Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,249 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
# MobiusNet
|
| 5 |
+
|
| 6 |
+
A vision architecture built on continuous topological principles, replacing traditional activations with wave-based interference gating.
|
| 7 |
+
|
| 8 |
+
## Overview
|
| 9 |
+
|
| 10 |
+
MobiusNet introduces a fundamentally different approach to neural network design:
|
| 11 |
+
|
| 12 |
+
- **MobiusLens**: Wave superposition as a gating mechanism, replacing standard activations (ReLU, GELU)
|
| 13 |
+
- **Thirds Mask**: Cantor-inspired fractal channel suppression for regularization
|
| 14 |
+
- **Continuous Topology**: Layers sample a continuous manifold via the `t` parameter, not discrete units
|
| 15 |
+
- **Twist Rotations**: Smooth rotation through representation space across network depth
|
| 16 |
+
|
| 17 |
+
## Performance
|
| 18 |
+
|
| 19 |
+
| Model | Params | GFLOPs | Tiny ImageNet |
|
| 20 |
+
|-------|--------|--------|---------------|
|
| 21 |
+
| ResNet-18 | 11M | 1.8 | 50-55% |
|
| 22 |
+
| MobiusNet-M | 14.6M | 2.69 | 55.4% |
|
| 23 |
+
| MobiusNet-Base | 33.7M | 2.69 | TBD |
|
| 24 |
+
|
| 25 |
+
## Installation
|
| 26 |
+
|
| 27 |
+
```bash
|
| 28 |
+
pip install torch torchvision safetensors huggingface_hub tensorboard tqdm
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
## Quick Start
|
| 32 |
+
|
| 33 |
+
### Training
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
from mobius_trainer_full import train_tiny_imagenet
|
| 37 |
+
|
| 38 |
+
model, best_acc = train_tiny_imagenet(
|
| 39 |
+
preset='mobius_base',
|
| 40 |
+
epochs=200,
|
| 41 |
+
lr=3e-4,
|
| 42 |
+
batch_size=128,
|
| 43 |
+
use_integrator=True,
|
| 44 |
+
data_dir='./data/tiny-imagenet-200',
|
| 45 |
+
output_dir='./outputs',
|
| 46 |
+
hf_repo='AbstractPhil/mobiusnet',
|
| 47 |
+
save_every_n_epochs=10,
|
| 48 |
+
upload_every_n_epochs=10,
|
| 49 |
+
)
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Continue from Checkpoint
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
# From local directory
|
| 56 |
+
model, best_acc = train_tiny_imagenet(
|
| 57 |
+
preset='mobius_base',
|
| 58 |
+
epochs=200,
|
| 59 |
+
continue_from="./outputs/checkpoints/mobius_base_tiny_imagenet/20240101_120000",
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# From HuggingFace (auto-downloads)
|
| 63 |
+
model, best_acc = train_tiny_imagenet(
|
| 64 |
+
preset='mobius_base',
|
| 65 |
+
epochs=200,
|
| 66 |
+
continue_from="checkpoints/mobius_base_tiny_imagenet/20240101_120000",
|
| 67 |
+
)
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Inference
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
from safetensors.torch import load_file
|
| 74 |
+
from mobius_trainer_full import MobiusNet, PRESETS
|
| 75 |
+
|
| 76 |
+
# Load model
|
| 77 |
+
config = PRESETS['mobius_base']
|
| 78 |
+
