Push LunarLander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 245.30 +/- 12.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac72895c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac72895ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac72895d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac72895dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fac72895e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fac72895ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac72895f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac72899040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac728990d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac72899160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac728991f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac72899280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fac7289a280>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679109530333886351, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAM0EyD1cKym6pu+6OgIVLDYsRUo7RhDYuQAAgD8AAIA/zc4FPY+mFbp5Jzy7tuAetkCGgznGyIw1AACAPwAAgD8mO8S94qlUPxjqGr1KE7a+u7ykvTanlTwAAAAAAAAAADMqlz17XpO6Y3HTOutMtjWY6qk6Dfn0uQAAgD8AAIA/Zks6vey05rvQ7zk8qQdTPJXOQj3JADO9AACAPwAAgD8mu8I9ILOeP9rzpj4f7uC+lcGOPWVF4TwAAAAAAAAAAGaqvT2PJhe6jyeWt+s2frJucXM6Oj+rNgAAgD8AAIA/2nTJPeEojLo8hRQ8TfK/NqDyR7rntrY1AACAPwAAgD/dq6M+isFqPn5xCr5SC5m+0MA5PcOIersAAAAAAAAAAE0Jmr3bla283mM5PrpJh70TjwK+pu2uvgAAAAAAAIA/s+s8PfYMCbpoheY79uSCtliaT7rZj4O1AACAPwAAgD9NMA499uw9uvp3lzwDqSu9lTR9uoVFCL0AAAAAAAAAAE2RkD17rqy64lbPOonNVDWP5AO6JhTsuQAAgD8AAIA/M6vxu0jXhboyJ5Y6qyorNn7eQzsXyKq5AACAPwAAgD+mshE+Vu26P3WGDz/jMl2+dki+PWYMQz4AAAAAAAAAAAB8FzwKh3S5MngTPD9KA7QfZka78lCoswAAgD8AAIA/ZoQwPSkYZbq1k/u7wuHANjAOg7lL0i22AAAAAAAAgD+aWUA8KcAOupK8DDwxs7G2rpxOujQBrLUAAIA/AACAPy39PL7ohI8+VqqFPuMgeb6T+k28CdO6vAAAAAAAAAAAzYMCPVyDVbp6pDQ85OZ2NmNfQ7piZ2A1AACAPwAAgD9mNtK6XGMPur4bmLmGTrq1SdiOutuAKDUAAIA/AACAP82fojxSEL65WeskOs33mjR4QJC408JEuQAAgD8AAIA/AOIzPXvClbrId8m73g/ztnPZz7l6kVk2AACAPwAAgD8apJ09j95buuraoTkiphAyUX3buq5bvLgAAIA/AACAP5pKpDy4du25roUeug/fWDXftdy6Nsk2OQAAgD8AAIA/M9GPPKhYhD+A8UQ9Xmnpvu5Pdjy+oSi9AAAAAAAAAADNHmc8hau6ufg23joRdI20W3+euzkaBLoAAAAAAACAP7P7Nb35SoY/7yuMuwRr0L7YttS8jpy7PQAAAAAAAAAAzX7kPe4snD13MCq+V5yIvi5OoDzF4X29AAAAAAAAAABmXtA7gG64P2jpVz1E2Ru+BFkXu7m1kr0AAAAAAAAAAE3MCb1cy0C6cJO7u5d0+DfhSk+7Au4VtwAAgD8AAIA/MxNJutfzGLmOmKw77BlNN+FmqrvrS6q6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInbryWZ5CY0CUhpRSlIwBbJRN6AOMAXSUR0CTP/BKcurZdX2UKGgGaAloD0MIbw7Xao8VYkCUhpRSlGgVTegDaBZHQJNG42MsH0N1fZQoaAZoCWgPQwiJIw9EFrtjQJSGlFKUaBVN6ANoFkdAk0eiYLLIP3V9lChoBmgJaA9DCM+8HHZfDWJAlIaUUpRoFU3oA2gWR0CTTLA/cFhYdX2UKGgGaAloD0MIvFtZojPGY0CUhpRSlGgVTegDaBZHQJNQPYK6WgR1fZQoaAZoCWgPQwgm++dpQABiQJSGlFKUaBVN6ANoFkdAk1qV0xM363V9lChoBmgJaA9DCE7yI37F4GFAlIaUUpRoFU3oA2gWR0CTXHxCIDYAdX2UKGgGaAloD0MIjXqIRndEZUCUhpRSlGgVTegDaBZHQJNks/NZ/1B1fZQoaAZoCWgPQwhGlsyxvNJgQJSGlFKUaBVN6ANoFkdAk2inBciW3XV9lChoBmgJaA9DCAQAx569kmNAlIaUUpRoFU3oA2gWR0CTcZntOVPfdX2UKGgGaAloD0MIopi8AeapYUCUhpRSlGgVTegDaBZHQJN5czUI9kl1fZQoaAZoCWgPQwjf+UUJ+ndkQJSGlFKUaBVN6ANoFkdAk3rEaVD8cnV9lChoBmgJaA9DCOAO1CkPomNAlIaUUpRoFU3oA2gWR0CTet/XGwRodX2UKGgGaAloD0MIRbx1/u2QTkCUhpRSlGgVS8FoFkdAk3s2k30f5nV9lChoBmgJaA9DCOz6BbthKmJAlIaUUpRoFU3oA2gWR0CTfCkrf+CLdX2UKGgGaAloD0MIH4MVp1qtZ0CUhpRSlGgVTegDaBZHQJN85poK2KF1fZQoaAZoCWgPQwj5TWGlAg9hQJSGlFKUaBVN6ANoFkdAk38YPK+zt3V9lChoBmgJaA9DCJ4KuOf5EWdAlIaUUpRoFU3oA2gWR0CTgYleWv8qdX2UKGgGaAloD0MIrU85JgtYYUCUhpRSlGgVTegDaBZHQJOCN71Iy0t1fZQoaAZoCWgPQwhaSpaT0DBlQJSGlFKUaBVN6ANoFkdAk4P8p5NXYHV9lChoBmgJaA9DCG40gLdAGE1AlIaUUpRoFUvhaBZHQJOFIghbGFV1fZQoaAZoCWgPQwgjvD0IAQBgQJSGlFKUaBVN6ANoFkdAk4uKbBoEjnV9lChoBmgJaA9DCOKrHcW5DGNAlIaUUpRoFU3oA2gWR0CTkxmICU5ddX2UKGgGaAloD0MIHClbJO0eTUCUhpRSlGgVS/VoFkdAk5VUHlfZ3HV9lChoBmgJaA9DCN+l1CVjNGRAlIaUUpRoFU3oA2gWR0CTll6jWTX8dX2UKGgGaAloD0MIvHfUmBAnTECUhpRSlGgVS8RoFkdAk5lZ80DU3HV9lChoBmgJaA9DCLZoAdrWEGdAlIaUUpRoFU3oA2gWR0CTm9XCj1wpdX2UKGgGaAloD0MIEcgljjzwYkCUhpRSlGgVTegDaBZHQJOhgJXyRSx1fZQoaAZoCWgPQwgQ7PgvEJRkQJSGlFKUaBVN6ANoFkdAk6Gcc6vJR3V9lChoBmgJaA9DCGX+0TdpTF9AlIaUUpRoFU3oA2gWR0CT5QiA2AG0dX2UKGgGaAloD0MI7IfYYGGzZkCUhpRSlGgVTegDaBZHQJPoAkcCHRF1fZQoaAZoCWgPQwhP54pSwr1kQJSGlFKUaBVN6ANoFkdAk+jODBdld3V9lChoBmgJaA9DCJJdaRkpGWRAlIaUUpRoFU3oA2gWR0CT6cX+VC5VdX2UKGgGaAloD0MIWmWmtH5hZECUhpRSlGgVTegDaBZHQJPv+XPZ7HB1fZQoaAZoCWgPQwijlXuB2d9kQJSGlFKUaBVN6ANoFkdAk/b+gHu7YnV9lChoBmgJaA9DCMUDyqZcyF1AlIaUUpRoFU3oA2gWR0CT9zFbmlqKdX2UKGgGaAloD0MItTNMbalaZECUhpRSlGgVTegDaBZHQJP6CIVM23t1fZQoaAZoCWgPQwi4zr9ddptkQJSGlFKUaBVN6ANoFkdAlAA8SbpeNXV9lChoBmgJaA9DCLpKd9dZNWBAlIaUUpRoFU3oA2gWR0CUAOZmqYJFdX2UKGgGaAloD0MIVfgzvFm1aECUhpRSlGgVTegDaBZHQJQFk13t8eF1fZQoaAZoCWgPQwhckZighlZiQJSGlFKUaBVN6ANoFkdAlAjw00m+kHV9lChoBmgJaA9DCKLUXkTb2GZAlIaUUpRoFU3oA2gWR0CUErnSfDk3dX2UKGgGaAloD0MIhUGZRpNrMkCUhpRSlGgVS7JoFkdAlBPfh/Aj6nV9lChoBmgJaA9DCFjlQuVfxl9AlIaUUpRoFU3oA2gWR0CUIi8CxNZedX2UKGgGaAloD0MIDcLc7mXfZECUhpRSlGgVTegDaBZHQJQp4F3Y+St1fZQoaAZoCWgPQwiOeR1xyFReQJSGlFKUaBVN6ANoFkdAlC6WU4aP0nV9lChoBmgJaA9DCIV5jzNNxmNAlIaUUpRoFU3oA2gWR0CUL9FnIyTIdX2UKGgGaAloD0MISDFAogn1Z0CUhpRSlGgVTegDaBZHQJQv63x4IKN1fZQoaAZoCWgPQwikUYGTbd5kQJSGlFKUaBVN6ANoFkdAlDBIwdsBQ3V9lChoBmgJaA9DCEcFTraBWmBAlIaUUpRoFU3oA2gWR0CUMdOiWVu8dX2UKGgGaAloD0MIhzO/mgO4YECUhpRSlGgVTegDaBZHQJQz5Cx/ust1fZQoaAZoCWgPQwjjGwqfrZ9iQJSGlFKUaBVN6ANoFkdAlDY0MXrMT3V9lChoBmgJaA9DCJLNVfOcimJAlIaUUpRoFU3oA2gWR0CUNtwLVnVYdX2UKGgGaAloD0MIJVmHo6tfaECUhpRSlGgVTegDaBZHQJQ4mv2Xb/R1fZQoaAZoCWgPQwgDIy9r4spiQJSGlFKUaBVN6ANoFkdAlEAavV3EAHV9lChoBmgJaA9DCCC3Xz5ZOT5AlIaUUpRoFUvEaBZHQJRFItSQ5m11fZQoaAZoCWgPQwi+o8aEGF5gQJSGlFKUaBVN6ANoFkdAlEdo0l7dBXV9lChoBmgJaA9DCCBfQgUHPmVAlIaUUpRoFU3oA2gWR0CUSaMuez2OdX2UKGgGaAloD0MIGD+Ne3P4ZECUhpRSlGgVTegDaBZHQJRKoID5j6N1fZQoaAZoCWgPQwiN7bWg90lhQJSGlFKUaBVN6ANoFkdAlE2YbbUPQXV9lChoBmgJaA9DCIOmJVZGAl9AlIaUUpRoFU3oA2gWR0CUUBs5GSZCdX2UKGgGaAloD0MIRZxOstV4ZECUhpRSlGgVTegDaBZHQJRXon9ehPF1fZQoaAZoCWgPQwjaOc0C7elcQJSGlFKUaBVN6ANoFkdAlFe83AEdNnV9lChoBmgJaA9DCAtfX+vSs2NAlIaUUpRoFU3oA2gWR0CUWw3hGYrsdX2UKGgGaAloD0MIby2T4fgUYkCUhpRSlGgVTegDaBZHQJRd/2pQ1rJ1fZQoaAZoCWgPQwhrSNxjaXtlQJSGlFKUaBVN6ANoFkdAlJ8RcE/0NHV9lChoBmgJaA9DCPpEniTdKGRAlIaUUpRoFU3oA2gWR0CUn7cy31BddX2UKGgGaAloD0MI02hyMQa+XkCUhpRSlGgVTegDaBZHQJSkkUHpr1x1fZQoaAZoCWgPQwif5Xlwd6hIQJSGlFKUaBVLtWgWR0CUp4ZTQ3PzdX2UKGgGaAloD0MI7zhFR/J5YkCUhpRSlGgVTegDaBZHQJSrSqvNeMR1fZQoaAZoCWgPQwjjcVEtovBjQJSGlFKUaBVN6ANoFkdAlKt6Yu01InV9lChoBmgJaA9DCFhv1ArTTWNAlIaUUpRoFU3oA2gWR0CUrk/TLGJfdX2UKGgGaAloD0MIeNMtO0QVaECUhpRSlGgVTegDaBZHQJS1HuQZGax1fZQoaAZoCWgPQwi/RLx1/mhmQJSGlFKUaBVN6ANoFkdAlLnWce8wpXV9lChoBmgJaA9DCDUMHxHTK2dAlIaUUpRoFU3oA2gWR0CUvTBTXJ5ndX2UKGgGaAloD0MIcO8a9CWDZ0CUhpRSlGgVTegDaBZHQJTG+V6eGwl1fZQoaAZoCWgPQwjGxObjWuFiQJSGlFKUaBVN6ANoFkdAlMiA0sOG03V9lChoBmgJaA9DCOuM74tLzTjAlIaUUpRoFUuNaBZHQJTPn9MsYl91fZQoaAZoCWgPQwhw0F59vNxlQJSGlFKUaBVN6ANoFkdAlNfdhRZU1nV9lChoBmgJaA9DCCXpmsm3umdAlIaUUpRoFU3oA2gWR0CU3k2Jiy6ddX2UKGgGaAloD0MICfzh5z/xZkCUhpRSlGgVTegDaBZHQJTjV40Mw111fZQoaAZoCWgPQwgC2IAI8YNgQJSGlFKUaBVN6ANoFkdAlOSoPTXrdHV9lChoBmgJaA9DCMLZrWUyE1xAlIaUUpRoFU3oA2gWR0CU5MLpiZv2dX2UKGgGaAloD0MI+rmhKTtKY0CUhpRSlGgVTegDaBZHQJTlFpWV/tp1fZQoaAZoCWgPQwgLs9DOachWQJSGlFKUaBVN6ANoFkdAlOjycLBsRHV9lChoBmgJaA9DCNQNFHgnamJAlIaUUpRoFU3oA2gWR0CU6251/2CedX2UKGgGaAloD0MIaCPXTanIY0CUhpRSlGgVTegDaBZHQJTsHHcUM5R1fZQoaAZoCWgPQwiHTWTmgjJhQJSGlFKUaBVN6ANoFkdAlO35Grjo6nV9lChoBmgJaA9DCPgZFw4EMWFAlIaUUpRoFU3oA2gWR0CU9kGEf1YhdX2UKGgGaAloD0MIPxwkRPmRaECUhpRSlGgVTegDaBZHQJT71JBgNPR1fZQoaAZoCWgPQwgv/UtSmT1kQJSGlFKUaBVN6ANoFkdAlP5pAIIF/3V9lChoBmgJaA9DCDzAkxauWmJAlIaUUpRoFU3oA2gWR0CVAK5aNdZ8dX2UKGgGaAloD0MI9gfKbXsOZECUhpRSlGgVTegDaBZHQJUByhufmLd1fZQoaAZoCWgPQwilaybf7ARkQJSGlFKUaBVN6ANoFkdAlQZRePaL43V9lChoBmgJaA9DCI4+5gOCtGJAlIaUUpRoFU3oA2gWR0CVEmnzQNTcdX2UKGgGaAloD0MIEvsEUIwNYkCUhpRSlGgVTegDaBZHQJUShkrf+CN1fZQoaAZoCWgPQwjRzmkW6P5kQJSGlFKUaBVN6ANoFkdAlRXHctXgcnV9lChoBmgJaA9DCFBQilbueGVAlIaUUpRoFU3oA2gWR0CVF9IH1OCYdX2UKGgGaAloD0MIR450BsaGY0CUhpRSlGgVTegDaBZHQJUYXMTviLl1fZQoaAZoCWgPQwgTnPpA8ntkQJSGlFKUaBVN6ANoFkdAlRj8M/hVEXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09aa051b73f72838d936f35e70fea3c592a028916922e8f7a9ee1f0089e9f27b
|
3 |
+
size 148123
