lenglaender commited on
Commit
fc2848f
·
verified ·
1 Parent(s): b5db3e1

Upload model

Browse files
Files changed (3) hide show
  1. README.md +74 -0
  2. adapter_config.json +40 -0
  3. pytorch_adapter.bin +3 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - xlm-roberta
4
+ - adapter-transformers
5
+ datasets:
6
+ - UKPLab/m2qa
7
+ ---
8
+
9
+ # M2QA Adapter: Domain Adapter for MAD-X+Domain Setup
10
+ This adapter is part of the M2QA publication to achieve language and domain transfer via adapters.
11
+ 📃 Paper: [TODO](TODO)
12
+ 🏗️ GitHub repo: [https://github.com/UKPLab/m2qa](https://github.com/UKPLab/m2qa)
13
+ 💾 Hugging Face Dataset: [https://huggingface.co/UKPLab/m2qa](https://huggingface.co/UKPLab/m2qa)
14
+
15
+ **Important:** This adapter only works together with the MAD-X language adapters and the M2QA QA head adapter.
16
+
17
+ This [adapter](https://adapterhub.ml) for the `xlm-roberta-base` model that was trained using the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. For detailed training details see our paper or GitHub repository: [https://github.com/UKPLab/m2qa](https://github.com/UKPLab/m2qa). You can find the evaluation results for this adapter on the M2QA dataset in the GitHub repo and in the paper.
18
+
19
+
20
+ ## Usage
21
+
22
+ First, install `adapters`:
23
+
24
+ ```
25
+ pip install -U adapters
26
+ ```
27
+
28
+ Now, the adapter can be loaded and activated like this:
29
+
30
+ ```python
31
+ from adapters import AutoAdapterModel
32
+ from adapters.composition import Stack
33
+
34
+ model = AutoAdapterModel.from_pretrained("xlm-roberta-base")
35
+
36
+ # 1. Load language adapter
37
+ language_adapter_name = model.load_adapter("de/wiki@ukp") # MAD-X+Domain uses the MAD-X language adapter
38
+
39
+ # 2. Load domain adapter
40
+ domain_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-domain-product-reviews")
41
+
42
+ # 3. Load QA head adapter
43
+ qa_adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-domain-qa-head")
44
+
45
+ # 4. Activate them via the adapter stack
46
+ model.active_adapters = Stack(language_adapter_name, domain_adapter_name, qa_adapter_name)
47
+ ```
48
+
49
+
50
+ See our repository for more information: See https://github.com/UKPLab/m2qa/tree/main/Experiments/mad-x-domain
51
+
52
+
53
+ ## Contact
54
+ Leon Engländer:
55
+ - [HuggingFace Profile](https://huggingface.co/lenglaender)
56
+ - [GitHub](https://github.com/lenglaender)
57
+ - [Twitter](https://x.com/LeonEnglaender)
58
+
59
+ ## Citation
60
+
61
+ ```
62
+ @article{englaender-etal-2024-m2qa,
63
+ title="M2QA: Multi-domain Multilingual Question Answering",
64
+ author={Engl{"a}nder, Leon and
65
+ Sterz, Hannah and
66
+ Poth, Clifton and
67
+ Pfeiffer, Jonas and
68
+ Kuznetsov, Ilia and
69
+ Gurevych, Iryna},
70
+ journal={arXiv preprint},
71
+ url={TODO}
72
+ year="2024"
73
+ }
74
+ ```
adapter_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "adapter_residual_before_ln": false,
4
+ "cross_adapter": false,
5
+ "factorized_phm_W": true,
6
+ "factorized_phm_rule": false,
7
+ "hypercomplex_nonlinearity": "glorot-uniform",
8
+ "init_weights": "bert",
9
+ "inv_adapter": null,
10
+ "inv_adapter_reduction_factor": null,
11
+ "is_parallel": false,
12
+ "learn_phm": true,
13
+ "leave_out": [],
14
+ "ln_after": false,
15
+ "ln_before": false,
16
+ "mh_adapter": false,
17
+ "non_linearity": "relu",
18
+ "original_ln_after": true,
19
+ "original_ln_before": true,
20
+ "output_adapter": true,
21
+ "phm_bias": true,
22
+ "phm_c_init": "normal",
23
+ "phm_dim": 4,
24
+ "phm_init_range": 0.0001,
25
+ "phm_layer": false,
26
+ "phm_rank": 1,
27
+ "reduction_factor": 2,
28
+ "residual_before_ln": true,
29
+ "scaling": 1.0,
30
+ "shared_W_phm": false,
31
+ "shared_phm_rule": true,
32
+ "use_gating": false
33
+ },
34
+ "hidden_size": 768,
35
+ "model_class": "XLMRobertaAdapterModel",
36
+ "model_name": "xlm-roberta-base",
37
+ "model_type": "xlm-roberta",
38
+ "name": "mad-x+domain product_reviews",
39
+ "version": "3.2.1"
40
+ }
pytorch_adapter.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92810a548b1d5a972cdb46d31fb47ca6927ffb4d9345cd30776e2d2f17e3a1bd
3
+ size 28384421