|
|
|
|
|
""" |
|
|
This is an extra gRPC server of LocalAI for Pocket TTS |
|
|
""" |
|
|
from concurrent import futures |
|
|
import time |
|
|
import argparse |
|
|
import signal |
|
|
import sys |
|
|
import os |
|
|
import traceback |
|
|
import scipy.io.wavfile |
|
|
import backend_pb2 |
|
|
import backend_pb2_grpc |
|
|
import torch |
|
|
from pocket_tts import TTSModel |
|
|
|
|
|
import grpc |
|
|
|
|
|
def is_float(s): |
|
|
"""Check if a string can be converted to float.""" |
|
|
try: |
|
|
float(s) |
|
|
return True |
|
|
except ValueError: |
|
|
return False |
|
|
|
|
|
def is_int(s): |
|
|
"""Check if a string can be converted to int.""" |
|
|
try: |
|
|
int(s) |
|
|
return True |
|
|
except ValueError: |
|
|
return False |
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 |
|
|
|
|
|
|
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) |
|
|
|
|
|
|
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer): |
|
|
""" |
|
|
BackendServicer is the class that implements the gRPC service |
|
|
""" |
|
|
def Health(self, request, context): |
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) |
|
|
|
|
|
def LoadModel(self, request, context): |
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
print("CUDA is available", file=sys.stderr) |
|
|
device = "cuda" |
|
|
else: |
|
|
print("CUDA is not available", file=sys.stderr) |
|
|
device = "cpu" |
|
|
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() |
|
|
if mps_available: |
|
|
device = "mps" |
|
|
if not torch.cuda.is_available() and request.CUDA: |
|
|
return backend_pb2.Result(success=False, message="CUDA is not available") |
|
|
|
|
|
|
|
|
if device == "mpx": |
|
|
print("Note: device 'mpx' detected, treating it as 'mps'.", file=sys.stderr) |
|
|
device = "mps" |
|
|
|
|
|
|
|
|
if device == "mps" and not torch.backends.mps.is_available(): |
|
|
print("Warning: MPS not available. Falling back to CPU.", file=sys.stderr) |
|
|
device = "cpu" |
|
|
|
|
|
self.device = device |
|
|
|
|
|
options = request.Options |
|
|
|
|
|
|
|
|
self.options = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for opt in options: |
|
|
if ":" not in opt: |
|
|
continue |
|
|
key, value = opt.split(":", 1) |
|
|
|
|
|
if is_float(value): |
|
|
value = float(value) |
|
|
elif is_int(value): |
|
|
value = int(value) |
|
|
elif value.lower() in ["true", "false"]: |
|
|
value = value.lower() == "true" |
|
|
self.options[key] = value |
|
|
|
|
|
|
|
|
self.default_voice_url = self.options.get("default_voice", None) |
|
|
self._voice_cache = {} |
|
|
|
|
|
try: |
|
|
print("Loading Pocket TTS model", file=sys.stderr) |
|
|
self.tts_model = TTSModel.load_model() |
|
|
print(f"Model loaded successfully. Sample rate: {self.tts_model.sample_rate}", file=sys.stderr) |
|
|
|
|
|
|
|
|
if self.default_voice_url: |
|
|
try: |
|
|
print(f"Pre-loading default voice: {self.default_voice_url}", file=sys.stderr) |
|
|
voice_state = self.tts_model.get_state_for_audio_prompt(self.default_voice_url) |
|
|
self._voice_cache[self.default_voice_url] = voice_state |
|
|
print("Default voice loaded successfully", file=sys.stderr) |
|
|
except Exception as e: |
|
|
print(f"Warning: Failed to pre-load default voice: {e}", file=sys.stderr) |
|
|
|
|
|
except Exception as err: |
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
|
|
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True) |
|
|
|
|
|
def _get_voice_state(self, voice_input): |
|
|
""" |
|
|
Get voice state from cache or load it. |
|
|
voice_input can be: |
|
|
- HuggingFace URL (e.g., hf://kyutai/tts-voices/alba-mackenna/casual.wav) |
|
|
- Local file path |
|
|
- None (use default) |
|
|
""" |
|
|
|
|
|
if not voice_input: |
|
|
voice_input = self.default_voice_url |
|
|
|
|
|
