|
[paths] |
|
train = null |
|
dev = null |
|
raw = null |
|
init_tok2vec = null |
|
|
|
[system] |
|
seed = 342 |
|
gpu_allocator = null |
|
|
|
[nlp] |
|
lang = "en" |
|
pipeline = ["tok2vec", "relation_extractor"] |
|
disabled = [] |
|
before_creation = null |
|
after_creation = null |
|
after_pipeline_creation = null |
|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} |
|
batch_size = 512 |
|
|
|
[components] |
|
|
|
[components.tok2vec] |
|
factory = "tok2vec" |
|
|
|
[components.tok2vec.model] |
|
@architectures = "spacy.HashEmbedCNN.v1" |
|
pretrained_vectors = null |
|
width = 96 |
|
depth = 2 |
|
embed_size = 2000 |
|
window_size = 1 |
|
maxout_pieces = 3 |
|
subword_features = true |
|
|
|
[components.relation_extractor] |
|
factory = "relation_extractor" |
|
threshold = 0.5 |
|
|
|
[components.relation_extractor.model] |
|
@architectures = "rel_model.v1" |
|
|
|
[components.relation_extractor.model.create_instance_tensor] |
|
@architectures = "rel_instance_tensor.v1" |
|
|
|
[components.relation_extractor.model.create_instance_tensor.tok2vec] |
|
@architectures = "spacy.Tok2VecListener.v1" |
|
width = ${components.tok2vec.model.width} |
|
|
|
[components.relation_extractor.model.create_instance_tensor.pooling] |
|
@layers = "reduce_mean.v1" |
|
|
|
[components.relation_extractor.model.create_instance_tensor.get_instances] |
|
@misc = "rel_instance_generator.v1" |
|
max_length = 1000 |
|
|
|
[components.relation_extractor.model.classification_layer] |
|
@architectures = "rel_classification_layer.v1" |
|
nI = null |
|
nO = null |
|
|
|
[initialize] |
|
|
|
[initialize.components] |
|
|
|
[corpora] |
|
|
|
[corpora.dev] |
|
@readers = "Gold_ents_Corpus.v1" |
|
file = ${paths.dev} |
|
|
|
[corpora.train] |
|
@readers = "Gold_ents_Corpus.v1" |
|
file = ${paths.train} |
|
|
|
[training] |
|
seed = ${system.seed} |
|
gpu_allocator = ${system.gpu_allocator} |
|
dropout = 0.1 |
|
accumulate_gradient = 1 |
|
patience = 160000000 |
|
max_epochs = 0 |
|
max_steps = 10000000 |
|
eval_frequency = 500 |
|
frozen_components = [] |
|
dev_corpus = "corpora.dev" |
|
train_corpus = "corpora.train" |
|
before_to_disk = null |
|
logger = {"@loggers":"spacy.ConsoleLogger.v1"} |
|
|
|
[training.batcher] |
|
@batchers = "spacy.batch_by_words.v1" |
|
discard_oversize = false |
|
tolerance = 0.2 |
|
|
|
[training.batcher.size] |
|
@schedules = "compounding.v1" |
|
start = 100 |
|
stop = 1000 |
|
compound = 1.001 |
|
|
|
[training.optimizer] |
|
@optimizers = "Adam.v1" |
|
beta1 = 0.9 |
|
beta2 = 0.999 |
|
L2_is_weight_decay = true |
|
L2 = 0.01 |
|
grad_clip = 1.0 |
|
use_averages = false |
|
eps = 0.00000001 |
|
learn_rate = 0.001 |
|
|
|
[training.score_weights] |
|
rel_micro_p = 0.0 |
|
rel_micro_r = 0.0 |
|
rel_micro_f = 1.0 |
|
|