ppo-LunarLander-v2 / config.json
AdiKompella's picture
Uploaded PPO LunarLander-v2 trained agent
94604e5
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8590e7280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8590e7310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8590e73a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8590e7430>", "_build": "<function ActorCriticPolicy._build at 0x7ff8590e74c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff8590e7550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8590e75e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff8590e7670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8590e7700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8590e7790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8590e7820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff8590e9090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671654203347089694, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5lDpxhke7H9+/u1LijTyT4YQ8TjR0vQAAgD8AAIA/mk/pvOA9Fj+fBQ69KjnHvgDlGL3y66y7AAAAAAAAAABzNSi+DMz7PmsZaj3wSIa+OoqovcYBuz0AAAAAAAAAAKAjcz6XkFs/EI9QPSBSsL4q+Us+8BZdvQAAAAAAAAAA1i5NvkogWz/bNv89CXatvlkEO70KjkU+AAAAAAAAAACagJs9u/+vP+bZ1z5d1Ye+cTKmPUJ0Vj4AAAAAAAAAAGbO9rvZ2aI/8s89vZ1B+74qDWS8ZKSrPAAAAAAAAAAAQG8qvhTYYj+B6Ci+DIXbvofFOb7/dbQ9AAAAAAAAAADNpNU7FKSZus8ILDr28dC4d66kOgBHO7kAAIA/AACAP5p43rwpTBy6JiTNuu8hRTl8ewa7O3MyOQAAgD8AAIA/JlSivag8ND8WVgK9ETi1vnSFP71Dp1W9AAAAAAAAAADmJWs9O8zqPSVOvrws/Ru+sq3kvEX7cDsAAAAAAAAAAEBu5L1xyZM/+Ji6vcXt074P3wa+A2hSPQAAAAAAAAAAzTsOvbaihD8IgLm9taPZvh72tb1J7ya9AAAAAAAAAABAX+E9y5j+Pl8Kh70DjJ2+Fw7KvRBu7LwAAAAAAAAAAGYq1DuSbbQ/JuMnPwCCcb33n/W7uB0YvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFceBVwvwckCUhpRSlIwBbJRNXgGMAXSUR0CYWICXhOxjdX2UKGgGaAloD0MIwr6dRMQHcUCUhpRSlGgVTW4BaBZHQJh1GozeoDR1fZQoaAZoCWgPQwimRuhnasJxQJSGlFKUaBVNRwFoFkdAmHVmSIP9UHV9lChoBmgJaA9DCAXEJFzIIXFAlIaUUpRoFU0IAWgWR0CYdYI0qH45dX2UKGgGaAloD0MIyNEcWXngbUCUhpRSlGgVTVYBaBZHQJh1tyGSIP91fZQoaAZoCWgPQwgSvvc3KPhyQJSGlFKUaBVNOwJoFkdAmHZcQI2OyXV9lChoBmgJaA9DCCxIMxbNHXFAlIaUUpRoFUv/aBZHQJh2i0CzTnd1fZQoaAZoCWgPQwiqukc213dvQJSGlFKUaBVNJAFoFkdAmHahxT850nV9lChoBmgJaA9DCOG2tvC8VW5AlIaUUpRoFU0vAWgWR0CYdqFL39JjdX2UKGgGaAloD0MIdAmH3iJ9cUCUhpRSlGgVTeMDaBZHQJh4CydFvyd1fZQoaAZoCWgPQwifOlYpfdtxQJSGlFKUaBVNeAFoFkdAmHhEALiMpHV9lChoBmgJaA9DCDZc5J7uA3JAlIaUUpRoFU0bAWgWR0CYeHmNR3vAdX2UKGgGaAloD0MIR+S7lLqFcUCUhpRSlGgVTY0BaBZHQJh5q1NQCS11fZQoaAZoCWgPQwhBRkCFI0BsQJSGlFKUaBVNPgFoFkdAmHoWipNsWXV9lChoBmgJaA9DCM3K9iEvOnFAlIaUUpRoFU0UAmgWR0CYewZntfG/dX2UKGgGaAloD0MIDk+vlGWvVUCUhpRSlGgVS+loFkdAmH8WKAJ9iXV9lChoBmgJaA9DCJ3Ul6Wdpm9AlIaUUpRoFU0XAWgWR0CYgB6xgRbsdX2UKGgGaAloD0MI51Hxf0fRb0CUhpRSlGgVTSYBaBZHQJiCJAE+xGF1fZQoaAZoCWgPQwjdYKjDClNwQJSGlFKUaBVNWgFoFkdAmINBVZLZjHV9lChoBmgJaA9DCGx2pPrOyG9AlIaUUpRoFUv5aBZHQJiEAfozN2V1fZQoaAZoCWgPQwh6qdiYlx1wQJSGlFKUaBVNMwFoFkdAmISmMn7YTXV9lChoBmgJaA9DCNU9srmqu3BAlIaUUpRoFU1gAWgWR0CYhRa5f+judX2UKGgGaAloD0MI2V92T16WcUCUhpRSlGgVTTUBaBZHQJiFUxWT5ft1fZQoaAZoCWgPQwgiOZm41QlzQJSGlFKUaBVNlgFoFkdAmIaxZlnRLXV9lChoBmgJaA9DCCQPRBYpM3FAlIaUUpRoFU0xAWgWR0CYhzc6/7BPdX2UKGgGaAloD0MIxy3m58bKcECUhpRSlGgVTTYBaBZHQJiIlS619fF1fZQoaAZoCWgPQwhwXwfO2VFyQJSGlFKUaBVNlQFoFkdAmIkqnaWX1XV9lChoBmgJaA9DCGISLuSRE2dAlIaUUpRoFU3oA2gWR0CYicNJvo/zdX2UKGgGaAloD0MICqAYWTKnVECUhpRSlGgVS9toFkdAmIzve1rqMXV9lChoBmgJaA9DCL/S+fAs20tAlIaUUpRoFUvRaBZHQJiNZCCz1K51fZQoaAZoCWgPQwiFsYUgh09yQJSGlFKUaBVL6WgWR0CYjgV4oqkNdX2UKGgGaAloD0MIJVtdTomwcECUhpRSlGgVTWwBaBZHQJiO0DGLk0d1fZQoaAZoCWgPQwh3TrNAO+pmQJSGlFKUaBVN6ANoFkdAmI+zPrv9cnV9lChoBmgJaA9DCDYDXJBtEHJAlIaUUpRoFU1PAWgWR0CYkRHvttygdX2UKGgGaAloD0MIh1ClZg8KcUCUhpRSlGgVTW4BaBZHQJiRduWKMvR1fZQoaAZoCWgPQwjryJHOgDxwQJSGlFKUaBVNQAFoFkdAmJQCJO32EnV9lChoBmgJaA9DCJj4o6jzGXJAlIaUUpRoFU0iAWgWR0CYlZtxMnJDdX2UKGgGaAloD0MIO/vKg3QZcUCUhpRSlGgVTTQBaBZHQJiVta7mMfl1fZQoaAZoCWgPQwhgyOpWD3twQJSGlFKUaBVNSwFoFkdAmJYTbnHNo3V9lChoBmgJaA9DCNY2xeNibHFAlIaUUpRoFU0GAmgWR0CYlnQbdadMdX2UKGgGaAloD0MIHVvPEI6CbkCUhpRSlGgVTQcBaBZHQJiYpltj0+V1fZQoaAZoCWgPQwhFD3wMVhttQJSGlFKUaBVNHQFoFkdAmJkaU7jkuHV9lChoBmgJaA9DCCJxj6WPanJAlIaUUpRoFU3GA2gWR0CYn5vQnhKldX2UKGgGaAloD0MIza/mAIFHcUCUhpRSlGgVTTUBaBZHQJig0QYk3S91fZQoaAZoCWgPQwjxDvCkBfNmQJSGlFKUaBVN6ANoFkdAmLn0ornTzHV9lChoBmgJaA9DCPQ2NjtSim9AlIaUUpRoFU2RAWgWR0CYug4QBgeBdX2UKGgGaAloD0MIb9dLU4R3bUCUhpRSlGgVS/hoFkdAmLq83VCoj3V9lChoBmgJaA9DCCpwsg3cHHJAlIaUUpRoFU22AWgWR0CYut61LJ0XdX2UKGgGaAloD0MIE2IuqZoUcECUhpRSlGgVTXUCaBZHQJi69ghKUV11fZQoaAZoCWgPQwjfp6rQQCVwQJSGlFKUaBVNLwFoFkdAmLsrxiG34XV9lChoBmgJaA9DCCZV201wbm5AlIaUUpRoFU0tAWgWR0CYvGD9fkWAdX2UKGgGaAloD0MIFqJD4MgrckCUhpRSlGgVTQ4BaBZHQJi9zOX3QD51fZQoaAZoCWgPQwjoiHyXEjtxQJSGlFKUaBVNWwFoFkdAmL4EWdmQKnV9lChoBmgJaA9DCKzKviuCiXBAlIaUUpRoFU3uAWgWR0CYvmYnfEXMdX2UKGgGaAloD0MIv9cQHJe/cECUhpRSlGgVTVsBaBZHQJi+nJwKjSJ1fZQoaAZoCWgPQwiS5o9p7dpxQJSGlFKUaBVN5wFoFkdAmL9m2w3YMHV9lChoBmgJaA9DCHJqZ5gaIXFAlIaUUpRoFU1UAWgWR0CYwDHMEA5rdX2UKGgGaAloD0MIg9pv7cSKc0CUhpRSlGgVTQEBaBZHQJjA86hg3Lp1fZQoaAZoCWgPQwh/3H75JBdyQJSGlFKUaBVNCAFoFkdAmMGtyYG+snV9lChoBmgJaA9DCJ9VZkprJ21AlIaUUpRoFU0aAWgWR0CYw4IiTt9hdX2UKGgGaAloD0MI2sh1U8p3TkCUhpRSlGgVS8toFkdAmMQ6ZtvXLHV9lChoBmgJaA9DCEt4Qq8/ZHBAlIaUUpRoFU0eAWgWR0CYxFdwNsnBdX2UKGgGaAloD0MIkgiNYONgcECUhpRSlGgVTSABaBZHQJjEgCfYjB51fZQoaAZoCWgPQwgeh8H8FV1vQJSGlFKUaBVNJQFoFkdAmMSBzJZGKHV9lChoBmgJaA9DCJp3nKKjpm1AlIaUUpRoFU0eAWgWR0CYxKEcsDnvdX2UKGgGaAloD0MI+yR32MSwYUCUhpRSlGgVTegDaBZHQJjGLCUHIIZ1fZQoaAZoCWgPQwjZ6Jyfot9wQJSGlFKUaBVNSAFoFkdAmMcjWXkYGnV9lChoBmgJaA9DCAYujzUjv0BAlIaUUpRoFUv7aBZHQJjHn9pAUtZ1fZQoaAZoCWgPQwjaVrPOuFVyQJSGlFKUaBVNoAFoFkdAmMgJjlPrOnV9lChoBmgJaA9DCKysbYqHKnFAlIaUUpRoFU1EAWgWR0CYyIoEjgQ6dX2UKGgGaAloD0MIPWGJBxQmb0CUhpRSlGgVTRIBaBZHQJjJXZYgaFV1fZQoaAZoCWgPQwh1IVZ/BEBvQJSGlFKUaBVNUwFoFkdAmMlu5jH4oXV9lChoBmgJaA9DCLvUCP2MpHBAlIaUUpRoFU1ZAWgWR0CYydDUExIrdX2UKGgGaAloD0MI21IHeX1EcUCUhpRSlGgVTTIBaBZHQJjL2XqqwQl1fZQoaAZoCWgPQwjt1Fxu8IdwQJSGlFKUaBVNYwFoFkdAmMzHpjc2znV9lChoBmgJaA9DCK358ZeW03FAlIaUUpRoFU0vAWgWR0CYzbTQmeDndX2UKGgGaAloD0MInnk57D7acECUhpRSlGgVTSoBaBZHQJjOdS3solV1fZQoaAZoCWgPQwi6g9iZQvtwQJSGlFKUaBVNKQFoFkdAmM6QY1pCbHV9lChoBmgJaA9DCFbXoZrSg3BAlIaUUpRoFU0JAWgWR0CYzzB7u2JBdX2UKGgGaAloD0MIMQdBR6uvcECUhpRSlGgVTUEBaBZHQJjPT5mAbyZ1fZQoaAZoCWgPQwgQXOUJhAlvQJSGlFKUaBVNZQFoFkdAmNBI2sJY1nV9lChoBmgJaA9DCM0DWORXSnBAlIaUUpRoFU0tAWgWR0CY0W0pVjqfdX2UKGgGaAloD0MITZ8dcF36cECUhpRSlGgVTSsBaBZHQJjSUUfxMFl1fZQoaAZoCWgPQwi6aTNOg2NyQJSGlFKUaBVNBwFoFkdAmNJ+rZJ04nV9lChoBmgJaA9DCCEDeXY51HJAlIaUUpRoFU07AWgWR0CY02XYlIEsdX2UKGgGaAloD0MI4PdvXpzocUCUhpRSlGgVTR0BaBZHQJjTuWyC4Bp1fZQoaAZoCWgPQwh+Uu3TsaRwQJSGlFKUaBVNLwFoFkdAmNPR/qgRLHV9lChoBmgJaA9DCImyt5Rz1nJAlIaUUpRoFU35AWgWR0CY1ZbTtsvadX2UKGgGaAloD0MI7IfYYCHKcECUhpRSlGgVTT0BaBZHQJjYWbKA8Sx1fZQoaAZoCWgPQwgSUOEI0p5zQJSGlFKUaBVNHAFoFkdAmNkmZJCjUXV9lChoBmgJaA9DCG+5+rFJJ3FAlIaUUpRoFU1HAWgWR0CY2gX9R77bdX2UKGgGaAloD0MI5BHcSJk1cUCUhpRSlGgVTSYBaBZHQJjaf8DSw4d1fZQoaAZoCWgPQwi3m+Cbpt5wQJSGlFKUaBVNFgJoFkdAmNsQV0tAcHV9lChoBmgJaA9DCP9cNGQ8b3FAlIaUUpRoFU0dAWgWR0CY21jL0SRKdX2UKGgGaAloD0MI6Ugu/+GucUCUhpRSlGgVTaUBaBZHQJjbzvDxb0R1fZQoaAZoCWgPQwiO5zOgXrlxQJSGlFKUaBVNXgFoFkdAmNva2F36h3V9lChoBmgJaA9DCLYtymyQYm9AlIaUUpRoFU0dAWgWR0CY3H1kUbkwdX2UKGgGaAloD0MIpbvrbEiHbkCUhpRSlGgVTRoBaBZHQJjdQPNFBpp1fZQoaAZoCWgPQwjOUx1ys0RxQJSGlFKUaBVNGAFoFkdAmN1brTpgTnV9lChoBmgJaA9DCF8pyxDHuHFAlIaUUpRoFU2AAWgWR0CY3b9qk/KRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}