|
|
|
|
|
import os |
|
import csv |
|
import torch |
|
from torch import nn |
|
from torch.utils.data import DataLoader |
|
from torchvision import datasets |
|
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose |
|
from approximator import Approximator |
|
|
|
|
|
|
|
transform = Compose([ |
|
RandomCrop(32, padding=4), |
|
RandomHorizontalFlip(), |
|
ToTensor(), |
|
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
|
|
]) |
|
|
|
training_data = datasets.CIFAR10( |
|
root='data', |
|
train=True, |
|
download=True, |
|
transform=transform |
|
) |
|
|
|
test_data = datasets.CIFAR10( |
|
root='data', |
|
train=False, |
|
download=True, |
|
transform=transform |
|
) |
|
|
|
|
|
batch_size = 128 |
|
|
|
train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True) |
|
test_dataloader = DataLoader(test_data, batch_size=batch_size) |
|
|
|
|
|
for X, y in test_dataloader: |
|
print(f"Shape of X [N,C,H,W]:{X.shape}") |
|
print(f"Shape of y:{y.shape}{y.dtype}") |
|
break |
|
|
|
|
|
|
|
|
|
def check_sizes(image_size, patch_size): |
|
sqrt_num_patches, remainder = divmod(image_size, patch_size) |
|
assert remainder == 0, "`image_size` must be divisibe by `patch_size`" |
|
num_patches = sqrt_num_patches ** 2 |
|
return num_patches |
|
|
|
|
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"using {device} device") |
|
|
|
|
|
|
|
class ApproximatorImageClassification(Approximator): |
|
def __init__( |
|
self, |
|
image_size=32, |
|
patch_size=4, |
|
in_channels=3, |
|
num_classes=10, |
|
d_model=256, |
|
d_ffn=512, |
|
num_layers=4, |
|
dropout=0.5 |
|
): |
|
num_patches = check_sizes(image_size, patch_size) |
|
super().__init__(d_model, d_ffn, num_layers,dropout) |
|
self.patcher = nn.Conv2d( |
|
in_channels, d_model, kernel_size=patch_size, stride=patch_size |
|
) |
|
self.classifier = nn.Linear(d_model, num_classes) |
|
|
|
def forward(self, x): |
|
|
|
patches = self.patcher(x) |
|
batch_size, num_channels, _, _ = patches.shape |
|
patches = patches.permute(0, 2, 3, 1) |
|
patches = patches.view(batch_size, -1, num_channels) |
|
embedding = self.model(patches) |
|
embedding = embedding.mean(dim=1) |
|
out = self.classifier(embedding) |
|
return out |
|
|
|
model = ApproximatorImageClassification().to(device) |
|
print(model) |
|
|
|
|
|
|
|
loss_fn = nn.CrossEntropyLoss() |
|
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3) |
|
|
|
|
|
|
|
|
|
def train(dataloader, model, loss_fn, optimizer): |
|
size = len(dataloader.dataset) |
|
num_batches = len(dataloader) |
|
model.train() |
|
train_loss = 0 |
|
correct = 0 |
|
for batch, (X,y) in enumerate(dataloader): |
|
X, y = X.to(device), y.to(device) |
|
|
|
|
|
pred = model(X) |
|
loss = loss_fn(pred,y) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
train_loss += loss.item() |
|
_, labels = torch.max(pred.data, 1) |
|
correct += labels.eq(y.data).type(torch.float).sum() |
|
|
|
|
|
|
|
|
|
if batch % 100 == 0: |
|
loss, current = loss.item(), batch * len(X) |
|
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") |
|
|
|
train_loss /= num_batches |
|
train_accuracy = 100. * correct.item() / size |
|
print(train_accuracy) |
|
return train_loss,train_accuracy |
|
|
|
|
|
|
|
|
|
|
|
def test(dataloader, model, loss_fn): |
|
size = len(dataloader.dataset) |
|
num_batches = len(dataloader) |
|
model.eval() |
|
test_loss = 0 |
|
correct = 0 |
|
with torch.no_grad(): |
|
for X,y in dataloader: |
|
X,y = X.to(device), y.to(device) |
|
pred = model(X) |
|
test_loss += loss_fn(pred, y).item() |
|
correct += (pred.argmax(1) == y).type(torch.float).sum().item() |
|
test_loss /= num_batches |
|
correct /= size |
|
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") |
|
test_accuracy = 100*correct |
|
return test_loss, test_accuracy |
|
|
|
|
|
|
|
|
|
|
|
logname = "/home/abdullah/Desktop/Proposals_experiments/Approximator/Experiments_cifar10/logs_approximator/logs_cifar10.csv" |
|
if not os.path.exists(logname): |
|
with open(logname, 'w') as logfile: |
|
logwriter = csv.writer(logfile, delimiter=',') |
|
logwriter.writerow(['epoch', 'train loss', 'train acc', |
|
'test loss', 'test acc']) |
|
|
|
|
|
epochs = 100 |
|
for epoch in range(epochs): |
|
print(f"Epoch {epoch+1}\n-----------------------------------") |
|
train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer) |
|
|
|
|
|
|
|
test_loss, test_acc = test(test_dataloader, model, loss_fn) |
|
with open(logname, 'a') as logfile: |
|
logwriter = csv.writer(logfile, delimiter=',') |
|
logwriter.writerow([epoch+1, train_loss, train_acc, |
|
test_loss, test_acc]) |
|
print("Done!") |
|
|
|
|
|
|
|
path = "/home/abdullah/Desktop/Proposals_experiments/Approximator/Experiments_cifar10/weights_approximator" |
|
model_name = "ApproximatorImageClassification_cifar10" |
|
torch.save(model.state_dict(), f"{path}/{model_name}.pth") |
|
print(f"Saved Model State to {path}/{model_name}.pth ") |
|
|
|
|