Update trainer.py
Browse files- trainer.py +705 -135
trainer.py
CHANGED
|
@@ -1,26 +1,46 @@
|
|
| 1 |
"""
|
| 2 |
-
MobiusNet
|
| 3 |
-
|
| 4 |
-
Properly handles variable stage counts.
|
| 5 |
-
|
| 6 |
-
Author: AbstractPhil
|
| 7 |
-
https://huggingface.co/AbstractPhil/mobiusnet
|
| 8 |
-
License: Apache 2.0
|
| 9 |
"""
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
import math
|
|
|
|
| 12 |
import torch
|
| 13 |
import torch.nn as nn
|
| 14 |
import torch.nn.functional as F
|
| 15 |
from torch import Tensor
|
| 16 |
-
from typing import Tuple
|
| 17 |
from torchvision import datasets, transforms
|
| 18 |
from torch.utils.data import DataLoader
|
|
|
|
| 19 |
from tqdm.auto import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 22 |
print(f"Device: {device}")
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# ============================================================================
|
| 26 |
# MÖBIUS LENS
|
|
@@ -36,6 +56,9 @@ class MobiusLens(nn.Module):
|
|
| 36 |
):
|
| 37 |
super().__init__()
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
self.t = layer_idx / max(total_layers - 1, 1)
|
| 40 |
|
| 41 |
scale_span = scale_range[1] - scale_range[0]
|
|
@@ -45,12 +68,10 @@ class MobiusLens(nn.Module):
|
|
| 45 |
|
| 46 |
self.register_buffer('scales', torch.tensor([scale_low, scale_high]))
|
| 47 |
|
| 48 |
-
# TWIST IN
|
| 49 |
self.twist_in_angle = nn.Parameter(torch.tensor(self.t * math.pi))
|
| 50 |
self.twist_in_proj = nn.Linear(dim, dim, bias=False)
|
| 51 |
nn.init.orthogonal_(self.twist_in_proj.weight)
|
| 52 |
|
| 53 |
-
# CENTER LENS
|
| 54 |
self.omega = nn.Parameter(torch.tensor(math.pi))
|
| 55 |
self.alpha = nn.Parameter(torch.tensor(1.5))
|
| 56 |
|
|
@@ -64,7 +85,8 @@ class MobiusLens(nn.Module):
|
|
| 64 |
self.accum_weights = nn.Parameter(torch.tensor([0.4, 0.2, 0.4]))
|
| 65 |
self.xor_weight = nn.Parameter(torch.tensor(0.7))
|
| 66 |
|
| 67 |
-
|
|
|
|
| 68 |
self.twist_out_angle = nn.Parameter(torch.tensor(-self.t * math.pi))
|
| 69 |
self.twist_out_proj = nn.Linear(dim, dim, bias=False)
|
| 70 |
nn.init.orthogonal_(self.twist_out_proj.weight)
|
|
@@ -99,9 +121,9 @@ class MobiusLens(nn.Module):
|
|
| 99 |
|
| 100 |
gate = w[0] * L + w[1] * M + w[2] * R
|
| 101 |
gate = gate * (0.5 + 0.5 * lr)
|
| 102 |
-
gate =
|
| 103 |
|
| 104 |
-
return x * gate
|
| 105 |
|
| 106 |
def _twist_out(self, x: Tensor) -> Tensor:
|
| 107 |
cos_t = torch.cos(self.twist_out_angle)
|
|
@@ -110,6 +132,19 @@ class MobiusLens(nn.Module):
|
|
| 110 |
|
| 111 |
def forward(self, x: Tensor) -> Tensor:
|
| 112 |
return self._twist_out(self._center_lens(self._twist_in(x)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
# ============================================================================
|
|
@@ -157,25 +192,24 @@ class MobiusConvBlock(nn.Module):
|
|
| 157 |
|
| 158 |
rw = torch.sigmoid(self.residual_weight)
|
| 159 |
return rw * identity + (1 - rw) * h
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
|
| 162 |
# ============================================================================
|
| 163 |
-
# MÖBIUS NET
|
| 164 |
# ============================================================================
|
| 165 |
|
| 166 |
class MobiusNet(nn.Module):
|
| 167 |
-
"""
|
| 168 |
-
Pure conv with Möbius topology.
|
| 169 |
-
Dynamic number of stages based on len(depths).
|
| 170 |
-
"""
|
| 171 |
-
|
| 172 |
def __init__(
|
| 173 |
self,
|
| 174 |
in_chans: int = 3,
|
| 175 |
-
num_classes: int =
|
| 176 |
-
channels: Tuple[int, ...] = (64,
|
| 177 |
-
depths: Tuple[int, ...] = (
|
| 178 |
scale_range: Tuple[float, float] = (0.5, 2.5),
|
|
|
|
| 179 |
):
|
| 180 |
super().__init__()
|
| 181 |
|
|
@@ -184,22 +218,22 @@ class MobiusNet(nn.Module):
|
|
| 184 |
|
| 185 |
self.total_layers = total_layers
|
| 186 |
self.scale_range = scale_range
|
| 187 |
-
self.channels = channels
|
| 188 |
-
self.depths = depths
|
| 189 |
self.num_stages = num_stages
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
# Ensure we have enough channel specs
|
| 192 |
channels = list(channels)
|
| 193 |
while len(channels) < num_stages:
|
| 194 |
channels.append(channels[-1])
|
| 195 |
|
| 196 |
-
# Stem
|
| 197 |
self.stem = nn.Sequential(
|
| 198 |
-
nn.Conv2d(in_chans, channels[0], 3, padding=1, bias=False),
|
| 199 |
nn.BatchNorm2d(channels[0]),
|
| 200 |
)
|
| 201 |
|
| 202 |
-
# Build stages dynamically
|
| 203 |
layer_idx = 0
|
| 204 |
self.stages = nn.ModuleList()
|
| 205 |
self.downsamples = nn.ModuleList()
|
|
@@ -207,16 +241,12 @@ class MobiusNet(nn.Module):
|
|
| 207 |
for stage_idx in range(num_stages):
|
| 208 |
ch = channels[stage_idx]
|
| 209 |
|
| 210 |
-
# Stage blocks
|
| 211 |
stage = nn.ModuleList()
|
| 212 |
for _ in range(depths[stage_idx]):
|
| 213 |
-
stage.append(MobiusConvBlock(
|
| 214 |
-
ch, layer_idx, total_layers, scale_range
|
| 215 |
-
))
|
| 216 |
layer_idx += 1
|
| 217 |
self.stages.append(stage)
|
| 218 |
|
| 219 |
-
# Downsample between stages (not after last)
|
| 220 |
if stage_idx < num_stages - 1:
|
| 221 |
ch_next = channels[stage_idx + 1]
|
| 222 |
self.downsamples.append(nn.Sequential(
|
|
@@ -224,9 +254,18 @@ class MobiusNet(nn.Module):
|
|
| 224 |
nn.BatchNorm2d(ch_next),
|
| 225 |
))
|
| 226 |
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
self.pool = nn.AdaptiveAvgPool2d(1)
|
| 229 |
-
self.head = nn.Linear(
|
| 230 |
|
| 231 |
def forward(self, x: Tensor) -> Tensor:
|
| 232 |
x = self.stem(x)
|
|
@@ -237,40 +276,104 @@ class MobiusNet(nn.Module):
|
|
| 237 |
if i < len(self.downsamples):
|
| 238 |
x = self.downsamples[i](x)
|
| 239 |
|
|
|
|
| 240 |
return self.head(self.pool(x).flatten(1))
|
| 241 |
|
| 242 |
-
def
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
def
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
scale_span = self.scale_range[1] - self.scale_range[0]
|
| 253 |
layer_idx = 0
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
scale_low = self.scale_range[0] + t * scale_span
|
| 260 |
-
scale_high = scale_low + scale_span / self.total_layers
|
| 261 |
-
|
| 262 |
-
lines.append(
|
| 263 |
-
f"Layer {layer_idx:2d} (Stage {stage_idx+1}, ch={ch:3d}): "
|
| 264 |
-
f"t={t:.3f}, scales=[{scale_low:.3f}, {scale_high:.3f}]"
|
| 265 |
-
)
|
| 266 |
layer_idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
|
| 276 |
# ============================================================================
|
|
@@ -278,112 +381,520 @@ class MobiusNet(nn.Module):
|
|
| 278 |
# ============================================================================
|
| 279 |
|
| 280 |
PRESETS = {
|
| 281 |
-
'
|
| 282 |
-
'channels': (64,
|
| 283 |
-
'depths': (
|
| 284 |
'scale_range': (0.5, 2.5),
|
| 285 |
},
|
| 286 |
-
'
|
| 287 |
-
'channels': (
|
| 288 |
-
'depths': (
|
| 289 |
-
'scale_range': (0.
|
| 290 |
},
|
| 291 |
-
'
|
| 292 |
-
'channels': (
|
| 293 |
-
'depths': (
|
| 294 |
-
'scale_range': (0.5, 3.0),
|
| 295 |
-
},
|
| 296 |
-
'mobius_deep': {
|
| 297 |
-
'channels': (64, 64, 128, 128),
|
| 298 |
-
'depths': (12, 6, 4),
|
| 299 |
'scale_range': (0.5, 3.5),
|
| 300 |
},
|
| 301 |
-
'
|
| 302 |
-
'channels': (
|
| 303 |
-
'depths': (
|
| 304 |
-
'scale_range': (0.
|
| 305 |
},
|
| 306 |
}
|
| 307 |
|
| 308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
# ============================================================================
|
| 310 |
# TRAINING
|
| 311 |
# ============================================================================
|
| 312 |
|
| 313 |
-
def
|
| 314 |
-
preset: str = '
|
| 315 |
epochs: int = 100,
|
| 316 |
lr: float = 1e-3,
|
| 317 |
batch_size: int = 128,
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
config = PRESETS[preset]
|
|
|
|
| 321 |
|
| 322 |
print("=" * 70)
|
| 323 |
-
print(f"MÖBIUS NET - {preset.upper()} -
|
| 324 |
print("=" * 70)
|
| 325 |
print(f"Device: {device}")
|
| 326 |
print(f"Channels: {config['channels']}")
|
| 327 |
print(f"Depths: {config['depths']}")
|
| 328 |
print(f"Scale range: {config['scale_range']}")
|
| 329 |
-
print(f"
|
|
|
|
|
|
|
| 330 |
print()
|
| 331 |
|
| 332 |
-
#
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
])
|
| 346 |
-
|
| 347 |
-
train_tf = transforms.Compose(train_transforms)
|
| 348 |
-
test_tf = transforms.Compose([
|
| 349 |
-
transforms.ToTensor(),
|
| 350 |
-
transforms.Normalize(mean, std),
|
| 351 |
-
])
|
| 352 |
-
|
| 353 |
-
train_ds = datasets.CIFAR100('./data', train=True, download=True, transform=train_tf)
|
| 354 |
-
test_ds = datasets.CIFAR100('./data', train=False, download=True, transform=test_tf)
|
| 355 |
-
|
| 356 |
-
train_loader = DataLoader(
|
| 357 |
-
train_ds, batch_size=batch_size, shuffle=True,
|
| 358 |
-
num_workers=8, pin_memory=True, persistent_workers=True
|
| 359 |
-
)
|
| 360 |
-
test_loader = DataLoader(
|
| 361 |
-
test_ds, batch_size=256, num_workers=2, pin_memory=True, persistent_workers=True,
|
| 362 |
)
|
| 363 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
model = MobiusNet(
|
| 365 |
in_chans=3,
|
| 366 |
-
num_classes=
|
|
|
|
| 367 |
**config
|
| 368 |
).to(device)
|
| 369 |
|
| 370 |
-
print(model.get_info())
|
| 371 |
-
print()
|
| 372 |
-
print(model.get_topology_info())
|
| 373 |
-
print()
|
| 374 |
-
|
| 375 |
-
model.compile(mode='reduce-overhead')
|
| 376 |
-
|
| 377 |
total_params = sum(p.numel() for p in model.parameters())
|
| 378 |
print(f"Total params: {total_params:,}")
|
| 379 |
print()
|
| 380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=0.05)
|
| 382 |
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)
|
| 383 |
|
|
|
|
|
|
|
| 384 |
best_acc = 0.0
|
| 385 |
|
| 386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
model.train()
|
| 388 |
train_loss, train_correct, train_total = 0, 0, 0
|
| 389 |
|
|
@@ -406,30 +917,76 @@ def train_mobius_cifar100(
|
|
| 406 |
|
| 407 |
scheduler.step()
|
| 408 |
|
|
|
|
| 409 |
model.eval()
|
| 410 |
val_correct, val_total = 0, 0
|
| 411 |
with torch.no_grad():
|
| 412 |
-
for x, y in
|
| 413 |
x, y = x.to(device), y.to(device)
|
| 414 |
logits = model(x)
|
| 415 |
val_correct += (logits.argmax(1) == y).sum().item()
|
| 416 |
val_total += x.size(0)
|
| 417 |
|
|
|
|
| 418 |
train_acc = train_correct / train_total
|
| 419 |
val_acc = val_correct / val_total
|
| 420 |
-
|
| 421 |
-
|
| 422 |
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
f"Train: {train_acc:.4f} | Val: {val_acc:.4f} | Best: {best_acc:.4f}{marker}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
|
| 426 |
print()
|
| 427 |
print("=" * 70)
|
| 428 |
print("FINAL RESULTS")
|
| 429 |
print("=" * 70)
|
| 430 |
-
print(
|
| 431 |
print(f"Best accuracy: {best_acc:.4f}")
|
| 432 |
print(f"Total params: {total_params:,}")
|
|
|
|
| 433 |
print("=" * 70)
|
| 434 |
|
| 435 |
return model, best_acc
|
|
@@ -440,9 +997,22 @@ def train_mobius_cifar100(
|
|
| 440 |
# ============================================================================
|
| 441 |
|
| 442 |
if __name__ == '__main__':
|
| 443 |
-
model, best_acc =
|
| 444 |
-
preset='
|
| 445 |
-
epochs=
|
| 446 |
-
lr=
|
| 447 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
)
|
|
|
|
| 1 |
"""
|
| 2 |
+
MobiusNet Trainer with TensorBoard, SafeTensors, and HuggingFace Upload
|
| 3 |
+
=======================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
import json
|
| 9 |
import math
|
| 10 |
+
import shutil
|
| 11 |
import torch
|
| 12 |
import torch.nn as nn
|
| 13 |
import torch.nn.functional as F
|
| 14 |
from torch import Tensor
|
| 15 |
+
from typing import Tuple, Optional, Dict, Any
|
| 16 |
from torchvision import datasets, transforms
|
| 17 |
from torch.utils.data import DataLoader
|
| 18 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 19 |
from tqdm.auto import tqdm
|
| 20 |
+
from datetime import datetime
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
from safetensors.torch import save_file as save_safetensors, load_file as load_safetensors
|
| 23 |
+
from huggingface_hub import HfApi, login
|
| 24 |
+
|
| 25 |
+
# Colab HF login
|
| 26 |
+
try:
|
| 27 |
+
from google.colab import userdata
|
| 28 |
+
token = userdata.get('HF_TOKEN')
|
| 29 |
+
os.environ['HF_TOKEN'] = token
|
| 30 |
+
login(token=token)
|
| 31 |
+
print("Logged in to HuggingFace via Colab")
|
| 32 |
+
except:
|
| 33 |
+
# Not in Colab or token not set
|
| 34 |
+
pass
|
| 35 |
|
| 36 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 37 |
print(f"Device: {device}")
|
| 38 |
|
| 39 |
+
# Enable TF32 for faster computation on Ampere+ GPUs
|
| 40 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 41 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 42 |
+
torch.set_float32_matmul_precision('high')
|
| 43 |
+
|
| 44 |
|
| 45 |
# ============================================================================
|
| 46 |
# MÖBIUS LENS
|
|
|
|
| 56 |
):
|
| 57 |
super().__init__()
|
| 58 |
|
| 59 |
+
self.dim = dim
|
| 60 |
+
self.layer_idx = layer_idx
|
| 61 |
+
self.total_layers = total_layers
|
| 62 |
self.t = layer_idx / max(total_layers - 1, 1)
|
| 63 |
|
| 64 |
scale_span = scale_range[1] - scale_range[0]
|
|
|
|
| 68 |
|
| 69 |
self.register_buffer('scales', torch.tensor([scale_low, scale_high]))
|
| 70 |
|
|
|
|
| 71 |
self.twist_in_angle = nn.Parameter(torch.tensor(self.t * math.pi))
|
| 72 |
self.twist_in_proj = nn.Linear(dim, dim, bias=False)
|
| 73 |
nn.init.orthogonal_(self.twist_in_proj.weight)
|
| 74 |
|
|
|
|
| 75 |
self.omega = nn.Parameter(torch.tensor(math.pi))
|
| 76 |
self.alpha = nn.Parameter(torch.tensor(1.5))
|
| 77 |
|
|
|
|
| 85 |
self.accum_weights = nn.Parameter(torch.tensor([0.4, 0.2, 0.4]))
|
| 86 |
self.xor_weight = nn.Parameter(torch.tensor(0.7))
|
| 87 |
|
| 88 |
+
self.gate_norm = nn.LayerNorm(dim)
|
| 89 |
+
|
| 90 |
self.twist_out_angle = nn.Parameter(torch.tensor(-self.t * math.pi))
|
| 91 |
self.twist_out_proj = nn.Linear(dim, dim, bias=False)
|
| 92 |
nn.init.orthogonal_(self.twist_out_proj.weight)
|
|
|
|
| 121 |
|
| 122 |
gate = w[0] * L + w[1] * M + w[2] * R
|
| 123 |
gate = gate * (0.5 + 0.5 * lr)
|
| 124 |
+
gate = torch.sigmoid(self.gate_norm(gate))
|
| 125 |
|
| 126 |
+
return x * gate
|
| 127 |
|
| 128 |
def _twist_out(self, x: Tensor) -> Tensor:
|
| 129 |
cos_t = torch.cos(self.twist_out_angle)
|
|
|
|
| 132 |
|
| 133 |
def forward(self, x: Tensor) -> Tensor:
|
| 134 |
return self._twist_out(self._center_lens(self._twist_in(x)))
|
| 135 |
+
|
| 136 |
+
def get_lens_stats(self) -> Dict[str, float]:
|
| 137 |
+
"""Return lens parameters for logging."""
|
| 138 |
+
return {
|
| 139 |
+
'omega': self.omega.item(),
|
| 140 |
+
'alpha': self.alpha.item(),
|
| 141 |
+
'twist_in_angle': self.twist_in_angle.item(),
|
| 142 |
+
'twist_out_angle': self.twist_out_angle.item(),
|
| 143 |
+
'xor_weight': torch.sigmoid(self.xor_weight).item(),
|
| 144 |
+
'accum_weights_l': torch.softmax(self.accum_weights, dim=0)[0].item(),
|
| 145 |
+
'accum_weights_m': torch.softmax(self.accum_weights, dim=0)[1].item(),
|
| 146 |
+
'accum_weights_r': torch.softmax(self.accum_weights, dim=0)[2].item(),
|
| 147 |
+
}
|
| 148 |
|
| 149 |
|
| 150 |
# ============================================================================
|
|
|
|
| 192 |
|
| 193 |
rw = torch.sigmoid(self.residual_weight)
|
| 194 |
return rw * identity + (1 - rw) * h
|
| 195 |
+
|
| 196 |
+
def get_residual_weight(self) -> float:
|
| 197 |
+
return torch.sigmoid(self.residual_weight).item()
|
| 198 |
|
| 199 |
|
| 200 |
# ============================================================================
|
| 201 |
+
# MÖBIUS NET
|
| 202 |
# ============================================================================
|
| 203 |
|
| 204 |
class MobiusNet(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
def __init__(
|
| 206 |
self,
|
| 207 |
in_chans: int = 3,
|
| 208 |
+
num_classes: int = 200,
|
| 209 |
+
channels: Tuple[int, ...] = (64, 128, 256, 512),
|
| 210 |
+
depths: Tuple[int, ...] = (2, 2, 2, 2),
|
| 211 |
scale_range: Tuple[float, float] = (0.5, 2.5),
|
| 212 |
+
use_integrator: bool = True,
|
| 213 |
):
|
| 214 |
super().__init__()
|
| 215 |
|
|
|
|
| 218 |
|
| 219 |
self.total_layers = total_layers
|
| 220 |
self.scale_range = scale_range
|
| 221 |
+
self.channels = tuple(channels)
|
| 222 |
+
self.depths = tuple(depths)
|
| 223 |
self.num_stages = num_stages
|
| 224 |
+
self.use_integrator = use_integrator
|
| 225 |
+
self.num_classes = num_classes
|
| 226 |
+
self.in_chans = in_chans
|
| 227 |
|
|
|
|
| 228 |
channels = list(channels)
|
| 229 |
while len(channels) < num_stages:
|
| 230 |
channels.append(channels[-1])
|
| 231 |
|
|
|
|
| 232 |
self.stem = nn.Sequential(
|
| 233 |
+
nn.Conv2d(in_chans, channels[0], 3, stride=1, padding=1, bias=False),
|
| 234 |
nn.BatchNorm2d(channels[0]),
|
| 235 |
)
|
| 236 |
|
|
|
|
| 237 |
layer_idx = 0
|
| 238 |
self.stages = nn.ModuleList()
|
| 239 |
self.downsamples = nn.ModuleList()
|
|
|
|
| 241 |
for stage_idx in range(num_stages):
|
| 242 |
ch = channels[stage_idx]
|
| 243 |
|
|
|
|
| 244 |
stage = nn.ModuleList()
|
| 245 |
for _ in range(depths[stage_idx]):
|
| 246 |
+
stage.append(MobiusConvBlock(ch, layer_idx, total_layers, scale_range))
|
|
|
|
|
|
|
| 247 |
layer_idx += 1
|
| 248 |
self.stages.append(stage)
|
| 249 |
|
|
|
|
| 250 |
if stage_idx < num_stages - 1:
|
| 251 |
ch_next = channels[stage_idx + 1]
|
| 252 |
self.downsamples.append(nn.Sequential(
|
|
|
|
| 254 |
nn.BatchNorm2d(ch_next),
|
| 255 |
))
|
| 256 |
|
| 257 |
+
final_ch = channels[num_stages - 1]
|
| 258 |
+
if use_integrator:
|
| 259 |
+
self.integrator = nn.Sequential(
|
| 260 |
+
nn.Conv2d(final_ch, final_ch, 3, padding=1, bias=False),
|
| 261 |
+
nn.BatchNorm2d(final_ch),
|
| 262 |
+
nn.GELU(),
|
| 263 |
+
)
|
| 264 |
+
else:
|
| 265 |
+
self.integrator = nn.Identity()
|
| 266 |
+
|
| 267 |
self.pool = nn.AdaptiveAvgPool2d(1)
|
| 268 |
+
self.head = nn.Linear(final_ch, num_classes)
|
| 269 |
|
| 270 |
def forward(self, x: Tensor) -> Tensor:
|
| 271 |
x = self.stem(x)
|
|
|
|
| 276 |
if i < len(self.downsamples):
|
| 277 |
x = self.downsamples[i](x)
|
| 278 |
|
| 279 |
+
x = self.integrator(x)
|
| 280 |
return self.head(self.pool(x).flatten(1))
|
| 281 |
|
| 282 |
+
def get_config(self) -> Dict[str, Any]:
|
| 283 |
+
"""Return model configuration for saving."""
|
| 284 |
+
return {
|
| 285 |
+
'in_chans': self.in_chans,
|
| 286 |
+
'num_classes': self.num_classes,
|
| 287 |
+
'channels': self.channels,
|
| 288 |
+
'depths': self.depths,
|
| 289 |
+
'scale_range': self.scale_range,
|
| 290 |
+
'use_integrator': self.use_integrator,
|
| 291 |
+
'total_layers': self.total_layers,
|
| 292 |
+
'num_stages': self.num_stages,
|
| 293 |
+
}
|
| 294 |
|
| 295 |
+
def get_all_lens_stats(self) -> Dict[str, Dict[str, float]]:
|
| 296 |
+
"""Return stats from all lenses for logging."""
|
| 297 |
+
stats = {}
|
|
|
|
|
|
|
| 298 |
layer_idx = 0
|
| 299 |
+
for stage_idx, stage in enumerate(self.stages):
|
| 300 |
+
for block_idx, block in enumerate(stage):
|
| 301 |
+
key = f"stage{stage_idx}_block{block_idx}"
|
| 302 |
+
stats[key] = block.lens.get_lens_stats()
|
| 303 |
+
stats[key]['residual_weight'] = block.get_residual_weight()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
layer_idx += 1
|
| 305 |
+
return stats
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# ============================================================================
|
| 309 |
+
# TINY IMAGENET DATASET
|
| 310 |
+
# ============================================================================
|
| 311 |
+
|
| 312 |
+
def get_tiny_imagenet_loaders(data_dir='./data/tiny-imagenet-200', batch_size=128):
|
| 313 |
+
train_dir = os.path.join(data_dir, 'train')
|
| 314 |
+
val_dir = os.path.join(data_dir, 'val')
|
| 315 |
+
|
| 316 |
+
val_images_dir = os.path.join(val_dir, 'images')
|
| 317 |
+
if os.path.exists(val_images_dir):
|
| 318 |
+
print("Reorganizing validation folder...")
|
| 319 |
+
reorganize_val_folder(val_dir)
|
| 320 |
+
|
| 321 |
+
train_transform = transforms.Compose([
|
| 322 |
+
transforms.RandomCrop(64, padding=8),
|
| 323 |
+
transforms.RandomHorizontalFlip(),
|
| 324 |
+
transforms.AutoAugment(transforms.AutoAugmentPolicy.IMAGENET),
|
| 325 |
+
transforms.ToTensor(),
|
| 326 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
| 327 |
+
])
|
| 328 |
+
|
| 329 |
+
val_transform = transforms.Compose([
|
| 330 |
+
transforms.ToTensor(),
|
| 331 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
| 332 |
+
])
|
| 333 |
+
|
| 334 |
+
train_dataset = datasets.ImageFolder(train_dir, transform=train_transform)
|
| 335 |
+
val_dataset = datasets.ImageFolder(val_dir, transform=val_transform)
|
| 336 |
+
|
| 337 |
+
train_loader = DataLoader(
|
| 338 |
+
train_dataset, batch_size=batch_size, shuffle=True,
|
| 339 |
+
num_workers=8, pin_memory=True, persistent_workers=True
|
| 340 |
+
)
|
| 341 |
+
val_loader = DataLoader(
|
| 342 |
+
val_dataset, batch_size=256, shuffle=False,
|
| 343 |
+
num_workers=4, pin_memory=True, persistent_workers=True
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
return train_loader, val_loader
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def reorganize_val_folder(val_dir):
|
| 350 |
+
"""Reorganize Tiny ImageNet val folder into class subfolders."""
|
| 351 |
+
val_images_dir = os.path.join(val_dir, 'images')
|
| 352 |
+
val_annotations = os.path.join(val_dir, 'val_annotations.txt')
|
| 353 |
+
|
| 354 |
+
if not os.path.exists(val_images_dir):
|
| 355 |
+
return
|
| 356 |
+
|
| 357 |
+
with open(val_annotations, 'r') as f:
|
| 358 |
+
for line in f:
|
| 359 |
+
parts = line.strip().split('\t')
|
| 360 |
+
img_name, class_id = parts[0], parts[1]
|
| 361 |
|
| 362 |
+
class_dir = os.path.join(val_dir, class_id)
|
| 363 |
+
os.makedirs(class_dir, exist_ok=True)
|
| 364 |
+
|
| 365 |
+
src = os.path.join(val_images_dir, img_name)
|
| 366 |
+
dst = os.path.join(class_dir, img_name)
|
| 367 |
+
|
| 368 |
+
if os.path.exists(src):
|
| 369 |
+
shutil.move(src, dst)
|
| 370 |
+
|
| 371 |
+
if os.path.exists(val_images_dir):
|
| 372 |
+
shutil.rmtree(val_images_dir)
|
| 373 |
+
if os.path.exists(val_annotations):
|
| 374 |
+
os.remove(val_annotations)
|
| 375 |
+
|
| 376 |
+
print("Validation folder reorganized.")
|
| 377 |
|
| 378 |
|
| 379 |
# ============================================================================
|
|
|
|
| 381 |
# ============================================================================
|
| 382 |
|
| 383 |
PRESETS = {
|
| 384 |
+
'mobius_tiny_s': {
|
| 385 |
+
'channels': (64, 128, 256),
|
| 386 |
+
'depths': (2, 2, 2),
|
| 387 |
'scale_range': (0.5, 2.5),
|
| 388 |
},
|
| 389 |
+
'mobius_tiny_m': {
|
| 390 |
+
'channels': (64, 128, 256, 512, 768),
|
| 391 |
+
'depths': (2, 2, 4, 2, 2),
|
| 392 |
+
'scale_range': (0.25, 2.75),
|
| 393 |
},
|
| 394 |
+
'mobius_tiny_l': {
|
| 395 |
+
'channels': (96, 192, 384, 768),
|
| 396 |
+
'depths': (3, 3, 3, 3),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
'scale_range': (0.5, 3.5),
|
| 398 |
},
|
| 399 |
+
'mobius_base': {
|
| 400 |
+
'channels': (128, 256, 512, 768, 1024),
|
| 401 |
+
'depths': (2, 2, 2, 2, 2),
|
| 402 |
+
'scale_range': (0.25, 2.75),
|
| 403 |
},
|
| 404 |
}
|
| 405 |
|
| 406 |
|
| 407 |
+
# ============================================================================
|
| 408 |
+
# CHECKPOINT MANAGER
|
| 409 |
+
# ============================================================================
|
| 410 |
+
|
| 411 |
+
class CheckpointManager:
|
| 412 |
+
def __init__(
|
| 413 |
+
self,
|
| 414 |
+
base_dir: str,
|
| 415 |
+
variant_name: str,
|
| 416 |
+
dataset_name: str,
|
| 417 |
+
hf_repo: str = "AbstractPhil/mobiusnet",
|
| 418 |
+
upload_every_n_epochs: int = 10,
|
| 419 |
+
save_every_n_epochs: int = 10,
|
| 420 |
+
timestamp: Optional[str] = None,
|
| 421 |
+
):
|
| 422 |
+
self.timestamp = timestamp or datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 423 |
+
self.variant_name = variant_name
|
| 424 |
+
self.dataset_name = dataset_name
|
| 425 |
+
self.hf_repo = hf_repo
|
| 426 |
+
self.upload_every_n_epochs = upload_every_n_epochs
|
| 427 |
+
self.save_every_n_epochs = save_every_n_epochs
|
| 428 |
+
|
| 429 |
+
# Directory structure
|
| 430 |
+
self.run_name = f"{variant_name}_{dataset_name}"
|
| 431 |
+
self.run_dir = Path(base_dir) / "checkpoints" / self.run_name / self.timestamp
|
| 432 |
+
self.checkpoints_dir = self.run_dir / "checkpoints"
|
| 433 |
+
self.tensorboard_dir = self.run_dir / "tensorboard"
|
| 434 |
+
|
| 435 |
+
# Create directories
|
| 436 |
+
self.checkpoints_dir.mkdir(parents=True, exist_ok=True)
|
| 437 |
+
self.tensorboard_dir.mkdir(parents=True, exist_ok=True)
|
| 438 |
+
|
| 439 |
+
# TensorBoard writer
|
| 440 |
+
self.writer = SummaryWriter(log_dir=str(self.tensorboard_dir))
|
| 441 |
+
|
| 442 |
+
# HuggingFace API
|
| 443 |
+
self.hf_api = HfApi()
|
| 444 |
+
self.uploaded_files = set()
|
| 445 |
+
|
| 446 |
+
# Track best
|
| 447 |
+
self.best_acc = 0.0
|
| 448 |
+
self.best_epoch = 0
|
| 449 |
+
self.best_changed_since_upload = False
|
| 450 |
+
|
| 451 |
+
print(f"Checkpoint directory: {self.run_dir}")
|
| 452 |
+
|
| 453 |
+
@staticmethod
|
| 454 |
+
def extract_timestamp(checkpoint_path: str) -> Optional[str]:
|
| 455 |
+
"""Extract timestamp from checkpoint path."""
|
| 456 |
+
# Match YYYYMMDD_HHMMSS pattern
|
| 457 |
+
match = re.search(r'(\d{8}_\d{6})', checkpoint_path)
|
| 458 |
+
if match:
|
| 459 |
+
return match.group(1)
|
| 460 |
+
return None
|
| 461 |
+
|
| 462 |
+
def save_config(self, config: Dict[str, Any], training_config: Dict[str, Any]):
|
| 463 |
+
"""Save model and training configuration."""
|
| 464 |
+
full_config = {
|
| 465 |
+
'model': config,
|
| 466 |
+
'training': training_config,
|
| 467 |
+
'timestamp': self.timestamp,
|
| 468 |
+
'variant_name': self.variant_name,
|
| 469 |
+
'dataset_name': self.dataset_name,
|
| 470 |
+
}
|
| 471 |
+
|
| 472 |
+
config_path = self.run_dir / "config.json"
|
| 473 |
+
with open(config_path, 'w') as f:
|
| 474 |
+
json.dump(full_config, f, indent=2)
|
| 475 |
+
|
| 476 |
+
return config_path
|
| 477 |
+
|
| 478 |
+
def save_checkpoint(
|
| 479 |
+
self,
|
| 480 |
+
model: nn.Module,
|
| 481 |
+
optimizer: torch.optim.Optimizer,
|
| 482 |
+
scheduler: Any,
|
| 483 |
+
epoch: int,
|
| 484 |
+
train_acc: float,
|
| 485 |
+
val_acc: float,
|
| 486 |
+
train_loss: float,
|
| 487 |
+
is_best: bool = False,
|
| 488 |
+
):
|
| 489 |
+
"""Save checkpoint every N epochs, always save best (overwriting)."""
|
| 490 |
+
|
| 491 |
+
# Unwrap compiled model if necessary
|
| 492 |
+
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
|
| 493 |
+
|
| 494 |
+
# Checkpoint data
|
| 495 |
+
checkpoint = {
|
| 496 |
+
'epoch': epoch,
|
| 497 |
+
'train_acc': train_acc,
|
| 498 |
+
'val_acc': val_acc,
|
| 499 |
+
'train_loss': train_loss,
|
| 500 |
+
'best_acc': self.best_acc,
|
| 501 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 502 |
+
'scheduler_state_dict': scheduler.state_dict(),
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
# Save epoch checkpoint every N epochs
|
| 506 |
+
if epoch % self.save_every_n_epochs == 0:
|
| 507 |
+
epoch_pt_path = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.pt"
|
| 508 |
+
torch.save({**checkpoint, 'model_state_dict': raw_model.state_dict()}, epoch_pt_path)
|
| 509 |
+
|
| 510 |
+
epoch_st_path = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.safetensors"
|
| 511 |
+
save_safetensors(raw_model.state_dict(), str(epoch_st_path))
|
| 512 |
+
|
| 513 |
+
# Save best model (overwrites previous best)
|
| 514 |
+
if is_best:
|
| 515 |
+
self.best_acc = val_acc
|
| 516 |
+
self.best_epoch = epoch
|
| 517 |
+
self.best_changed_since_upload = True
|
| 518 |
+
|
| 519 |
+
# PyTorch best
|
| 520 |
+
best_pt_path = self.checkpoints_dir / "best_model.pt"
|
| 521 |
+
torch.save({**checkpoint, 'model_state_dict': raw_model.state_dict()}, best_pt_path)
|
| 522 |
+
|
| 523 |
+
# SafeTensors best
|
| 524 |
+
best_st_path = self.checkpoints_dir / "best_model.safetensors"
|
| 525 |
+
save_safetensors(raw_model.state_dict(), str(best_st_path))
|
| 526 |
+
|
| 527 |
+
# Save accuracy info
|
| 528 |
+
acc_path = self.run_dir / "best_accuracy.json"
|
| 529 |
+
with open(acc_path, 'w') as f:
|
| 530 |
+
json.dump({
|
| 531 |
+
'best_acc': val_acc,
|
| 532 |
+
'best_epoch': epoch,
|
| 533 |
+
'train_acc': train_acc,
|
| 534 |
+
'train_loss': train_loss,
|
| 535 |
+
}, f, indent=2)
|
| 536 |
+
|
| 537 |
+
def save_final(self, model: nn.Module, final_acc: float, final_epoch: int):
|
| 538 |
+
"""Save final model."""
|
| 539 |
+
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
|
| 540 |
+
|
| 541 |
+
# SafeTensors final
|
| 542 |
+
final_st_path = self.checkpoints_dir / "final_model.safetensors"
|
| 543 |
+
save_safetensors(raw_model.state_dict(), str(final_st_path))
|
| 544 |
+
|
| 545 |
+
# PyTorch final
|
| 546 |
+
final_pt_path = self.checkpoints_dir / "final_model.pt"
|
| 547 |
+
torch.save({
|
| 548 |
+
'model_state_dict': raw_model.state_dict(),
|
| 549 |
+
'final_acc': final_acc,
|
| 550 |
+
'final_epoch': final_epoch,
|
| 551 |
+
'best_acc': self.best_acc,
|
| 552 |
+
'best_epoch': self.best_epoch,
|
| 553 |
+
}, final_pt_path)
|
| 554 |
+
|
| 555 |
+
# Final accuracy info
|
| 556 |
+
acc_path = self.run_dir / "final_accuracy.json"
|
| 557 |
+
with open(acc_path, 'w') as f:
|
| 558 |
+
json.dump({
|
| 559 |
+
'final_acc': final_acc,
|
| 560 |
+
'final_epoch': final_epoch,
|
| 561 |
+
'best_acc': self.best_acc,
|
| 562 |
+
'best_epoch': self.best_epoch,
|
| 563 |
+
}, f, indent=2)
|
| 564 |
+
|
| 565 |
+
return final_st_path, final_pt_path
|
| 566 |
+
|
| 567 |
+
def log_scalars(self, epoch: int, scalars: Dict[str, float], prefix: str = ""):
|
| 568 |
+
"""Log scalars to TensorBoard."""
|
| 569 |
+
for name, value in scalars.items():
|
| 570 |
+
tag = f"{prefix}/{name}" if prefix else name
|
| 571 |
+
self.writer.add_scalar(tag, value, epoch)
|
| 572 |
+
|
| 573 |
+
def log_lens_stats(self, epoch: int, model: nn.Module):
|
| 574 |
+
"""Log lens statistics to TensorBoard."""
