53TuxoB0veaAhHQJAYyHfuTid1fZQoaAZHQG0rMI3R5TtoB0v6aAhHQJAZkJtzjm11fZQoaAZHQHNOmsFMZgpoB00QAWgIR0CQGbdu5z5odX2UKGgGR0BzNSJXQtz0aAdNEwFoCEdAkBnv642CNHV9lChoBkdAcbZWVeKKpGgHS+toCEdAkBoSFGoaUHV9lChoBkdAc44IJqqOtGgHTQgBaAhHQJAaUsQNCqp1fZQoaAZHQG9EKHwgDA9oB011AWgIR0CQGnoXbdrPdX2UKGgGR0BtAavzOHFhaAdNEAFoCEdAkBq//rB0p3V9lChoBkdAbEwTwlSjxmgHS+poCEdAkBsEf1YhdXV9lChoBkdAbwTddE9dNWgHTQcBaAhHQJAbIzpHI6t1fZQoaAZHQHDN+PFNtZVoB00AAWgIR0CQG3elbeMydX2UKGgGR0BzLai35N48aAdNBgFoCEdAkBuQNLDhtXV9lChoBkdAbsvHggow22gHTRsBaAhHQJAcXxXnyNJ1fZQoaAZHQHESGJiy6c1oB00DAWgIR0CQHGTOgQHzdX2UKGgGR0Bwsq1twaR7aAdL9GgIR0CQHge/pMYedX2UKGgGR0BytXx2B8QaaAdL12gIR0CQHjoX9BKMdX2UKGgGR0BwQRBw++ueaAdL6mgIR0CQHou5z5oHdX2UKGgGR0BuPQkPczqKaAdL5mgIR0CQHtPNFBppdX2UKGgGR0BwxAjTrmheaAdL2WgIR0CQH58xKxs3dX2UKGgGR0BxR/0WdmQKaAdNAQFoCEdAkB/zXFtKqXV9lChoBkdAcHo76YVqOGgHTQABaAhHQJAgRvAGjbl1fZQoaAZHQHDY3OObRWtoB0v9aAhHQJAgbM6ij+J1fZQoaAZHQHGNjnvDxb1oB0vqaAhHQJAg5SydFv11fZQoaAZHQHLbJJ9RaX9oB0v9aAhHQJAhPMMZxaR1fZQoaAZHQHA/UBwMpgFoB0vyaAhHQJAhmy1NQCV1fZQoaAZHQHCOSVfNRm9oB0vnaAhHQJAib3L3bmF1fZQoaAZHQHLJjb8FY+1oB00RAWgIR0CQIpbrTpgUdX2UKGgGR0BwWNedCmdiaAdN7wFoCEdAkCQvo/zJ63V9lChoBkdAcsI5v99+gGgHS/FoCEdAkCVKDCgsb3V9lChoBkdAcNPnxaxHG2gHS+5oCEdAkCV3yEtdzHV9lChoBkdAcInK+BYms2gHS9hoCEdAkCWOqJdjXnV9lChoBkdAcY8Q+UyHmGgHS+9oCEdAkCXvzjFQ23V9lChoBkdAccWwyIpH7WgHTR4CaAhHQJAmQGC7K7t1fZQoaAZHQHGWx2GIsRRoB0vfaAhHQJAm5CE6DGt1fZQoaAZHQG9QcEFGG21oB0voaAhHQJAniXyAhB91fZQoaAZHQHL2ThYNiH9oB0vdaAhHQJAn4BtDUmV1fZQoaAZHQHAeIWcjJMhoB00GAWgIR0CQKNzXBguzdX2UKGgGR0BxHZwm3OObaAdNIQFoCEdAkCj8MI/qxHV9lChoBkdAc7Pd7OVxCWgHS+hoCEdAkClKJ/G2kXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |