Aayush232730 commited on
Commit
3f737bf
1 Parent(s): 1cc5350

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -238.86 +/- 78.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be538dd8f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be538dd9000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be538dd9090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be538dd9120>", "_build": "<function ActorCriticPolicy._build at 0x7be538dd91b0>", "forward": "<function ActorCriticPolicy.forward at 0x7be538dd9240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be538dd92d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be538dd9360>", "_predict": "<function ActorCriticPolicy._predict at 0x7be538dd93f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be538dd9480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be538dd9510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be538dd95a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be538f6dfc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709853572425559775, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbYSzxCK7M/fgNoPpOLrr1tFL67vpgLvQAAAAAAAAAAADG1Puf7kL0qajs+IdOYvlpemL6EuwW/AACAPwAAgD8moRm/vT1svVoWM7rNPiw4xddOvjoWlzgAAIA/AACAP9ph9r1QO6c/uqDxvuT7xL7pvWi9JqYfvgAAAAAAAAAAV7cZv0ncbT0KOhG/Yk25vrbO7z693C6+AAAAAAAAAABmlse94RiTui3ez7svB4Q1c/ZCu+Bz6LQAAIA/AACAP81OJz3WU6w/EKfoPimDxL6XKpa8ZgByvQAAAAAAAAAAojYXvxaxQD05Xqc8Jtt2PX/xHb5KvQe8AAAAAAAAAABGkhw+smyOP971rT41Zq++d3tTPSvSsj0AAAAAAAAAACtV5L6XMXi9phPHuVv+BL4g6cs8Y1giPgAAAAAAAAAAIRFJvywqjL0jjOI6wh2yvBwU9r12dS09AAAAAAAAAADDlKU+HbFtPkqfMz6ZhyK/+e4PPoo1GLsAAAAAAAAAAABmvDyvuw4/iF2hvTl6BL/u8hq+T7odvgAAAAAAAAAAGlGYPaClMD89D3O+YM76vpy7Nj5/95G+AAAAAAAAAADSZtS+SL6hPzYqEr43RaC+7CnZvE49qD0AAAAAAAAAAGnhDL82bSO+0my4uwG6o7zI5jg9WlFQPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQD8/BnBciW6MAWyUS4yMAXSUR0BwiLG5tm+TdX2UKGgGR0A2pQjlgc94aAdLrWgIR0BwizGvOhTPdX2UKGgGR8BnMOMju8braAdNDwFoCEdAcIuLl3hXKnV9lChoBkdAEJ3y7PIGQmgHS35oCEdAcI07Wd3B6HV9lChoBkfAKc7X6InBtWgHS4toCEdAcJCNL127nXV9lChoBkdAESmYSg5BC2gHS1loCEdAcJIUR3/xUnV9lChoBkfAI9Mh5gPVeGgHS4BoCEdAcJqHT7VJ+XV9lChoBkfAKOY7zTWoWGgHS3VoCEdAcJ03yqdYn3V9lChoBkfANc1rdnCfpWgHS41oCEdAcJ2noPkJbHV9lChoBkdAMyTFId2gWmgHS3NoCEdAcJ9YplSS/3V9lChoBkdAKevdVNpM6GgHS3JoCEdAcJ+ARChN/XV9lChoBkdAPfLSmZVn3GgHS5doCEdAcKATOPeYUnV9lChoBkfANChfShJyyWgHS8VoCEdAcKCjENvwVnV9lChoBkfAX+VnFo+OfmgHS8ZoCEdAcKIuHvc8DHV9lChoBkfAOItNBWxQi2gHS5poCEdAcKK2uPmxMXV9lChoBkfAG4JMxoIv8WgHS5NoCEdAcKjPkJa7mXV9lChoBkfAXuN+RYA80WgHTRgBaAhHQHCpRwuM+/x1fZQoaAZHwDbhR2r4nF5oB0uPaAhHQHCpaSX+l0p1fZQoaAZHwDq7lhgE2YRoB0tcaAhHQHCq74N7SiN1fZQoaAZHwGSrK8Djin5oB0vbaAhHQHCwZRoAXEZ1fZQoaAZHQCM6MBIWgvloB0udaAhHQHC0Zgb6xgR1fZQoaAZHQBJXta6jFhpoB0uPaAhHQHC0i+QEIPd1fZQoaAZHQDAPGsFMZgpoB0uMaAhHQHC1fzjFQ2x1fZQoaAZHQBhbGNrCWNZoB0uHaAhHQHC2YU34sVd1fZQoaAZHwGEOFsHjZL9oB0vTaAhHQHC6TGYKIBR1fZQoaAZHwFG5Fyq+8GtoB0vBaAhHQHC8kwnH/951fZQoaAZHv/Lbo8p1A7hoB0uBaAhHQHC9ORxLkCF1fZQoaAZHwED4kXUH6dloB0vLaAhHQHC+2hh6Skl1fZQoaAZHwCGeu9vjwQVoB0ugaAhHQHDBlXiiqQ11fZQoaAZHwEGwqgAZKnNoB0u3aAhHQHDF7+PzWf91fZQoaAZHwELhmPo3aSNoB0tvaAhHQHDGa7NB4Ux1fZQoaAZHwBUjjvNNahZoB0uJaAhHQHDGbeQ+2Vp1fZQoaAZHwEfdTDO1OTJoB0vwaAhHQHDIEpmVZ9x1fZQoaAZHQAFGlqJuVHFoB0uTaAhHQHDNPBi1Aqx1fZQoaAZHwEmjs41gpjNoB0vZaAhHQHDNZ39rGip1fZQoaAZHQCUydJ8OTaFoB0udaAhHQHDNvChvitJ1fZQoaAZHv+L1RLsa86FoB0tpaAhHQHDNuz2OAAh1fZQoaAZHwEA8F36hxo9oB0udaAhHQHDPxf8dgfF1fZQoaAZHwEP0Yc/+sHVoB0tZaAhHQHDQFFYuCf91fZQoaAZHQC7ScVgx8D1oB03oA2gIR0Bw0Znh86V/dX2UKGgGR8A43mAskIHDaAdLm2gIR0Bw0wM9bHIZdX2UKGgGR8BRoMdkrf+CaAdLdWgIR0Bw12Ya5wwTdX2UKGgGR0ApWKaXrt3OaAdN6ANoCEdAcNg+ERJ2+3V9lChoBkfAQXrH80k4WGgHS7NoCEdAcNiOtW+49XV9lChoBkfAS8H1nM+u/2gHS6xoCEdAcNjOz6ab4XV9lChoBkfAOaHCbc45tGgHS4NoCEdAcNlL4N7SiXV9lChoBkfAAKF49ovi+GgHS41oCEdAcR4RceKba3V9lChoBkfABiJQ+EAYHmgHS31oCEdAcR/sNDtw73V9lChoBkfAQkmOlwcYImgHS4FoCEdAcSAhnrY5DXV9lChoBkfAU1CZTho/RmgHS69oCEdAcSBcBU70WnV9lChoBkdADS0AtFrmAGgHS2loCEdAcSFfCQ9zO3V9lChoBkdAMsoAsCkoF2gHS5NoCEdAcSMoIfKZD3V9lChoBkdAFVkPczqKQGgHS6toCEdAcSXRf4REnnV9lChoBkfARma+pOvdM2gHS75oCEdAcSYAood+5XV9lChoBkfAHjKyv9tMwmgHS4RoCEdAcSg0cwQDm3V9lChoBkdAOqzXJ5mh/WgHS2loCEdAcSsEd/8VHnV9lChoBkc//5ScbzbvgGgHS5toCEdAcSsnEVFhHHV9lChoBkfARz7wBo24u2gHS7FoCEdAcSyhY/3WWnV9lChoBkdAOPNXcQAdXGgHTegDaAhHQHEuVCojv/l1fZQoaAZHQEF4g/1QIldoB0uiaAhHQHExlNtZV4p1fZQoaAZHwD+hH+ZPVNJoB0vBaAhHQHEyYvrWy1N1fZQoaAZHwC3WIoE0SAZoB0vbaAhHQHEzDrzGxUx1fZQoaAZHwFHcP3BYV7BoB0uQaAhHQHE4aI7/4qR1fZQoaAZHwE+lVAAyVOdoB0vUaAhHQHE7HrIHTql1fZQoaAZHQCHNijL0SRNoB0uOaAhHQHE7Zmh/RVp1fZQoaAZHwBSg2Ifr8ixoB0uQaAhHQHE705U96kZ1fZQoaAZHwGFbu76Hj6xoB00lAWgIR0BxQ9pN9H+ZdX2UKGgGR0BBuhbfP5YYaAdLvmgIR0BxR4svqTr3dX2UKGgGR7+0uAZsKsuGaAdLhWgIR0BxR/EBKcurdX2UKGgGR8BQwGB8QZn+aAdLwmgIR0BxSw3WFvhqdX2UKGgGR8BGDd/rjYI0aAdLvGgIR0BxUEpkPMB7dX2UKGgGR0A+MyfL9uP4aAdLoWgIR0BxV6vB7/n4dX2UKGgGR8BR7RNucc2jaAdLnWgIR0BxXNDUmUnpdX2UKGgGR8A5Q/9YOlO5aAdLYGgIR0BxX5Dx9XtCdX2UKGgGR8BMlVZcLSeAaAdLvmgIR0BxYbrt3OfNdX2UKGgGR8A8EwC8vmHQaAdLxGgIR0BxYy1w5vLpdX2UKGgGR8Aaji3ocJdCaAdLpWgIR0BxZXD63y7PdX2UKGgGR8BDvuKGcnVoaAdLe2gIR0Bxb1/kNnXedX2UKGgGR8BNWrf1pTMraAdL42gIR0BxdYQe3hGZdX2UKGgGR8ALfjOs1baAaAdLh2gIR0BxedNahYeUdX2UKGgGR8BCEOGj9GZvaAdLvWgIR0BxgkExIre7dX2UKGgGR8BDkLuYx+KCaAdLpWgIR0BxgzJyQxN7dX2UKGgGR8BPi3v6TGHYaAdLqmgIR0BxiVlqagEmdX2UKGgGR8BfjyQHRkVfaAdL/WgIR0BxmokiUxEfdX2UKGgGR0AokjsUqQRxaAdLfGgIR0BxodLEk0JodX2UKGgGR0A7LhaTwDvFaAdLhmgIR0Bxo12yLQ5WdX2UKGgGR8BRpS6pYLb6aAdLdGgIR0Bxpoz1schldX2UKGgGR8BP0JK8L8aXaAdL/mgIR0BxrA3qAz55dX2UKGgGR8BoVWT5ftx/aAdNBAFoCEdAcbvozeoDPnV9lChoBkdAHS0Mw1zhgmgHS4BoCEdAcb2eTV2A5XV9lChoBkfAOhjjNpudgGgHS3FoCEdAccaAdGRV63V9lChoBkdAPktSMtK7I2gHS25oCEdAccuPWxyGSXV9lChoBkdAI3Cqp97Wu2gHTegDaAhHQHHMCrtE5Qx1fZQoaAZHwEXUIfr8iwBoB03oA2gIR0Bx0tLEk0JodX2UKGgGR0AxKXKr7wazaAdLtWgIR0Bx1KoNutOmdX2UKGgGR8BssOrp7kXDaAdNhANoCEdAcdb0tAcDKnV9lChoBkdAQ70cQyylemgHTegDaAhHQHHg0rwvxpd1fZQoaAZHQEu2tRNyo4xoB0t0aAhHQHHkp1zQu291fZQoaAZHwEzYLofSx7loB0ujaAhHQHHoUiMYMv11fZQoaAZHwF5MDkU9IPNoB00EAWgIR0Bx6PtNSIgvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 48, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9c8375b03cc237a5ac6ad13fb0e1e99898c6bd634bd68769128cc5c9958f5ae
3
+ size 147963
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7be538dd8f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be538dd9000>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be538dd9090>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be538dd9120>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7be538dd91b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7be538dd9240>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be538dd92d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be538dd9360>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7be538dd93f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be538dd9480>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be538dd9510>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be538dd95a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7be538f6dfc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 114688,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1709853572425559775,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbYSzxCK7M/fgNoPpOLrr1tFL67vpgLvQAAAAAAAAAAADG1Puf7kL0qajs+IdOYvlpemL6EuwW/AACAPwAAgD8moRm/vT1svVoWM7rNPiw4xddOvjoWlzgAAIA/AACAP9ph9r1QO6c/uqDxvuT7xL7pvWi9JqYfvgAAAAAAAAAAV7cZv0ncbT0KOhG/Yk25vrbO7z693C6+AAAAAAAAAABmlse94RiTui3ez7svB4Q1c/ZCu+Bz6LQAAIA/AACAP81OJz3WU6w/EKfoPimDxL6XKpa8ZgByvQAAAAAAAAAAojYXvxaxQD05Xqc8Jtt2PX/xHb5KvQe8AAAAAAAAAABGkhw+smyOP971rT41Zq++d3tTPSvSsj0AAAAAAAAAACtV5L6XMXi9phPHuVv+BL4g6cs8Y1giPgAAAAAAAAAAIRFJvywqjL0jjOI6wh2yvBwU9r12dS09AAAAAAAAAADDlKU+HbFtPkqfMz6ZhyK/+e4PPoo1GLsAAAAAAAAAAABmvDyvuw4/iF2hvTl6BL/u8hq+T7odvgAAAAAAAAAAGlGYPaClMD89D3O+YM76vpy7Nj5/95G+AAAAAAAAAADSZtS+SL6hPzYqEr43RaC+7CnZvE49qD0AAAAAAAAAAGnhDL82bSO+0my4uwG6o7zI5jg9WlFQPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQD8/BnBciW6MAWyUS4yMAXSUR0BwiLG5tm+TdX2UKGgGR0A2pQjlgc94aAdLrWgIR0BwizGvOhTPdX2UKGgGR8BnMOMju8braAdNDwFoCEdAcIuLl3hXKnV9lChoBkdAEJ3y7PIGQmgHS35oCEdAcI07Wd3B6HV9lChoBkfAKc7X6InBtWgHS4toCEdAcJCNL127nXV9lChoBkdAESmYSg5BC2gHS1loCEdAcJIUR3/xUnV9lChoBkfAI9Mh5gPVeGgHS4BoCEdAcJqHT7VJ+XV9lChoBkfAKOY7zTWoWGgHS3VoCEdAcJ03yqdYn3V9lChoBkfANc1rdnCfpWgHS41oCEdAcJ2noPkJbHV9lChoBkdAMyTFId2gWmgHS3NoCEdAcJ9YplSS/3V9lChoBkdAKevdVNpM6GgHS3JoCEdAcJ+ARChN/XV