calpt commited on
Commit
d743104
·
1 Parent(s): 1833911

Initial version.

Browse files
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - bert
4
+ - adapterhub:semtag/pmb
5
+ - adapter-transformers
6
+ language:
7
+ - en
8
+ ---
9
+
10
+ # Adapter `AdapterHub/bert-base-uncased-pf-pmb_sem_tagging` for bert-base-uncased
11
+
12
+ An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [semtag/pmb](https://adapterhub.ml/explore/semtag/pmb/) dataset and includes a prediction head for tagging.
13
+
14
+ This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
15
+
16
+ ## Usage
17
+
18
+ First, install `adapter-transformers`:
19
+
20
+ ```
21
+ pip install -U adapter-transformers
22
+ ```
23
+ _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
24
+
25
+ Now, the adapter can be loaded and activated like this:
26
+
27
+ ```python
28
+ from transformers import AutoModelWithHeads
29
+
30
+ model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
31
+ adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-pmb_sem_tagging", source="hf")
32
+ model.active_adapters = adapter_name
33
+ ```
34
+
35
+ ## Architecture & Training
36
+
37
+ The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
38
+ In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
39
+
40
+
41
+ ## Evaluation results
42
+
43
+ Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
44
+
45
+ ## Citation
46
+
47
+ If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
48
+
49
+ ```bibtex
50
+ @inproceedings{poth-etal-2021-what-to-pre-train-on,
51
+ title={What to Pre-Train on? Efficient Intermediate Task Selection},
52
+ author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
53
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
54
+ month = nov,
55
+ year = "2021",
56
+ address = "Online",
57
+ publisher = "Association for Computational Linguistics",
58
+ url = "https://arxiv.org/abs/2104.08247",
59
+ pages = "to appear",
60
+ }
61
+ ```
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "adapter_residual_before_ln": false,
4
+ "cross_adapter": false,
5
+ "inv_adapter": null,
6
+ "inv_adapter_reduction_factor": null,
7
+ "leave_out": [],
8
+ "ln_after": false,
9
+ "ln_before": false,
10
+ "mh_adapter": false,
11
+ "non_linearity": "relu",
12
+ "original_ln_after": true,
13
+ "original_ln_before": true,
14
+ "output_adapter": true,
15
+ "reduction_factor": 16,
16
+ "residual_before_ln": true
17
+ },
18
+ "hidden_size": 768,
19
+ "model_class": "BertModelWithHeads",
20
+ "model_name": "bert-base-uncased",
21
+ "model_type": "bert",
22
+ "name": "pmb_sem_tagging"
23
+ }
head_config.json ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "activation_function": "tanh",
4
+ "head_type": "tagging",
5
+ "label2id": {
6
+ "ALT": 0,
7
+ "AND": 1,
8
+ "APX": 2,
9
+ "ART": 3,
10
+ "BOT": 4,
11
+ "BUT": 5,
12
+ "CLO": 6,
13
+ "COL": 7,
14
+ "COM": 8,
15
+ "CON": 9,
16
+ "COO": 10,
17
+ "CTC": 11,
18
+ "DEC": 12,
19
+ "DEF": 13,
20
+ "DEG": 14,
21
+ "DIS": 15,
22
+ "DOM": 16,
23
+ "DOW": 17,
24
+ "DST": 18,
25
+ "DXP": 19,
26
+ "DXT": 20,
27
+ "EFS": 21,
28
+ "EMP": 22,
29
+ "ENS": 23,
30
+ "EPS": 24,
31
+ "EQU": 25,
32
+ "EVE": 26,
33
+ "EXG": 27,
34
+ "EXS": 28,
35
+ "EXT": 29,
36
+ "FUT": 30,
37
+ "GEO": 31,
38
+ "GPE": 32,
39
+ "GPO": 33,
40
+ "GRE": 34,
41
+ "GRP": 35,
42
+ "HAP": 36,
43
+ "HAS": 37,
44
+ "HES": 38,
45
+ "IMP": 39,
46
+ "INT": 40,
47
+ "IST": 41,
48
+ "ITJ": 42,
49
+ "LES": 43,
50
+ "LIT": 44,
51
+ "MOR": 45,
52
+ "MOY": 46,
53
+ "NAM": 47,
54
+ "NEC": 48,
55
+ "NIL": 49,
56
+ "NOT": 50,
57
+ "NOW": 51,
58
+ "NTH": 52,
59
+ "ORD": 53,
60
+ "ORG": 54,
61
+ "PER": 55,
62
+ "PFT": 56,
63
+ "POS": 57,
64
+ "PRG": 58,
65
+ "PRI": 59,
66
+ "PRO": 60,
67
+ "PRX": 61,
68
+ "PST": 62,
69
+ "QUC": 63,
70
+ "QUE": 64,
71
+ "QUV": 65,
72
+ "REF": 66,
73
+ "REL": 67,
74
+ "ROL": 68,
75
+ "SCO": 69,
76
+ "SST": 70,
77
+ "SUB": 71,
78
+ "TIM": 72,
79
+ "TNS": 73,
80
+ "TOP": 74,
81
+ "UNK": 75,
82
+ "UOM": 76,
83
+ "XCL": 77,
84
+ "YOC": 78
85
+ },
86
+ "layers": 1,
87
+ "num_labels": 79
88
+ },
89
+ "hidden_size": 768,
90
+ "model_class": "BertModelWithHeads",
91
+ "model_name": "bert-base-uncased",
92
+ "model_type": "bert",
93
+ "name": "pmb_sem_tagging"
94
+ }
pytorch_adapter.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a2d2049915b93074f4f3523a6db1edac3c1c79bdd2cd6cc9f48d9e8b9ea4d3e
3
+ size 3595119
pytorch_model_head.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0865ac8cd361fea0da3a3c82f8fccede95f2203da8e0ea919f9ea3b23870a61a
3
+ size 244023