model = MobiusNet(num_classes=200, use_integrator=True, **config)
|
| 79 |
+
state_dict = load_file("best_model.safetensors")
|
| 80 |
+
model.load_state_dict(state_dict)
|
| 81 |
+
model.eval()
|
| 82 |
+
|
| 83 |
+
# Inference
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
logits = model(image_tensor)
|
| 86 |
+
pred = logits.argmax(1)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
## Model Presets
|
| 90 |
+
|
| 91 |
+
| Preset | Channels | Depths | ~Params |
|
| 92 |
+
|--------|----------|--------|---------|
|
| 93 |
+
| `mobius_tiny_s` | (64, 128, 256) | (2, 2, 2) | 500K |
|
| 94 |
+
| `mobius_tiny_m` | (64, 128, 256, 512, 768) | (2, 2, 4, 2, 2) | 11M |
|
| 95 |
+
| `mobius_tiny_l` | (96, 192, 384, 768) | (3, 3, 3, 3) | 8M |
|
| 96 |
+
| `mobius_base` | (128, 256, 512, 768, 1024) | (2, 2, 2, 2, 2) | 33.7M |
|
| 97 |
+
|
| 98 |
+
## Architecture
|
| 99 |
+
|
| 100 |
+
```
|
| 101 |
+
Input
|
| 102 |
+
β
|
| 103 |
+
βΌ
|
| 104 |
+
βββββββββββββββββββββββββββββββββββ
|
| 105 |
+
β Stem (Conv β BN) β
|
| 106 |
+
βββββββββββββββββββββββββββββββββββ
|
| 107 |
+
β
|
| 108 |
+
βΌ
|
| 109 |
+
βββββββββββββββββββββββββββββββββββ
|
| 110 |
+
β Stage 1-N β
|
| 111 |
+
β βββββββββββββββββββββββββββββββ β
|
| 112 |
+
β β MobiusConvBlock (Γdepth) β β
|
| 113 |
+
β β ββ Depthwise-Sep Conv β β
|
| 114 |
+
β β ββ BatchNorm β β
|
| 115 |
+
β β ββ MobiusLens (wave gate) β β
|
| 116 |
+
β β ββ Thirds Mask β β
|
| 117 |
+
β β ββ Learned Residual β β
|
| 118 |
+
β βββββββββββββββββββββββββββββββ β
|
| 119 |
+
β Downsample (stride-2 conv) β
|
| 120 |
+
βββββββββββββββββββββββββββββββββββ
|
| 121 |
+
β
|
| 122 |
+
βΌ
|
| 123 |
+
βββββββββββββββββββββββββββββββββββ
|
| 124 |
+
β Integrator (Conv β BN β GELU) β β Task collapse
|
| 125 |
+
βββββββββββββββββββββββββββββββββββ
|
| 126 |
+
β
|
| 127 |
+
βΌ
|
| 128 |
+
βββββββββββββββββββββββββββββββββββ
|
| 129 |
+
β Pool β Linear β Classes β
|
| 130 |
+
βββββββββββββββββββββββββββββββββββ
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
## Core Components
|
| 134 |
+
|
| 135 |
+
### MobiusLens
|
| 136 |
+
|
| 137 |
+
Wave-based gating mechanism with three interference paths:
|
| 138 |
+
|
| 139 |
+
```python
|
| 140 |
+
L = wave(phase_l, drift_l) # Left path (+1 drift)
|
| 141 |
+
M = wave(phase_m, drift_m) # Middle path (0 drift, ghost)
|
| 142 |
+
R = wave(phase_r, drift_r) # Right path (-1 drift)
|
| 143 |
+
|
| 144 |
+
# Interference
|
| 145 |
+
xor_comp = |L + R - 2*L*R| # Differentiable XOR
|
| 146 |
+
and_comp = L * R # Differentiable AND
|
| 147 |
+
|
| 148 |
+
# Gating
|
| 149 |
+
gate = weighted_sum(L, M, R) * interference_blend
|
| 150 |
+
output = input * sigmoid(layernorm(gate))
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
The middle path (M) acts as a "ghost" β present but diminished β maintaining gradient continuity while biasing information flow toward L/R edges (Cantor-like structure).
