|
from typing import Dict, List, Any
|
|
from transformers import pipeline
|
|
from PIL import Image
|
|
import requests
|
|
import os
|
|
from io import BytesIO
|
|
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
|
from diffusers import DiffusionPipeline
|
|
import torch
|
|
from torch import autocast
|
|
import base64
|
|
|
|
|
|
auth_token = "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"
|
|
|
|
|
|
class EndpointHandler():
|
|
def __init__(self, path=""):
|
|
self.processor = CLIPSegProcessor.from_pretrained("./clipseg-rd64-refined")
|
|
self.model = CLIPSegForImageSegmentation.from_pretrained("./clipseg-rd64-refined")
|
|
|
|
self.pipe = DiffusionPipeline.from_pretrained(
|
|
"./",
|
|
custom_pipeline="text_inpainting",
|
|
segmentation_model=self.model,
|
|
segmentation_processor=self.processor,
|
|
revision="fp16",
|
|
torch_dtype=torch.float16,
|
|
use_auth_token=auth_token,
|
|
)
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.pipe = self.pipe.to(self.device)
|
|
|
|
def pad_image(self, image):
|
|
w, h = image.size
|
|
if w == h:
|
|
return image
|
|
elif w > h:
|
|
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
|
|
new_image.paste(image, (0, (w - h) // 2))
|
|
return new_image
|
|
else:
|
|
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
|
|
new_image.paste(image, ((h - w) // 2, 0))
|
|
return new_image
|
|
|
|
|
|
def process_image(self, image, text, prompt):
|
|
image = self.pad_image(image)
|
|
image = image.resize((512, 512))
|
|
with autocast(self.device):
|
|
inpainted_image = self.pipe(image=image, text=text, prompt=prompt).images[0]
|
|
return inpainted_image
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
"""
|
|
data args:
|
|
inputs (:obj: `str`)
|
|
date (:obj: `str`)
|
|
Return:
|
|
A :obj:`list` | `dict`: will be serialized and returned
|
|
"""
|
|
|
|
inputs = data.pop("inputs", data)
|
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
|
class_text = inputs['class_text']
|
|
prompt = inputs['prompt']
|
|
|
|
with autocast(self.device):
|
|
image = self.process_image(image, class_text, prompt)
|
|
|
|
|
|
buffered = BytesIO()
|
|
image.save(buffered, format="JPEG")
|
|
img_str = base64.b64encode(buffered.getvalue())
|
|
|
|
|
|
return {"image": img_str.decode()}
|
|
|