AbeShinzo0708's picture
Upload 2229 files
7e50900
raw
history blame
14.9 kB
#pragma once
// This file provides two functions to help write elementwise kernels:
//
// cpu_kernel(TensorIterator iter, <lambda>)
// cpu_kernel_vec(TensorIterator iter, <lambda>, <vec_lambda>)
//
// Both functions may generate vectorized code. The cpu_kernel implementation
// relies on the compiler's auto-vectorization. The cpu_kernel_vec
// implementation uses x86 SIMD intrinsics when available. These functions
// are only intended to be used in the ATen/native/cpu subdirectory, since files
// in other directories are not compiled with AVX/AVX2 enabled. See README.md
// for more details.
//
// For example, to write a multiplication kernel for float:
//
// cpu_kernel(iter, [](float a, float b) { return a * b; });
//
// Or you may write:
//
// cpu_kernel_vec(iter,
// [](float a, float b) { return a * b; },
// [](Vectorized<float> a, Vectorized<float> b) { return a * b; });
//
// See BinaryOpsKernel.cpp for the complete implementation
//
//
#include <stdint.h>
#include <c10/util/C++17.h>
#include <c10/util/Load.h>
#include <c10/util/irange.h>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/cpu/IsContiguous.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/TensorIteratorDynamicCasting.h>
#include <ATen/cpu/vec/vec.h>
namespace at { namespace native { inline namespace CPU_CAPABILITY {
using namespace vec;
template <typename traits, std::size_t... INDEX>
typename traits::ArgsTuple
dereference_impl(char* C10_RESTRICT data[], const int64_t* strides, int64_t i,
std::index_sequence<INDEX...>) {
return std::make_tuple(
c10::load<typename traits::template arg<INDEX>::type>(
data[INDEX] + i * strides[INDEX])...);
}
template <typename traits>
typename traits::ArgsTuple
dereference(char* C10_RESTRICT data[], const int64_t* strides, int64_t i) {
using Indices = std::make_index_sequence<traits::arity>;
return dereference_impl<traits>(data, strides, i, Indices{});
}
template <typename traits, std::size_t... INDEX>
typename traits::ArgsTuple
dereference_vec_impl(char* C10_RESTRICT data[],
const typename traits::result_type& opt_scalar,
size_t S,
int64_t i,
std::index_sequence<INDEX...>) {
using Vec = typename traits::result_type;
using scalar_t = typename Vec::value_type;
return std::make_tuple(
S == INDEX + 1 ?
opt_scalar :
Vec::loadu(data[INDEX] + i * sizeof(scalar_t))...);
}
template <typename traits>
typename traits::ArgsTuple
dereference_vec(char* C10_RESTRICT data[], const typename traits::result_type& opt_scalar, size_t S, int64_t i) {
using Indices = std::make_index_sequence<traits::arity>;
return dereference_vec_impl<traits>(data, opt_scalar, S, i, Indices{});
}
template <typename func_t,
typename std::enable_if<!std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
static inline void
execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
using result_type = typename traits::result_type;
for (; i < n; i++) {
result_type* out_ptr = (result_type*)(data[0] + i * strides[0]);
*out_ptr = c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
&data[1],
&strides[1],
i));
}
}
template <typename func_t,
typename std::enable_if<std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
static inline void
execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
for (; i < n; i++) {
c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
&data[0],
&strides[0],
i));
}
}
// Basic loop operation (one output, N inputs). May be auto-vectorized
// by the compiler. Supports inputs and outputs of different types.
template <typename func_t>
static inline void
basic_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
constexpr int ntensors = traits::arity + 1;
// Copying strides to temporary array helps auto vectorization in older GCC
// versions.
int64_t strides[ntensors];
for (const auto arg : c10::irange(ntensors)) {
strides[arg] = strides_[arg];
}
execute_op(data, strides, i, n, std::forward<func_t>(op));
}
// the recursive variadic template for iterating over the returned tuple
template<class T, size_t N>
struct TupleOutput {
static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
const T &tuple) {
TupleOutput<T, N - 1>::handle(data, strides, i, tuple);
auto output = std::get<N - 1>(tuple);
using output_type = decltype(output);
output_type * out_ptr = (output_type *)(data[N - 1] + i * strides[N - 1]);
*out_ptr = output;
}
};
// Base case for the above recursive template
template<class T>
struct TupleOutput<T, 1> {
static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
const T &tuple) {
auto output = std::get<0>(tuple);
using output_type = decltype(output);
output_type* out_ptr = (output_type *)(data[0] + i * strides[0]);
*out_ptr = output;
}
};
template<class... Args>
void handle_tuple_outputs(char* C10_RESTRICT data[],
const int64_t* strides,
int64_t i,
const std::tuple<Args...> &tuple) {
TupleOutput<decltype(tuple), sizeof...(Args)>::handle(data, strides, i, tuple);
}
// Loop operation for `cpu_kernel_multiple_outputs`.
// 1. Use `c10::guts::apply` to make dynamic method invocation
// for the lambda passed in `cpu_kernel_multiple_outputs`.
// 2. Iterate over the members of the returned tuple, set the corresponding
// output tensor by the tuple member in `handle_tuple_outputs` function.
template <typename func_t>
static inline void
multiple_outputs_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
using result_type = typename traits::result_type;
constexpr int num_outputs = std::tuple_size<result_type>::value;
constexpr int ntensors = traits::arity + num_outputs;
// Copying strides to temporary array helps auto vectorization in older GCC
// versions.
int64_t strides[ntensors];
for (const auto arg : c10::irange(ntensors)) {
strides[arg] = strides_[arg];
}
for (; i < n; i++) {
auto output = c10::guts::apply(op, dereference<traits>(
&data[num_outputs],
&strides[num_outputs],
i));
handle_tuple_outputs(data, strides, i, output);
}
}
// Explicitly vectorized loop implementation. All inputs and outputs must be
// the same type and contiguous with one exception: a single input may be
// a scalar (stride 0). It's position is indicated by the argument `S`. If `S`
// is 0, then there are no scalar inputs.
template <typename func_t, typename vec_func_t>
static inline void
vectorized_loop(char** C10_RESTRICT data_, int64_t n, int64_t S, func_t&& op, vec_func_t&& vop) {
using traits = function_traits<vec_func_t>;
using scalar_t = typename function_traits<func_t>::result_type;
using Vec = Vectorized<scalar_t>;
constexpr int ntensors = traits::arity + 1;
char* C10_RESTRICT data[ntensors];
for (const auto arg : c10::irange(ntensors)) {
data[arg] = data_[arg];
}
Vec opt_scalar = Vec(S > 0 ? *(scalar_t*)data[S] : scalar_t(0));
int64_t i = 0;
for (; i <= n - 2 * Vec::size(); i += 2 * Vec::size()) {
auto args1 = dereference_vec<traits>(&data[1], opt_scalar, S, i);
auto args2 = dereference_vec<traits>(&data[1], opt_scalar, S, i + Vec::size());
auto out1 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args1));
auto out2 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args2));
out1.store(data[0] + i * sizeof(scalar_t));
out2.store(data[0] + (i + Vec::size()) * sizeof(scalar_t));
}
if (i < n) {
int64_t strides[ntensors];
for (const auto arg : c10::irange(ntensors)) {
strides[arg] = (S > 0 && arg == S) ? 0 : sizeof(scalar_t);
}
basic_loop(data, strides, i, n, std::forward<func_t>(op));
}
}
template <typename traits, typename cb_t>
static inline void unroll_contiguous_scalar_checks(
const int64_t* /*strides*/,
std::index_sequence<>,
cb_t&& cb) {
cb(0);
}
template <typename traits, typename cb_t, size_t INDEX0, size_t ...INDEX>
static inline void unroll_contiguous_scalar_checks(
const int64_t* strides,
std::index_sequence<INDEX0, INDEX...>,
cb_t&& cb) {
if (is_contiguous_scalar<traits, INDEX0 + 1>(strides)) {
cb(INDEX0 + 1);
} else {
unroll_contiguous_scalar_checks<traits>(strides, std::index_sequence<INDEX...>{}, std::forward<cb_t>(cb));
}
}
template <typename op_t, typename vop_t>
struct VectorizedLoop2d {
op_t op;
vop_t vop;
using traits = function_traits<op_t>;
static constexpr int ntensors = traits::arity + 1;
using data_t = std::array<char*, ntensors>;
VectorizedLoop2d(const op_t &op, const vop_t &vop):
op(op), vop(vop) {}
static void advance(data_t &data, const int64_t *outer_strides) {
for (const auto arg : c10::irange(data.size())) {
data[arg] += outer_strides[arg];
}
}
void operator()(char** base, const int64_t *strides, int64_t size0, int64_t size1) {
data_t data;
std::copy_n(base, ntensors, data.data());
const int64_t *outer_strides = &strides[ntensors];
if (is_contiguous<traits>(strides)) {
for (const auto i C10_UNUSED : c10::irange(size1)) {
vectorized_loop(data.data(), size0, 0, op, vop);
advance(data, outer_strides);
}
} else {
using Indices = std::make_index_sequence<traits::arity>;
unroll_contiguous_scalar_checks<traits>(strides, Indices{}, [&](size_t idx) {
if (idx) {
for (const auto i C10_UNUSED : c10::irange(size1)) {
vectorized_loop(data.data(), size0, idx, op, vop);