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fac72895c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac72895ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac72895d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac72895dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fac72895e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fac72895ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac72895f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac72899040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fac728990d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac72899160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac728991f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac72899280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fac7289a280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 32,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679109530333886351,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAM0EyD1cKym6pu+6OgIVLDYsRUo7RhDYuQAAgD8AAIA/zc4FPY+mFbp5Jzy7tuAetkCGgznGyIw1AACAPwAAgD8mO8S94qlUPxjqGr1KE7a+u7ykvTanlTwAAAAAAAAAADMqlz17XpO6Y3HTOutMtjWY6qk6Dfn0uQAAgD8AAIA/Zks6vey05rvQ7zk8qQdTPJXOQj3JADO9AACAPwAAgD8mu8I9ILOeP9rzpj4f7uC+lcGOPWVF4TwAAAAAAAAAAGaqvT2PJhe6jyeWt+s2frJucXM6Oj+rNgAAgD8AAIA/2nTJPeEojLo8hRQ8TfK/NqDyR7rntrY1AACAPwAAgD/dq6M+isFqPn5xCr5SC5m+0MA5PcOIersAAAAAAAAAAE0Jmr3bla283mM5PrpJh70TjwK+pu2uvgAAAAAAAIA/s+s8PfYMCbpoheY79uSCtliaT7rZj4O1AACAPwAAgD9NMA499uw9uvp3lzwDqSu9lTR9uoVFCL0AAAAAAAAAAE2RkD17rqy64lbPOonNVDWP5AO6JhTsuQAAgD8AAIA/M6vxu0jXhboyJ5Y6qyorNn7eQzsXyKq5AACAPwAAgD+mshE+Vu26P3WGDz/jMl2+dki+PWYMQz4AAAAAAAAAAAB8FzwKh3S5MngTPD9KA7QfZka78lCoswAAgD8AAIA/ZoQwPSkYZbq1k/u7wuHANjAOg7lL0i22AAAAAAAAgD+aWUA8KcAOupK8DDwxs7G2rpxOujQBrLUAAIA/AACAPy39PL7ohI8+VqqFPuMgeb6T+k28CdO6vAAAAAAAAAAAzYMCPVyDVbp6pDQ85OZ2NmNfQ7piZ2A1AACAPwAAgD9mNtK6XGMPur4bmLmGTrq1SdiOutuAKDUAAIA/AACAP82fojxSEL65WeskOs33mjR4QJC408JEuQAAgD8AAIA/AOIzPXvClbrId8m73g/ztnPZz7l6kVk2AACAPwAAgD8apJ09j95buuraoTkiphAyUX3buq5bvLgAAIA/AACAP5pKpDy4du25roUeug/fWDXftdy6Nsk2OQAAgD8AAIA/M9GPPKhYhD+A8UQ9Xmnpvu5Pdjy+oSi9AAAAAAAAAADNHmc8hau6ufg23joRdI20W3+euzkaBLoAAAAAAACAP7P7Nb35SoY/7yuMuwRr0L7YttS8jpy7PQAAAAAAAAAAzX7kPe4snD13MCq+V5yIvi5OoDzF4X29AAAAAAAAAABmXtA7gG64P2jpVz1E2Ru+BFkXu7m1kr0AAAAAAAAAAE3MCb1cy0C6cJO7u5d0+DfhSk+7Au4VtwAAgD8AAIA/MxNJutfzGLmOmKw77BlNN+FmqrvrS6q6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInbryWZ5CY0CUhpRSlIwBbJRN6AOMAXSUR0CTP/BKcurZdX2UKGgGaAloD0MIbw7Xao8VYkCUhpRSlGgVTegDaBZHQJNG42MsH0N1fZQoaAZoCWgPQwiJIw9EFrtjQJSGlFKUaBVN6ANoFkdAk0eiYLLIP3V9lChoBmgJaA9DCM+8HHZfDWJAlIaUUpRoFU3oA2gWR0CTTLA/cFhYdX2UKGgGaAloD0MIvFtZojPGY0CUhpRSlGgVTegDaBZHQJNQPYK6WgR1fZQoaAZoCWgPQwgm++dpQABiQJSGlFKUaBVN6ANoFkdAk1qV0xM363V9lChoBmgJaA9DCE7yI37F4GFAlIaUUpRoFU3oA2gWR0CTXHxCIDYAdX2UKGgGaAloD0MIjXqIRndEZUCUhpRSlGgVTegDaBZHQJNks/NZ/1B1fZQoaAZoCWgPQwhGlsyxvNJgQJSGlFKUaBVN6ANoFkdAk2inBciW3XV9lChoBmgJaA9DCAQAx569kmNAlIaUUpRoFU3oA2gWR0CTcZntOVPfdX2UKGgGaAloD0MIopi8AeapYUCUhpRSlGgVTegDaBZHQJN5czUI9kl1fZQoaAZoCWgPQwjf+UUJ+ndkQJSGlFKUaBVN6ANoFkdAk3rEaVD8cnV9lChoBmgJaA9DCOAO1CkPomNAlIaUUpRoFU3oA2gWR0CTet/XGwRodX2UKGgGaAloD0MIRbx1/u2QTkCUhpRSlGgVS8FoFkdAk3s2k30f5nV9lChoBmgJaA9DCOz6BbthKmJAlIaUUpRoFU3oA2gWR0CTfCkrf+CLdX2UKGgGaAloD0MIH4MVp1qtZ0CUhpRSlGgVTegDaBZHQJN85poK2KF1fZQoaAZoCWgPQwj5TWGlAg9hQJSGlFKUaBVN6ANoFkdAk38YPK+zt3V9lChoBmgJaA9DCJ4KuOf5EWdAlIaUUpRoFU3oA2gWR0CTgYleWv8qdX2UKGgGaAloD0MIrU85JgtYYUCUhpRSlGgVTegDaBZHQJOCN71Iy0t1fZQoaAZoCWgPQwhaSpaT0DBlQJSGlFKUaBVN6ANoFkdAk4P8p5NXYHV9lChoBmgJaA9DCG40gLdAGE1AlIaUUpRoFUvhaBZHQJOFIghbGFV1fZQoaAZoCWgPQwgjvD0IAQBgQJSGlFKUaBVN6ANoFkdAk4uKbBoEjnV9lChoBmgJaA9DCOKrHcW5DGNAlIaUUpRoFU3oA2gWR0CTkxmICU5ddX2UKGgGaAloD0MIHClbJO0eTUCUhpRSlGgVS/VoFkdAk5VUHlfZ3HV9lChoBmgJaA9DCN+l1CVjNGRAlIaUUpRoFU3oA2gWR0CTll6jWTX8dX2UKGgGaAloD0MIvHfUmBAnTECUhpRSlGgVS8RoFkdAk5lZ80DU3HV9lChoBmgJaA9DCLZoAdrWEGdAlIaUUpRoFU3oA2gWR0CTm9XCj1wpdX2UKGgGaAloD0MIEcgljjzwYkCUhpRSlGgVTegDaBZHQJOhgJXyRSx1fZQoaAZoCWgPQwgQ7PgvEJRkQJSGlFKUaBVN6ANoFkdAk6Gcc6vJR3V9lChoBmgJaA9DCGX+0TdpTF9AlIaUUpRoFU3oA2gWR0CT5QiA2AG0dX2UKGgGaAloD0MI7IfYYGGzZkCUhpRSlGgVTegDaBZHQJPoAkcCHRF1fZQoaAZoCWgPQwhP54pSwr1kQJSGlFKUaBVN6ANoFkdAk+jODBdld3V9lChoBmgJaA9DCJJdaRkpGWRAlIaUUpRoFU3oA2gWR0CT6cX+VC5VdX2UKGgGaAloD0MIWmWmtH5hZECUhpRSlGgVTegDaBZHQJPv+XPZ7HB1fZQoaAZoCWgPQwijlXuB2d9kQJSGlFKUaBVN6ANoFkdAk/b+gHu7YnV9lChoBmgJaA9DCMUDyqZcyF1AlIaUUpRoFU3oA2gWR0CT9zFbmlqKdX2UKGgGaAloD0MItTNMbalaZECUhpRSlGgVTegDaBZHQJP6CIVM23t1fZQoaAZoCWgPQwi4zr9ddptkQJSGlFKUaBVN6ANoFkdAlAA8SbpeNXV9lChoBmgJaA9DCLpKd9dZNWBAlIaUUpRoFU3oA2gWR0CUAOZmqYJFdX2UKGgGaAloD0MIVfgzvFm1aECUhpRSlGgVTegDaBZHQJQFk13t8eF1fZQoaAZoCWgPQwhckZighlZiQJSGlFKUaBVN6ANoFkdAlAjw00m+kHV9lChoBmgJaA9DCKLUXkTb2GZAlIaUUpRoFU3oA2gWR0CUErnSfDk3dX2UKGgGaAloD0MIhUGZRpNrMkCUhpRSlGgVS7JoFkdAlBPfh/Aj6nV9lChoBmgJaA9DCFjlQuVfxl9AlIaUUpRoFU3oA2gWR0CUIi8CxNZedX2UKGgGaAloD0MIDcLc7mXfZECUhpRSlGgVTegDaBZHQJQp4F3Y+St1fZQoaAZoCWgPQwiOeR1xyFReQJSGlFKUaBVN6ANoFkdAlC6WU4aP0nV9lChoBmgJaA9DCIV5jzNNxmNAlIaUUpRoFU3oA2gWR0CUL9FnIyTIdX2UKGgGaAloD0MISDFAogn1Z0CUhpRSlGgVTegDaBZHQJQv63x4IKN1fZQoaAZoCWgPQwikUYGTbd5kQJSGlFKUaBVN6ANoFkdAlDBIwdsBQ3V9lChoBmgJaA9DCEcFTraBWmBAlIaUUpRoFU3oA2gWR0CUMdOiWVu8dX2UKGgGaAloD0MIhzO/mgO4YECUhpRSlGgVTegDaBZHQJQz5Cx/ust1fZQoaAZoCWgPQwjjGwqfrZ9iQJSGlFKUaBVN6ANoFkdAlDY0MXrMT3V9lChoBmgJaA9DCJLNVfOcimJAlIaUUpRoFU3oA2gWR0CUNtwLVnVYdX2UKGgGaAloD0MIJVmHo6tfaECUhpRSlGgVTegDaBZHQJQ4mv2Xb/R1fZQoaAZoCWgPQwgDIy9r4spiQJSGlFKUaBVN6ANoFkdAlEAavV3EAHV9lChoBmgJaA9DCCC3Xz5ZOT5AlIaUUpRoFUvEaBZHQJRFItSQ5m11fZQoaAZoCWgPQwi+o8aEGF5gQJSGlFKUaBVN6ANoFkdAlEdo0l7dBXV9lChoBmgJaA9DCCBfQgUHPmVAlIaUUpRoFU3oA2gWR0CUSaMuez2OdX2UKGgGaAloD0MIGD+Ne3P4ZECUhpRSlGgVTegDaBZHQJRKoID5j6N1fZQoaAZoCWgPQwiN7bWg90lhQJSGlFKUaBVN6ANoFkdAlE2YbbUPQXV9lChoBmgJaA9DCIOmJVZGAl9AlIaUUpRoFU3oA2gWR0CUUBs5GSZCdX2UKGgGaAloD0MIRZxOstV4ZECUhpRSlGgVTegDaBZHQJRXon9ehPF1fZQoaAZoCWgPQwjaOc0C7elcQJSGlFKUaBVN6ANoFkdAlFe83AEdNnV9lChoBmgJaA9DCAtfX+vSs2NAlIaUUpRoFU3oA2gWR0CUWw3hGYrsdX2UKGgGaAloD0MIby2T4fgUYkCUhpRSlGgVTegDaBZHQJRd/2pQ1rJ1fZQoaAZoCWgPQwhrSNxjaXtlQJSGlFKUaBVN6ANoFkdAlJ8RcE/0NHV9lChoBmgJaA9DCPpEniTdKGRAlIaUUpRoFU3oA2gWR0CUn7cy31BddX2UKGgGaAloD0MI02hyMQa+XkCUhpRSlGgVTegDaBZHQJSkkUHpr1x1fZQoaAZoCWgPQwif5Xlwd6hIQJSGlFKUaBVLtWgWR0CUp4ZTQ3PzdX2UKGgGaAloD0MI7zhFR/J5YkCUhpRSlGgVTegDaBZHQJSrSqvNeMR1fZQoaAZoCWgPQwjjcVEtovBjQJSGlFKUaBVN6ANoFkdAlKt6Yu01InV9lChoBmgJaA9DCFhv1ArTTWNAlIaUUpRoFU3oA2gWR0CUrk/TLGJfdX2UKGgGaAloD0MIeNMtO0QVaECUhpRSlGgVTegDaBZHQJS1HuQZGax1fZQoaAZoCWgPQwi/RLx1/mhmQJSGlFKUaBVN6ANoFkdAlLnWce8wpXV9lChoBmgJaA9DCDUMHxHTK2dAlIaUUpRoFU3oA2gWR0CUvTBTXJ5ndX2UKGgGaAloD0MIcO8a9CWDZ0CUhpRSlGgVTegDaBZHQJTG+V6eGwl1fZQoaAZoCWgPQwjGxObjWuFiQJSGlFKUaBVN6ANoFkdAlMiA0sOG03V9lChoBmgJaA9DCOuM74tLzTjAlIaUUpRoFUuNaBZHQJTPn9MsYl91fZQoaAZoCWgPQwhw0F59vNxlQJSGlFKUaBVN6ANoFkdAlNfdhRZU1nV9lChoBmgJaA9DCCXpmsm3umdAlIaUUpRoFU3oA2gWR0CU3k2Jiy6ddX2UKGgGaAloD0MICfzh5z/xZkCUhpRSlGgVTegDaBZHQJTjV40Mw111fZQoaAZoCWgPQwgC2IAI8YNgQJSGlFKUaBVN6ANoFkdAlOSoPTXrdHV9lChoBmgJaA9DCMLZrWUyE1xAlIaUUpRoFU3oA2gWR0CU5MLpiZv2dX2UKGgGaAloD0MI+rmhKTtKY0CUhpRSlGgVTegDaBZHQJTlFpWV/tp1fZQoaAZoCWgPQwgLs9DOachWQJSGlFKUaBVN6ANoFkdAlOjycLBsRHV9lChoBmgJaA9DCNQNFHgnamJAlIaUUpRoFU3oA2gWR0CU6251/2CedX2UKGgGaAloD0MIaCPXTanIY0CUhpRSlGgVTegDaBZHQJTsHHcUM5R1fZQoaAZoCWgPQwiHTWTmgjJhQJSGlFKUaBVN6ANoFkdAlO35Grjo6nV9lChoBmgJaA9DCPgZFw4EMWFAlIaUUpRoFU3oA2gWR0CU9kGEf1YhdX2UKGgGaAloD0MIPxwkRPmRaECUhpRSlGgVTegDaBZHQJT71JBgNPR1fZQoaAZoCWgPQwgv/UtSmT1kQJSGlFKUaBVN6ANoFkdAlP5pAIIF/3V9lChoBmgJaA9DCDzAkxauWmJAlIaUUpRoFU3oA2gWR0CVAK5aNdZ8dX2UKGgGaAloD0MI9gfKbXsOZECUhpRSlGgVTegDaBZHQJUByhufmLd1fZQoaAZoCWgPQwilaybf7ARkQJSGlFKUaBVN6ANoFkdAlQZRePaL43V9lChoBmgJaA9DCI4+5gOCtGJAlIaUUpRoFU3oA2gWR0CVEmnzQNTcdX2UKGgGaAloD0MIEvsEUIwNYkCUhpRSlGgVTegDaBZHQJUShkrf+CN1fZQoaAZoCWgPQwjRzmkW6P5kQJSGlFKUaBVN6ANoFkdAlRXHctXgcnV9lChoBmgJaA9DCFBQilbueGVAlIaUUpRoFU3oA2gWR0CVF9IH1OCYdX2UKGgGaAloD0MIR450BsaGY0CUhpRSlGgVTegDaBZHQJUYXMTviLl1fZQoaAZoCWgPQwgTnPpA8ntkQJSGlFKUaBVN6ANoFkdAlRj8M/hVEXVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 372,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 128,
|
87 |
+
"n_epochs": 12,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c842c09ee7bda1e0ffc57f10264afaf802935ce5aa5e98676dc9716e19037744
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:210386a63b8cd9dbd027b8c18421c0c2518ff5825ccd9f2c8d2ee0dcc145105b
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (222 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 245.30384803744624, "std_reward": 12.655493765924154, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T04:12:59.544349"}
|