chemrelmodels / configs /rel_tok2vec.cfg
AbdulelahAlshehri's picture
Upload 65 files
5865eb5
[paths]
train = null
dev = null
raw = null
init_tok2vec = null
[system]
seed = 342
gpu_allocator = null
[nlp]
lang = "en"
pipeline = ["tok2vec", "relation_extractor"]
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
batch_size = 512
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 96
depth = 2
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
[components.relation_extractor]
factory = "relation_extractor"
threshold = 0.5
[components.relation_extractor.model]
@architectures = "rel_model.v1"
[components.relation_extractor.model.create_instance_tensor]
@architectures = "rel_instance_tensor.v1"
[components.relation_extractor.model.create_instance_tensor.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[components.relation_extractor.model.create_instance_tensor.pooling]
@layers = "reduce_mean.v1"
[components.relation_extractor.model.create_instance_tensor.get_instances]
@misc = "rel_instance_generator.v1"
max_length = 1000
[components.relation_extractor.model.classification_layer]
@architectures = "rel_classification_layer.v1"
nI = null
nO = null
[initialize]
[initialize.components]
[corpora]
[corpora.dev]
@readers = "Gold_ents_Corpus.v1"
file = ${paths.dev}
[corpora.train]
@readers = "Gold_ents_Corpus.v1"
file = ${paths.train}
[training]
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 1
patience = 160000000
max_epochs = 0
max_steps = 10000000
eval_frequency = 500
frozen_components = []
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
before_to_disk = null
logger = {"@loggers":"spacy.ConsoleLogger.v1"}
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.001
[training.score_weights]
rel_micro_p = 0.0
rel_micro_r = 0.0
rel_micro_f = 1.0