Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# how to use
|
2 |
+
|
3 |
+
```python
|
4 |
+
# !pip install transformers
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from huggingface_hub import PyTorchModelHubMixin
|
8 |
+
|
9 |
+
class Net(nn.Module,PyTorchModelHubMixin):
|
10 |
+
def __init__(self):
|
11 |
+
super().__init__()
|
12 |
+
self.conv1 = nn.Conv2d(3, 6, 5)
|
13 |
+
self.pool = nn.MaxPool2d(2, 2)
|
14 |
+
self.conv2 = nn.Conv2d(6, 16, 5)
|
15 |
+
self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
16 |
+
self.fc2 = nn.Linear(120, 84)
|
17 |
+
self.fc3 = nn.Linear(84, 10)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x = self.pool(F.relu(self.conv1(x)))
|
21 |
+
x = self.pool(F.relu(self.conv2(x)))
|
22 |
+
x = torch.flatten(x, 1) # flatten all dimensions except batch
|
23 |
+
x = F.relu(self.fc1(x))
|
24 |
+
x = F.relu(self.fc2(x))
|
25 |
+
x = self.fc3(x)
|
26 |
+
return x
|
27 |
+
|
28 |
+
net = Net.from_pretrained('Adapting/cifar10-image-classification')
|
29 |
+
|
30 |
+
```
|
31 |
+
|
32 |
+
example codes for testing the model: [link](https://colab.research.google.com/drive/10xjbgSzw-U1Y4vCot5aqqdOi7AhmIkC3?usp=sharing)
|