|
| 575 |
+
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
|
| 576 |
+
stats = raw_model.get_all_lens_stats()
|
| 577 |
+
|
| 578 |
+
for block_name, block_stats in stats.items():
|
| 579 |
+
for stat_name, value in block_stats.items():
|
| 580 |
+
self.writer.add_scalar(f"lens/{block_name}/{stat_name}", value, epoch)
|
| 581 |
+
|
| 582 |
+
def log_histograms(self, epoch: int, model: nn.Module):
|
| 583 |
+
"""Log weight histograms to TensorBoard."""
|
| 584 |
+
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
|
| 585 |
+
|
| 586 |
+
for name, param in raw_model.named_parameters():
|
| 587 |
+
if param.requires_grad:
|
| 588 |
+
self.writer.add_histogram(f"weights/{name}", param.data, epoch)
|
| 589 |
+
if param.grad is not None:
|
| 590 |
+
self.writer.add_histogram(f"gradients/{name}", param.grad, epoch)
|
| 591 |
+
|
| 592 |
+
def upload_to_hf(self, epoch: int, force: bool = False):
|
| 593 |
+
"""Upload checkpoint every N epochs. Best uploads only on upload epochs if changed."""
|
| 594 |
+
if not force and epoch % self.upload_every_n_epochs != 0:
|
| 595 |
+
return
|
| 596 |
+
|
| 597 |
+
try:
|
| 598 |
+
hf_base_path = f"checkpoints/{self.run_name}/{self.timestamp}"
|
| 599 |
+
|
| 600 |
+
files_to_upload = []
|
| 601 |
+
|
| 602 |
+
# Always upload config
|
| 603 |
+
config_path = self.run_dir / "config.json"
|
| 604 |
+
if config_path.exists():
|
| 605 |
+
files_to_upload.append(config_path)
|
| 606 |
+
|
| 607 |
+
# Upload checkpoint if saved this epoch
|
| 608 |
+
if epoch % self.save_every_n_epochs == 0:
|
| 609 |
+
ckpt_st = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.safetensors"
|
| 610 |
+
ckpt_pt = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.pt"
|
| 611 |
+
if ckpt_st.exists():
|
| 612 |
+
files_to_upload.append(ckpt_st)
|
| 613 |
+
if ckpt_pt.exists():
|
| 614 |
+
files_to_upload.append(ckpt_pt)
|
| 615 |
+
|
| 616 |
+
# Upload best if it changed since last upload
|
| 617 |
+
if self.best_changed_since_upload:
|
| 618 |
+
best_files = [
|
| 619 |
+
self.checkpoints_dir / "best_model.safetensors",
|
| 620 |
+
self.checkpoints_dir / "best_model.pt",
|
| 621 |
+
self.run_dir / "best_accuracy.json",
|
| 622 |
+
]
|
| 623 |
+
for f in best_files:
|
| 624 |
+
if f.exists():
|
| 625 |
+
files_to_upload.append(f)
|
| 626 |
+
self.best_changed_since_upload = False
|
| 627 |
+
|
| 628 |
+
# Upload files
|
| 629 |
+
for local_path in files_to_upload:
|
| 630 |
+
rel_path = local_path.relative_to(self.run_dir)
|
| 631 |
+
hf_path = f"{hf_base_path}/{rel_path}"
|
| 632 |
+
|
| 633 |
+
try:
|
| 634 |
+
self.hf_api.upload_file(
|
| 635 |
+
path_or_fileobj=str(local_path),
|
| 636 |
+
path_in_repo=hf_path,
|
| 637 |
+
repo_id=self.hf_repo,
|
| 638 |
+
repo_type="model",
|
| 639 |
+
)
|
| 640 |
+
print(f"Uploaded: {hf_path}")
|
| 641 |
+
except Exception as e:
|
| 642 |
+
print(f"Failed to upload {rel_path}: {e}")
|
| 643 |
+
|
| 644 |
+
except Exception as e:
|
| 645 |
+
print(f"HuggingFace upload error: {e}")
|
| 646 |
+
|
| 647 |
+
def close(self):
|
| 648 |
+
"""Close TensorBoard writer."""
|
| 649 |
+
self.writer.close()
|
| 650 |
+
|
| 651 |
+
@staticmethod
|
| 652 |
+
def load_checkpoint(
|
| 653 |
+
checkpoint_path: str,
|
| 654 |
+
model: nn.Module,
|
| 655 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 656 |
+
scheduler: Optional[Any] = None,
|
| 657 |
+
hf_repo: str = "AbstractPhil/mobiusnet",
|
| 658 |
+
device: torch.device = torch.device('cpu'),
|
| 659 |
+
) -> Dict[str, Any]:
|
| 660 |
+
"""
|
| 661 |
+
Load checkpoint from local path or HuggingFace repo.
|
| 662 |
+
|
| 663 |
+
Args:
|
| 664 |
+
checkpoint_path: Either:
|
| 665 |
+
- Local file path to .pt checkpoint
|
| 666 |
+
- Local directory containing checkpoints
|
| 667 |
+
- HuggingFace path like "checkpoints/variant_dataset/timestamp"
|
| 668 |
+
model: Model to load weights into
|
| 669 |
+
optimizer: Optional optimizer to restore state
|
| 670 |
+
scheduler: Optional scheduler to restore state
|
| 671 |
+
hf_repo: HuggingFace repo ID
|
| 672 |
+
device: Device to load tensors to
|
| 673 |
+
|
| 674 |
+
Returns:
|
| 675 |
+
Dict with checkpoint info (epoch, best_acc, etc.)