9lChoBkdAPfLSmZVn3GgHS5doCEdAcKATOPeYUnV9lChoBkfANChfShJyyWgHS8VoCEdAcKCjENvwVnV9lChoBkfAX+VnFo+OfmgHS8ZoCEdAcKIuHvc8DHV9lChoBkfAOItNBWxQi2gHS5poCEdAcKK2uPmxMXV9lChoBkfAG4JMxoIv8WgHS5NoCEdAcKjPkJa7mXV9lChoBkfAXuN+RYA80WgHTRgBaAhHQHCpRwuM+/x1fZQoaAZHwDbhR2r4nF5oB0uPaAhHQHCpaSX+l0p1fZQoaAZHwDq7lhgE2YRoB0tcaAhHQHCq74N7SiN1fZQoaAZHwGSrK8Djin5oB0vbaAhHQHCwZRoAXEZ1fZQoaAZHQCM6MBIWgvloB0udaAhHQHC0Zgb6xgR1fZQoaAZHQBJXta6jFhpoB0uPaAhHQHC0i+QEIPd1fZQoaAZHQDAPGsFMZgpoB0uMaAhHQHC1fzjFQ2x1fZQoaAZHQBhbGNrCWNZoB0uHaAhHQHC2YU34sVd1fZQoaAZHwGEOFsHjZL9oB0vTaAhHQHC6TGYKIBR1fZQoaAZHwFG5Fyq+8GtoB0vBaAhHQHC8kwnH/951fZQoaAZHv/Lbo8p1A7hoB0uBaAhHQHC9ORxLkCF1fZQoaAZHwED4kXUH6dloB0vLaAhHQHC+2hh6Skl1fZQoaAZHwCGeu9vjwQVoB0ugaAhHQHDBlXiiqQ11fZQoaAZHwEGwqgAZKnNoB0u3aAhHQHDF7+PzWf91fZQoaAZHwELhmPo3aSNoB0tvaAhHQHDGa7NB4Ux1fZQoaAZHwBUjjvNNahZoB0uJaAhHQHDGbeQ+2Vp1fZQoaAZHwEfdTDO1OTJoB0vwaAhHQHDIEpmVZ9x1fZQoaAZHQAFGlqJuVHFoB0uTaAhHQHDNPBi1Aqx1fZQoaAZHwEmjs41gpjNoB0vZaAhHQHDNZ39rGip1fZQoaAZHQCUydJ8OTaFoB0udaAhHQHDNvChvitJ1fZQoaAZHv+L1RLsa86FoB0tpaAhHQHDNuz2OAAh1fZQoaAZHwEA8F36hxo9oB0udaAhHQHDPxf8dgfF1fZQoaAZHwEP0Yc/+sHVoB0tZaAhHQHDQFFYuCf91fZQoaAZHQC7ScVgx8D1oB03oA2gIR0Bw0Znh86V/dX2UKGgGR8A43mAskIHDaAdLm2gIR0Bw0wM9bHIZdX2UKGgGR8BRoMdkrf+CaAdLdWgIR0Bw12Ya5wwTdX2UKGgGR0ApWKaXrt3OaAdN6ANoCEdAcNg+ERJ2+3V9lChoBkfAQXrH80k4WGgHS7NoCEdAcNiOtW+49XV9lChoBkfAS8H1nM+u/2gHS6xoCEdAcNjOz6ab4XV9lChoBkfAOaHCbc45tGgHS4NoCEdAcNlL4N7SiXV9lChoBkfAAKF49ovi+GgHS41oCEdAcR4RceKba3V9lChoBkfABiJQ+EAYHmgHS31oCEdAcR/sNDtw73V9lChoBkfAQkmOlwcYImgHS4FoCEdAcSAhnrY5DXV9lChoBkfAU1CZTho/RmgHS69oCEdAcSBcBU70WnV9lChoBkdADS0AtFrmAGgHS2loCEdAcSFfCQ9zO3V9lChoBkdAMsoAsCkoF2gHS5NoCEdAcSMoIfKZD3V9lChoBkdAFVkPczqKQGgHS6toCEdAcSXRf4REnnV9lChoBkfARma+pOvdM2gHS75oCEdAcSYAood+5XV9lChoBkfAHjKyv9tMwmgHS4RoCEdAcSg0cwQDm3V9lChoBkdAOqzXJ5mh/WgHS2loCEdAcSsEd/8VHnV9lChoBkc//5ScbzbvgGgHS5toCEdAcSsnEVFhHHV9lChoBkfARz7wBo24u2gHS7FoCEdAcSyhY/3WWnV9lChoBkdAOPNXcQAdXGgHTegDaAhHQHEuVCojv/l1fZQoaAZHQEF4g/1QIldoB0uiaAhHQHExlNtZV4p1fZQoaAZHwD+hH+ZPVNJoB0vBaAhHQHEyYvrWy1N1fZQoaAZHwC3WIoE0SAZoB0vbaAhHQHEzDrzGxUx1fZQoaAZHwFHcP3BYV7BoB0uQaAhHQHE4aI7/4qR1fZQoaAZHwE+lVAAyVOdoB0vUaAhHQHE7HrIHTql1fZQoaAZHQCHNijL0SRNoB0uOaAhHQHE7Zmh/RVp1fZQoaAZHwBSg2Ifr8ixoB0uQaAhHQHE705U96kZ1fZQoaAZHwGFbu76Hj6xoB00lAWgIR0BxQ9pN9H+ZdX2UKGgGR0BBuhbfP5YYaAdLvmgIR0BxR4svqTr3dX2UKGgGR7+0uAZsKsuGaAdLhWgIR0BxR/EBKcurdX2UKGgGR8BQwGB8QZn+aAdLwmgIR0BxSw3WFvhqdX2UKGgGR8BGDd/rjYI0aAdLvGgIR0BxUEpkPMB7dX2UKGgGR0A+MyfL9uP4aAdLoWgIR0BxV6vB7/n4dX2UKGgGR8BR7RNucc2jaAdLnWgIR0BxXNDUmUnpdX2UKGgGR8A5Q/9YOlO5aAdLYGgIR0BxX5Dx9XtCdX2UKGgGR8BMlVZcLSeAaAdLvmgIR0BxYbrt3OfNdX2UKGgGR8A8EwC8vmHQaAdLxGgIR0BxYy1w5vLpdX2UKGgGR8Aaji3ocJdCaAdLpWgIR0BxZXD63y7PdX2UKGgGR8BDvuKGcnVoaAdLe2gIR0Bxb1/kNnXedX2UKGgGR8BNWrf1pTMraAdL42gIR0BxdYQe3hGZdX2UKGgGR8ALfjOs1baAaAdLh2gIR0BxedNahYeUdX2UKGgGR8BCEOGj9GZvaAdLvWgIR0BxgkExIre7dX2UKGgGR8BDkLuYx+KCaAdLpWgIR0BxgzJyQxN7dX2UKGgGR8BPi3v6TGHYaAdLqmgIR0BxiVlqagEmdX2UKGgGR8BfjyQHRkVfaAdL/WgIR0BxmokiUxEfdX2UKGgGR0AokjsUqQRxaAdLfGgIR0BxodLEk0JodX2UKGgGR0A7LhaTwDvFaAdLhmgIR0Bxo12yLQ5WdX2UKGgGR8BRpS6pYLb6aAdLdGgIR0Bxpoz1schldX2UKGgGR8BP0JK8L8aXaAdL/mgIR0BxrA3qAz55dX2UKGgGR8BoVWT5ftx/aAdNBAFoCEdAcbvozeoDPnV9lChoBkdAHS0Mw1zhgmgHS4BoCEdAcb2eTV2A5XV9lChoBkfAOhjjNpudgGgHS3FoCEdAccaAdGRV63V9lChoBkdAPktSMtK7I2gHS25oCEdAccuPWxyGSXV9lChoBkdAI3Cqp97Wu2gHTegDaAhHQHHMCrtE5Qx1fZQoaAZHwEXUIfr8iwBoB03oA2gIR0Bx0tLEk0JodX2UKGgGR0AxKXKr7wazaAdLtWgIR0Bx1KoNutOmdX2UKGgGR8BssOrp7kXDaAdNhANoCEdAcdb0tAcDKnV9lChoBkdAQ70cQyylemgHTegDaAhHQHHg0rwvxpd1fZQoaAZHQEu2tRNyo4xoB0t0aAhHQHHkp1zQu291fZQoaAZHwEzYLofSx7loB0ujaAhHQHHoUiMYMv11fZQoaAZHwF5MDkU9IPNoB00EAWgIR0Bx6PtNSIgvdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 48,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a2e9e5301083d35800f2d974c91dc7eb27533b4a06c8937fff67c635822d409
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92f76c1aa1d1d4b88098a7b5afa09d07dc9316aeffdf1161421b938cbe4b03e0
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (89.6 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -238.86066409102642, "std_reward": 78.73134588320781, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-07T23:26:23.598916"}