advance(data, outer_strides);
}
} else {
for (const auto i C10_UNUSED : c10::irange(size1)) {
basic_loop(data.data(), strides, 0, size0, op);
advance(data, outer_strides);
}
}
});
}
}
};
template <typename op_t, typename vop_t>
VectorizedLoop2d<op_t, vop_t> make_vectorized_loop2d(
const op_t &op, const vop_t &vop) {
return VectorizedLoop2d<op_t, vop_t>(op, vop);
}
template <typename func_t>
void cpu_kernel(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
using traits = function_traits<func_t>;
// this could be extended to work with void return types
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
// dynamic casting not currently supported on CPU
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
// basic loop can handle 1d slices with arbitrary strides, and 1d slices is all that
// iter.for_each is ever sending to the loop lambda
basic_loop(data, strides, 0, n, std::forward<func_t>(op));
}, grain_size);
iter.cast_outputs();
}
// This function helps write elementwise kernels that requires multiple outputs.
// It follows the similar structure of cpu_kernel.
// Instead of `basic_loop` function, a new `multiple_outputs_loop` function is
// manipulated to handle multiple return values.
// For now `needs_dynamic_casting` check is not added as the passed lambda (`func_t`)
// of `multiple_outputs_loop` returns `std::tuple` instead of `scalar_t`.
// The `gpu_kernel_multiple_outputs` is also implemented without this check,
// We could extend `needs_dynamic_casting` to support both `std::tuple` and
// `thrust::tuple` in the future.
template <typename func_t>
void cpu_kernel_multiple_outputs(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
using traits = function_traits<func_t>;
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
multiple_outputs_loop(data, strides, 0, n, std::forward<func_t>(op));
}, grain_size);
iter.cast_outputs();
}
template <bool check_dynamic_cast=true, typename func_t, typename vec_func_t>
void cpu_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, int64_t grain_size = at::internal::GRAIN_SIZE) {
using traits = function_traits<func_t>;
// this could be extended to work with void return types
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
// dynamic casting not currently supported on CPU, but some kernels (like Fill)
// explicitly dynamic_cast, so we give the opt-out of checking.
c10::guts::if_constexpr<check_dynamic_cast>([&] {
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
});
iter.for_each(make_vectorized_loop2d(op, vop), grain_size);
iter.cast_outputs();
}
template <typename func_t>
void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op, const Range& range) {
using traits = function_traits<func_t>;
constexpr bool result_void = std::is_void<typename traits::result_type>::value;
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity &&
((result_void && iter.noutputs() == 0) || (!result_void && iter.noutputs() == 1)));
// dynamic casting not currently supported on CPU
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
iter.serial_for_each([&](char** data, const int64_t* strides, int64_t n) {
basic_loop(data, strides, 0, n, std::forward<func_t>(op));
}, range);
iter.cast_outputs();
}
template <typename func_t>
void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op) {
cpu_serial_kernel(iter, op, {0, iter.numel()});
}
template <typename func_t, typename vec_func_t>
void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, const Range& range) {
using traits = function_traits<func_t>;
// this could be extended to work with void return types
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
// dynamic casting not currently supported on CPU
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
iter.serial_for_each(make_vectorized_loop2d(op, vop), range);
iter.cast_outputs();
}
template <typename func_t, typename vec_func_t>
void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop) {
cpu_serial_kernel_vec(iter, op, vop, {0, iter.numel()});
}
}}} // namespace at::native::<anonymous>