if not voice_input: |
|
|
return None |
|
|
|
|
|
|
|
|
if voice_input in self._voice_cache: |
|
|
return self._voice_cache[voice_input] |
|
|
|
|
|
|
|
|
try: |
|
|
print(f"Loading voice from: {voice_input}", file=sys.stderr) |
|
|
voice_state = self.tts_model.get_state_for_audio_prompt(voice_input) |
|
|
self._voice_cache[voice_input] = voice_state |
|
|
return voice_state |
|
|
except Exception as e: |
|
|
print(f"Error loading voice from {voice_input}: {e}", file=sys.stderr) |
|
|
return None |
|
|
|
|
|
def TTS(self, request, context): |
|
|
try: |
|
|
|
|
|
|
|
|
voice_input = None |
|
|
|
|
|
if request.voice: |
|
|
voice_input = request.voice |
|
|
elif hasattr(request, 'AudioPath') and request.AudioPath: |
|
|
|
|
|
if os.path.isabs(request.AudioPath): |
|
|
voice_input = request.AudioPath |
|
|
elif hasattr(request, 'ModelFile') and request.ModelFile: |
|
|
model_file_base = os.path.dirname(request.ModelFile) |
|
|
voice_input = os.path.join(model_file_base, request.AudioPath) |
|
|
elif hasattr(request, 'ModelPath') and request.ModelPath: |
|
|
voice_input = os.path.join(request.ModelPath, request.AudioPath) |
|
|
else: |
|
|
voice_input = request.AudioPath |
|
|
|
|
|
|
|
|
voice_state = self._get_voice_state(voice_input) |
|
|
if voice_state is None: |
|
|
return backend_pb2.Result( |
|
|
success=False, |
|
|
message=f"Voice not found or failed to load: {voice_input}. Please provide a valid voice URL or file path." |
|
|
) |
|
|
|
|
|
|
|
|
text = request.text.strip() |
|
|
|
|
|
if not text: |
|
|
return backend_pb2.Result( |
|
|
success=False, |
|
|
message="Text is empty" |
|
|
) |
|
|
|
|
|
print(f"Generating audio for text: {text[:50]}...", file=sys.stderr) |
|
|
|
|
|
|
|
|
audio = self.tts_model.generate_audio(voice_state, text) |
|
|
|
|
|
|
|
|
if audio is None or audio.numel() == 0: |
|
|
return backend_pb2.Result( |
|
|
success=False, |
|
|
message="No audio generated" |
|
|
) |
|
|
|
|
|
|
|
|
output_path = request.dst |
|
|
if not output_path: |
|
|
output_path = "/tmp/pocket-tts-output.wav" |
|
|
|
|
|
|
|
|
output_dir = os.path.dirname(output_path) |
|
|
if output_dir and not os.path.exists(output_dir): |
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
audio_numpy = audio.numpy() |
|
|
scipy.io.wavfile.write(output_path, self.tts_model.sample_rate, audio_numpy) |
|
|
print(f"Saved audio to {output_path}", file=sys.stderr) |
|
|
|
|
|
except Exception as err: |
|
|
print(f"Error in TTS: {err}", file=sys.stderr) |
|
|
print(traceback.format_exc(), file=sys.stderr) |
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
|
|
|
|
return backend_pb2.Result(success=True) |
|
|
|
|
|
def serve(address): |
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS), |
|
|
options=[ |
|
|
('grpc.max_message_length', 50 * 1024 * 1024), |
|
|
('grpc.max_send_message_length', 50 * 1024 * 1024), |
|
|
('grpc.max_receive_message_length', 50 * 1024 * 1024), |
|
|
]) |
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) |
|
|
server.add_insecure_port(address) |
|
|
server.start() |
|
|
print("Server started. Listening on: " + address, file=sys.stderr) |
|
|
|
|
|
|
|
|
def signal_handler(sig, frame): |
|
|
print("Received termination signal. Shutting down...") |
|
|
server.stop(0) |
|
|
sys.exit(0) |
|
|
|
|
|
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
|
signal.signal(signal.SIGTERM, signal_handler) |
|
|
|
|
|
try: |
|
|
while True: |
|
|
time.sleep(_ONE_DAY_IN_SECONDS) |
|
|
except KeyboardInterrupt: |
|
|
server.stop(0) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.") |
|
|
parser.add_argument( |
|
|
"--addr", default="localhost:50051", help="The address to bind the server to." |
|
|
) |
|
|
args = parser.parse_args() |
|
|
|
|
|
serve(args.addr) |
|
|
|