|
| 154 |
+
|
| 155 |
+
### Thirds Mask
|
| 156 |
+
|
| 157 |
+
Rotating channel suppression inspired by Cantor set construction:
|
| 158 |
+
|
| 159 |
+
```
|
| 160 |
+
Layer 0: suppress channels [0:C/3]
|
| 161 |
+
Layer 1: suppress channels [C/3:2C/3]
|
| 162 |
+
Layer 2: suppress channels [2C/3:C]
|
| 163 |
+
Layer 3: back to [0:C/3]
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
Forces redundancy and prevents co-adaptation across channel groups.
|
| 167 |
+
|
| 168 |
+
### Continuous Topology
|
| 169 |
+
|
| 170 |
+
Each layer samples a continuous manifold:
|
| 171 |
+
|
| 172 |
+
```python
|
| 173 |
+
t = layer_idx / (total_layers - 1) # 0 β 1
|
| 174 |
+
|
| 175 |
+
twist_in_angle = t * Ο
|
| 176 |
+
twist_out_angle = -t * Ο
|
| 177 |
+
scales = scale_range[0] + t * scale_span
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
Adding layers = finer sampling of the same underlying structure.
|
| 181 |
+
|
| 182 |
+
## Checkpoints
|
| 183 |
+
|
| 184 |
+
Saved to: `checkpoints/{variant}_{dataset}/{timestamp}/`
|
| 185 |
+
|
| 186 |
+
```
|
| 187 |
+
βββ config.json
|
| 188 |
+
βββ best_accuracy.json
|
| 189 |
+
βββ final_accuracy.json
|
| 190 |
+
βββ checkpoints/
|
| 191 |
+
β βββ checkpoint_epoch_0010.pt
|
| 192 |
+
β βββ checkpoint_epoch_0010.safetensors
|
| 193 |
+
β βββ best_model.pt
|
| 194 |
+
β βββ best_model.safetensors
|
| 195 |
+
β βββ final_model.pt
|
| 196 |
+
β βββ final_model.safetensors
|
| 197 |
+
βββ tensorboard/
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
## TensorBoard
|
| 201 |
+
|
| 202 |
+
Monitor training:
|
| 203 |
+
|
| 204 |
+
```bash
|
| 205 |
+
tensorboard --logdir ./outputs/checkpoints
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
Tracks:
|
| 209 |
+
- Loss, train/val accuracy
|
| 210 |
+
- Per-layer lens parameters (omega, alpha, twist angles, L/M/R weights)
|
| 211 |
+
- Residual weights
|
| 212 |
+
- Weight histograms
|
| 213 |
+
|
| 214 |
+
## Data Setup
|
| 215 |
+
|
| 216 |
+
### Tiny ImageNet
|
| 217 |
+
|
| 218 |
+
```bash
|
| 219 |
+
wget http://cs231n.stanford.edu/tiny-imagenet-200.zip
|
| 220 |
+
unzip tiny-imagenet-200.zip -d ./data/
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
## HuggingFace Integration
|
| 224 |
+
|
| 225 |
+
Checkpoints auto-upload to HuggingFace Hub:
|
| 226 |
+
|
| 227 |
+
```python
|
| 228 |
+
# Set token in Colab
|
| 229 |
+
from google.colab import userdata
|
| 230 |
+
token = userdata.get('HF_TOKEN')
|
| 231 |
+
|
| 232 |
+
# Or environment variable
|
| 233 |
+
export HF_TOKEN=your_token_here
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
## License
|
| 237 |
+
|
| 238 |
+
MIT
|
| 239 |
+
|
| 240 |
+
## Citation
|
| 241 |
+
|
| 242 |
+
```bibtex
|
| 243 |
+
@misc{mobiusnet2024,
|
| 244 |
+
title={MobiusNet: Wave-Based Topological Vision Architecture},
|
| 245 |
+
author={AbstractPhil},
|
| 246 |
+
year={2024},
|
| 247 |
+
url={https://huggingface.co/AbstractPhil/mobiusnet}
|
| 248 |
+
}
|
| 249 |
+
```
|