|
| 676 |
+
"""
|
| 677 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
| 678 |
+
|
| 679 |
+
checkpoint_file = None
|
| 680 |
+
|
| 681 |
+
# Check if it's a local file
|
| 682 |
+
if os.path.isfile(checkpoint_path):
|
| 683 |
+
checkpoint_file = checkpoint_path
|
| 684 |
+
|
| 685 |
+
# Check if it's a local directory
|
| 686 |
+
elif os.path.isdir(checkpoint_path):
|
| 687 |
+
# Look for best_model.pt or latest checkpoint
|
| 688 |
+
best_path = os.path.join(checkpoint_path, "checkpoints", "best_model.pt")
|
| 689 |
+
if os.path.exists(best_path):
|
| 690 |
+
checkpoint_file = best_path
|
| 691 |
+
else:
|
| 692 |
+
# Find latest epoch checkpoint
|
| 693 |
+
ckpt_dir = os.path.join(checkpoint_path, "checkpoints")
|
| 694 |
+
if os.path.isdir(ckpt_dir):
|
| 695 |
+
pt_files = sorted([f for f in os.listdir(ckpt_dir) if f.startswith("checkpoint_epoch_") and f.endswith(".pt")])
|
| 696 |
+
if pt_files:
|
| 697 |
+
checkpoint_file = os.path.join(ckpt_dir, pt_files[-1])
|
| 698 |
+
|
| 699 |
+
# Try HuggingFace download
|
| 700 |
+
if checkpoint_file is None:
|
| 701 |
+
print(f"Attempting to download from HuggingFace: {hf_repo}/{checkpoint_path}")
|
| 702 |
+
try:
|
| 703 |
+
# If checkpoint_path is a directory path in the repo
|
| 704 |
+
if not checkpoint_path.endswith(".pt"):
|
| 705 |
+
# Try to download best_model.pt
|
| 706 |
+
try:
|
| 707 |
+
checkpoint_file = hf_hub_download(
|
| 708 |
+
repo_id=hf_repo,
|
| 709 |
+
filename=f"{checkpoint_path}/checkpoints/best_model.pt",
|
| 710 |
+
repo_type="model",
|
| 711 |
+
)
|
| 712 |
+
print(f"Downloaded best_model.pt from {hf_repo}")
|
| 713 |
+
except:
|
| 714 |
+
# List files and find latest checkpoint
|
| 715 |
+
files = list_repo_files(repo_id=hf_repo, repo_type="model")
|
| 716 |
+
ckpt_files = sorted([f for f in files if checkpoint_path in f and f.endswith(".pt") and "checkpoint_epoch_" in f])
|
| 717 |
+
if ckpt_files:
|
| 718 |
+
checkpoint_file = hf_hub_download(
|
| 719 |
+
repo_id=hf_repo,
|
| 720 |
+
filename=ckpt_files[-1],
|
| 721 |
+
repo_type="model",
|
| 722 |
+
)
|
| 723 |
+
print(f"Downloaded {ckpt_files[-1]} from {hf_repo}")
|
| 724 |
+
else:
|
| 725 |
+
# Direct file path
|
| 726 |
+
checkpoint_file = hf_hub_download(
|
| 727 |
+
repo_id=hf_repo,
|
| 728 |
+
filename=checkpoint_path,
|
| 729 |
+
repo_type="model",
|
| 730 |
+
)
|
| 731 |
+
print(f"Downloaded {checkpoint_path} from {hf_repo}")
|
| 732 |
+
except Exception as e:
|
| 733 |
+
raise FileNotFoundError(f"Could not find or download checkpoint: {checkpoint_path}. Error: {e}")
|
| 734 |
+
|
| 735 |
+
if checkpoint_file is None:
|
| 736 |
+
raise FileNotFoundError(f"Could not find checkpoint: {checkpoint_path}")
|
| 737 |
+
|
| 738 |
+
print(f"Loading checkpoint from: {checkpoint_file}")
|
| 739 |
+
checkpoint = torch.load(checkpoint_file, map_location=device, weights_only=False)
|
| 740 |
+
|
| 741 |
+
# Load model weights
|
| 742 |
+
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
|
| 743 |
+
raw_model.load_state_dict(checkpoint['model_state_dict'])
|
| 744 |
+
print(f"Loaded model weights")
|
| 745 |
+
|
| 746 |
+
# Load optimizer state
|
| 747 |
+
if optimizer is not None and 'optimizer_state_dict' in checkpoint:
|
| 748 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
| 749 |
+
print(f"Loaded optimizer state")
|
| 750 |
+
|
| 751 |
+
# Load scheduler state
|
| 752 |
+
if scheduler is not None and 'scheduler_state_dict' in checkpoint:
|
| 753 |
+
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
| 754 |
+
print(f"Loaded scheduler state")
|
| 755 |
+
|
| 756 |
+
info = {
|
| 757 |
+
'epoch': checkpoint.get('epoch', 0),
|
| 758 |
+
'best_acc': checkpoint.get('best_acc', 0.0),
|
| 759 |
+
'train_acc': checkpoint.get('train_acc', 0.0),
|
| 760 |
+
'val_acc': checkpoint.get('val_acc', 0.0),
|
| 761 |
+
'train_loss': checkpoint.get('train_loss', 0.0),
|
| 762 |
+
}
|
| 763 |
+
|
| 764 |
+
print(f"Resuming from epoch {info['epoch']} (best_acc: {info['best_acc']:.4f})")
|
| 765 |
+
|
| 766 |
+
return info
|
| 767 |
+
|
| 768 |
+
|
| 769 |
# ============================================================================
|
| 770 |
# TRAINING
|
| 771 |
# ============================================================================
|
| 772 |
|
| 773 |
+
def train_tiny_imagenet(
|
| 774 |
+
preset: str = 'mobius_tiny_m',
|
| 775 |
epochs: int = 100,
|
| 776 |
lr: float = 1e-3,
|
| 777 |
batch_size: int = 128,
|
| 778 |
+
use_integrator: bool = True,
|
| 779 |
+
data_dir: str = './data/tiny-imagenet-200',
|
| 780 |
+
output_dir: str = './outputs',
|
| 781 |
+
hf_repo: str = "AbstractPhil/mobiusnet",
|
| 782 |
+
save_every_n_epochs: int = 10,
|
| 783 |
+
upload_every_n_epochs: int = 10,
|
| 784 |
+
log_histograms_every: int = 10,
|
| 785 |
+
use_compile: bool = True,
|
| 786 |
+
continue_from: Optional[str] = None,
|
| 787 |
):
|
| 788 |
+
"""
|
| 789 |
+
Train MobiusNet on Tiny ImageNet.
|
| 790 |
+
|
| 791 |
+
Args:
|
| 792 |
+
preset: Model preset name
|
| 793 |
+
epochs: Total epochs to train
|
| 794 |
+
lr: Learning rate
|
| 795 |
+
batch_size: Batch size
|
| 796 |
+
use_integrator: Whether to use integrator layer
|
| 797 |
+
data_dir: Path to Tiny ImageNet data
|
| 798 |
+
output_dir: Output directory for checkpoints
|
| 799 |
+
hf_repo: HuggingFace repo for uploads/downloads
|
| 800 |
+
save_every_n_epochs: Save checkpoint every N epochs
|
| 801 |
+
upload_every_n_epochs: Upload to HF every N epochs
|
| 802 |
+
log_histograms_every: Log weight histograms every N epochs
|
| 803 |
+
use_compile: Whether to use torch.compile
|
| 804 |
+
continue_from: Resume from checkpoint. Can be:
|
| 805 |
+
- Local .pt file path
|
| 806 |
+
- Local checkpoint directory
|
| 807 |
+
- HuggingFace path (e.g., "checkpoints/mobius_base_tiny_imagenet/20240101_120000")
|
| 808 |
+
"""
|
| 809 |
config = PRESETS[preset]
|
| 810 |
+
dataset_name = "tiny_imagenet"
|
| 811 |
|
| 812 |
print("=" * 70)
|
| 813 |
+
print(f"MÖBIUS NET - {preset.upper()} - TINY IMAGENET")
|
| 814 |
print("=" * 70)
|
| 815 |
print(f"Device: {device}")
|
| 816 |
print(f"Channels: {config['channels']}")
|
| 817 |
print(f"Depths: {config['depths']}")
|
| 818 |
print(f"Scale range: {config['scale_range']}")
|
| 819 |
+
print(f"Integrator: {use_integrator}")
|
| 820 |
+
if continue_from:
|
| 821 |
+
print(f"Continuing from: {continue_from}")
|
| 822 |
print()
|
| 823 |
|
| 824 |
+
# Extract timestamp from checkpoint path if continuing
|
| 825 |
+
resume_timestamp = None
|
| 826 |
+
if continue_from:
|
| 827 |
+
resume_timestamp = CheckpointManager.extract_timestamp(continue_from)
|
| 828 |
+
if resume_timestamp:
|
| 829 |
+
print(f"Using original timestamp: {resume_timestamp}")
|
| 830 |
|
| 831 |
+
# Initialize checkpoint manager
|
| 832 |
+
ckpt_manager = CheckpointManager(
|
| 833 |
+
base_dir=output_dir,
|
| 834 |
+
variant_name=preset,
|
| 835 |
+
dataset_name=dataset_name,
|
| 836 |
+
hf_repo=hf_repo,
|
| 837 |
+
upload_every_n_epochs=upload_every_n_epochs,
|
| 838 |
+
save_every_n_epochs=save_every_n_epochs,
|
| 839 |
+
timestamp=resume_timestamp,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 840 |
)
|
| 841 |
|
| 842 |
+
# Data
|
| 843 |
+
train_loader, val_loader = get_tiny_imagenet_loaders(data_dir, batch_size)
|
| 844 |
+
|
| 845 |
+
# Model
|
| 846 |
model = MobiusNet(
|
| 847 |
in_chans=3,
|
| 848 |
+
num_classes=200,
|
| 849 |
+
use_integrator=use_integrator,
|
| 850 |
**config
|
| 851 |
).to(device)
|
| 852 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 853 |
total_params = sum(p.numel() for p in model.parameters())
|
| 854 |
print(f"Total params: {total_params:,}")
|
| 855 |
print()
|
| 856 |
|
| 857 |
+
# Save config
|
| 858 |
+
training_config = {
|
| 859 |
+
'epochs': epochs,
|
| 860 |
+
'lr': lr,
|
| 861 |
+
'batch_size': batch_size,
|
| 862 |
+
'optimizer': 'AdamW',
|
| 863 |
+
'weight_decay': 0.05,
|
| 864 |
+
'scheduler': 'CosineAnnealingLR',
|
| 865 |
+
'total_params': total_params,
|
| 866 |
+
}
|
| 867 |
+
ckpt_manager.save_config(model.get_config(), training_config)
|
| 868 |
+
|
| 869 |
+
# Compile model
|
| 870 |
+
if use_compile:
|
| 871 |
+
model = torch.compile(model, mode='reduce-overhead')
|
| 872 |
+
|
| 873 |
+
# Optimizer and scheduler
|
| 874 |
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=0.05)
|
| 875 |
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)
|
| 876 |
|
| 877 |
+
# Load checkpoint if continuing
|
| 878 |
+
start_epoch = 1
|
| 879 |
best_acc = 0.0
|
| 880 |
|
| 881 |
+
if continue_from:
|
| 882 |
+
ckpt_info = CheckpointManager.load_checkpoint(
|
| 883 |
+
checkpoint_path=continue_from,
|
| 884 |
+
model=model,
|
| 885 |
+
optimizer=optimizer,
|
| 886 |
+
scheduler=scheduler,
|
| 887 |
+
hf_repo=hf_repo,
|
| 888 |
+
device=device,
|
| 889 |
+
)
|
| 890 |
+
start_epoch = ckpt_info['epoch'] + 1
|
| 891 |
+
best_acc = ckpt_info['best_acc']
|
| 892 |
+
ckpt_manager.best_acc = best_acc
|
| 893 |
+
ckpt_manager.best_epoch = ckpt_info['epoch']
|
| 894 |
+
print(f"Resuming training from epoch {start_epoch}")
|
| 895 |
+
|
| 896 |
+
for epoch in range(start_epoch, epochs + 1):
|
| 897 |
+
# Training
|
| 898 |
model.train()
|
| 899 |
train_loss, train_correct, train_total = 0, 0, 0
|
| 900 |
|
|
|
|
| 917 |
|
| 918 |
scheduler.step()
|
| 919 |
|
| 920 |
+
# Validation
|
| 921 |
model.eval()
|
| 922 |
val_correct, val_total = 0, 0
|
| 923 |
with torch.no_grad():
|
| 924 |
+
for x, y in val_loader:
|
| 925 |
x, y = x.to(device), y.to(device)
|
| 926 |
logits = model(x)
|
| 927 |
val_correct += (logits.argmax(1) == y).sum().item()
|
| 928 |
val_total += x.size(0)
|
| 929 |
|
| 930 |
+
# Metrics
|
| 931 |
train_acc = train_correct / train_total
|
| 932 |
val_acc = val_correct / val_total
|
| 933 |
+
avg_loss = train_loss / train_total
|
| 934 |
+
current_lr = scheduler.get_last_lr()[0]
|
| 935 |
|
| 936 |
+
is_best = val_acc > best_acc
|
| 937 |
+
if is_best:
|
| 938 |
+
best_acc = val_acc
|
| 939 |
+
|
| 940 |
+
marker = " ★" if is_best else ""
|
| 941 |
+
print(f"Epoch {epoch:3d} | Loss: {avg_loss:.4f} | "
|
| 942 |
f"Train: {train_acc:.4f} | Val: {val_acc:.4f} | Best: {best_acc:.4f}{marker}")
|
| 943 |
+
|
| 944 |
+
# TensorBoard logging
|
| 945 |
+
ckpt_manager.log_scalars(epoch, {
|
| 946 |
+
'loss': avg_loss,
|
| 947 |
+
'train_acc': train_acc,
|
| 948 |
+
'val_acc': val_acc,
|
| 949 |
+
'best_acc': best_acc,
|
| 950 |
+
'learning_rate': current_lr,
|
| 951 |
+
}, prefix="train")
|
| 952 |
+
|
| 953 |
+
# Log lens stats
|
| 954 |
+
ckpt_manager.log_lens_stats(epoch, model)
|
| 955 |
+
|
| 956 |
+
# Log histograms periodically
|
| 957 |
+
if epoch % log_histograms_every == 0:
|
| 958 |
+
ckpt_manager.log_histograms(epoch, model)
|
| 959 |
+
|
| 960 |
+
# Save checkpoint
|
| 961 |
+
ckpt_manager.save_checkpoint(
|
| 962 |
+
model=model,
|
| 963 |
+
optimizer=optimizer,
|
| 964 |
+
scheduler=scheduler,
|
| 965 |
+
epoch=epoch,
|
| 966 |
+
train_acc=train_acc,
|
| 967 |
+
val_acc=val_acc,
|
| 968 |
+
train_loss=avg_loss,
|
| 969 |
+
is_best=is_best,
|
| 970 |
+
)
|
| 971 |
+
|
| 972 |
+
# Upload to HuggingFace (handles both checkpoint and best)
|
| 973 |
+
ckpt_manager.upload_to_hf(epoch)
|
| 974 |
+
|
| 975 |
+
# Save final model
|
| 976 |
+
ckpt_manager.save_final(model, val_acc, epochs)
|
| 977 |
+
|
| 978 |
+
# Final upload
|
| 979 |
+
ckpt_manager.upload_to_hf(epochs, force=True)
|
| 980 |
+
ckpt_manager.close()
|
| 981 |
|
| 982 |
print()
|
| 983 |
print("=" * 70)
|
| 984 |
print("FINAL RESULTS")
|
| 985 |
print("=" * 70)
|
| 986 |
+
print(f"Preset: {preset}")
|
| 987 |
print(f"Best accuracy: {best_acc:.4f}")
|
| 988 |
print(f"Total params: {total_params:,}")
|
| 989 |
+
print(f"Checkpoints: {ckpt_manager.run_dir}")
|
| 990 |
print("=" * 70)
|
| 991 |
|
| 992 |
return model, best_acc
|
|
|
|
| 997 |
# ============================================================================
|
| 998 |
|
| 999 |
if __name__ == '__main__':
|
| 1000 |
+
model, best_acc = train_tiny_imagenet(
|
| 1001 |
+
preset='mobius_base',
|
| 1002 |
+
epochs=200,
|
| 1003 |
+
lr=3e-4,
|
| 1004 |
+
batch_size=128,
|
| 1005 |
+
use_integrator=True,
|
| 1006 |
+
data_dir='./data/tiny-imagenet-200',
|
| 1007 |
+
output_dir='./outputs',
|
| 1008 |
+
hf_repo='AbstractPhil/mobiusnet',
|
| 1009 |
+
save_every_n_epochs=10,
|
| 1010 |
+
upload_every_n_epochs=10,
|
| 1011 |
+
log_histograms_every=10,
|
| 1012 |
+
use_compile=True,
|
| 1013 |
+
continue_from='/content/outputs/checkpoints/mobius_base_tiny_imagenet/20260110_132436/checkpoints/best_model.pt', # Set to path or HF checkpoint to resume
|
| 1014 |
+
# Examples:
|
| 1015 |
+
# continue_from="./outputs/checkpoints/mobius_base_tiny_imagenet/20240101_120000"
|
| 1016 |
+
# continue_from="./outputs/checkpoints/mobius_base_tiny_imagenet/20240101_120000/checkpoints/best_model.pt"
|
| 1017 |
+
# continue_from="checkpoints/mobius_base_tiny_imagenet/20240101_120000" # downloads from HF
|
| 1018 |
)
|