Aanisha commited on
Commit
fdaeff6
1 Parent(s): 85d0970

Commit LunarLander

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 273.78 +/- 17.59
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f827353ccb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f827353cd40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f827353cdd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f827353ce60>", "_build": "<function ActorCriticPolicy._build at 0x7f827353cef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f827353cf80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8273543050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f82735430e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8273543170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8273543200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8273543290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f827358bae0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1651778092.5429862, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO3rMb5sX/E+8kmsPeTPrL5WMkS9SzFoPQAAAAAAAAAAmv0BvUjDlrqG98yyP8osMbV3hbqoKpwzAACAPwAAgD+T+Ga+aFvhvA3iLDry9q84rrJDPq5TYbkAAIA/AACAPyD/OL6PjHe8sYmjvKOT/rpu6dc9A1bNOwAAgD8AAIA/2hOoPQvKmz9mbNQ+s+cZv8uW7j3EkZc+AAAAAAAAAACz1fy9ClVGuzUQaTcCm700uCxNPE7GkrYAAIA/AACAPw2xF74UJ4o/TfSQvtByDb/Hlk6+ZNKuvQAAAAAAAAAAgAW5PcVXpT63QAq+zsWoviKVCT3idLY8AAAAAAAAAACaTka9SlI7PtgaKDyPGIq+PkhbO5OLWT0AAAAAAAAAAGaYcTz1W7I/ehf4PnAVkr73OzK8VqruvAAAAAAAAAAAJimQvWLLwT+CcYK+6fshvnFfmr3S5uC9AAAAAAAAAAD2y2G+DO4NPzP1Kj4iR8m+lm9bvdQ9wz0AAAAAAAAAAHogOL4cLHS8lvjeuwynK7rMctA9o8sKOwAAgD8AAIA/M4s1O5fTsD802AM9hleAvqvY+TvegcK7AAAAAAAAAACaOSY83927P8KHLT6uerU+gOOJvGV9PL0AAAAAAAAAALOyHb1SW7k/jwNCvxbojT7RNNM8bhgGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjGmmex2IcECUhpRSlIwBbJRL6IwBdJRHQJ0Su7jDKo11fZQoaAZoCWgPQwhKQiJtI3FyQJSGlFKUaBVL02gWR0CdEtYJVsDXdX2UKGgGaAloD0MInQ/PEuRlcECUhpRSlGgVS9BoFkdAnRN3r2QGOnV9lChoBmgJaA9DCCcuxyuQyWxAlIaUUpRoFUvXaBZHQJ0U2gsbvPV1fZQoaAZoCWgPQwjfwrrx7oRbQJSGlFKUaBVN6ANoFkdAnRTagM+eOHV9lChoBmgJaA9DCO4IpwWvn25AlIaUUpRoFUvcaBZHQJ0WpajesPt1fZQoaAZoCWgPQwiW6ZeItz5xQJSGlFKUaBVL7WgWR0CdFwFa0QbudX2UKGgGaAloD0MI3PXSFMHtc0CUhpRSlGgVS8ZoFkdAnRgdDx9XtHV9lChoBmgJaA9DCMk4RrLHB3JAlIaUUpRoFUvMaBZHQJ0YSYZ2pyZ1fZQoaAZoCWgPQwjbEyS2O79vQJSGlFKUaBVNAQFoFkdAnRhxnjABUHV9lChoBmgJaA9DCB3mywsw92FAlIaUUpRoFU3oA2gWR0CdGT03wTdtdX2UKGgGaAloD0MI5/wUx0HqcECUhpRSlGgVS/JoFkdAnRk9zwMH8nV9lChoBmgJaA9DCBVXlX2XGXFAlIaUUpRoFUvUaBZHQJ0aa99MK1J1fZQoaAZoCWgPQwhzgGCOns1vQJSGlFKUaBVL8WgWR0CdG2ZNfw7UdX2UKGgGaAloD0MImSzuPzIVc0CUhpRSlGgVS9FoFkdAnRvJ00WM0nV9lChoBmgJaA9DCBEcl3ETAXNAlIaUUpRoFUv5aBZHQJ0daGahHsl1fZQoaAZoCWgPQwgf2Vw1T0ZvQJSGlFKUaBVLzGgWR0CdHZnied08dX2UKGgGaAloD0MI3dJqSNwsc0CUhpRSlGgVTSQBaBZHQJ0gMuoP07N1fZQoaAZoCWgPQwjZlgFnaRNyQJSGlFKUaBVNCQFoFkdAnSBweNkvsnV9lChoBmgJaA9DCG3IPzNI73FAlIaUUpRoFUv5aBZHQJ0ho2vStvJ1fZQoaAZoCWgPQwjEk93M6KlxQJSGlFKUaBVL/mgWR0CdIkOC5EtvdX2UKGgGaAloD0MIPStpxTdoc0CUhpRSlGgVS+ZoFkdAnSKpkf9xZXV9lChoBmgJaA9DCELNkCqKOUxAlIaUUpRoFUuoaBZHQJ0jZLi++M91fZQoaAZoCWgPQwjzyvW2mcJfQJSGlFKUaBVN6ANoFkdAnSOM3qAz6HV9lChoBmgJaA9DCC0Kuyg66XBAlIaUUpRoFU0IAWgWR0CdI/sPatcOdX2UKGgGaAloD0MIqMZLNwmOcUCUhpRSlGgVS/hoFkdAnSQvozN2T3V9lChoBmgJaA9DCAcI5uixrHFAlIaUUpRoFUvcaBZHQJ0kPHQyAQR1fZQoaAZoCWgPQwjvrrMhfxxyQJSGlFKUaBVNEwFoFkdAnSREUXYUWXV9lChoBmgJaA9DCIulSL7SHHBAlIaUUpRoFUv9aBZHQJ0kYlXzUZx1fZQoaAZoCWgPQwjScTWya4pwQJSGlFKUaBVL7GgWR0CdJYzFdcB2dX2UKGgGaAloD0MI0zB8REx7ckCUhpRSlGgVS/JoFkdAnSeovzvqknV9lChoBmgJaA9DCM6JPbSPdXBAlIaUUpRoFUvNaBZHQJ0omUNayKN1fZQoaAZoCWgPQwj2RNeF3+hyQJSGlFKUaBVNDgFoFkdAnSiYHC4z8HV9lChoBmgJaA9DCIi5pGp70XBAlIaUUpRoFUvoaBZHQJ1uRwVCXyB1fZQoaAZoCWgPQwgJqHAEaZVxQJSGlFKUaBVL0WgWR0CdbpkLhJiBdX2UKGgGaAloD0MI5ssLsI82TkCUhpRSlGgVTegDaBZHQJ1vFKjBVMp1fZQoaAZoCWgPQwgfLjnulHxvQJSGlFKUaBVL12gWR0Cdb0r0rbxmdX2UKGgGaAloD0MIxuBh2rfccECUhpRSlGgVS9VoFkdAnW+DgZTAFnV9lChoBmgJaA9DCO1JYHMOPhpAlIaUUpRoFUtYaBZHQJ1wkQL/jsF1fZQoaAZoCWgPQwjXpNsSOYBuQJSGlFKUaBVL52gWR0CdcKrK/20zdX2UKGgGaAloD0MI6IcRwuPKckCUhpRSlGgVS9loFkdAnXDYbS7XhHV9lChoBmgJaA9DCG7BUl2AJXBAlIaUUpRoFUvZaBZHQJ1w4+r2g391fZQoaAZoCWgPQwihvmVOF15zQJSGlFKUaBVL2WgWR0CdcOkDp1RtdX2UKGgGaAloD0MI2NXkKSutcUCUhpRSlGgVS+VoFkdAnXFbWZqmCXV9lChoBmgJaA9DCNRH4A8/zG5AlIaUUpRoFUv2aBZHQJ1xiX1J17p1fZQoaAZoCWgPQwjJy5pYYN1wQJSGlFKUaBVNBQFoFkdAnXGtQKrq+3V9lChoBmgJaA9DCB1Z+WVwQ3JAlIaUUpRoFUvmaBZHQJ1yXOMVDa51fZQoaAZoCWgPQwiifhe2ZqFIQJSGlFKUaBVLdGgWR0CddABCUorndX2UKGgGaAloD0MI7bd2oiSCckCUhpRSlGgVS81oFkdAnXQHTI/7i3V9lChoBmgJaA9DCATLETKQInFAlIaUUpRoFUv9aBZHQJ100Bp5/sp1fZQoaAZoCWgPQwgziXrBp7VyQJSGlFKUaBVL4GgWR0Cdda5Qgs9TdX2UKGgGaAloD0MIVKcDWQ+5cUCUhpRSlGgVS/JoFkdAnXYL2+PBBXV9lChoBmgJaA9DCEw2Hmyx8m9AlIaUUpRoFUveaBZHQJ12RYuCf6J1fZQoaAZoCWgPQwiel4qN+W1zQJSGlFKUaBVL9mgWR0CddujZL7GedX2UKGgGaAloD0MIYtuizAY9cECUhpRSlGgVS8xoFkdAnXfk+HJtBXV9lChoBmgJaA9DCNMRwM0iY3BAlIaUUpRoFUvkaBZHQJ1387uDzy11fZQoaAZoCWgPQwjeAZ60sDhxQJSGlFKUaBVL4WgWR0CdeAkrf+CLdX2UKGgGaAloD0MIoidlUoMFc0CUhpRSlGgVTRgBaBZHQJ14jYlIEr51fZQoaAZoCWgPQwhhpYKKKuJvQJSGlFKUaBVL72gWR0CdeJUFB6a9dX2UKGgGaAloD0MIUBiUaXTSckCUhpRSlGgVS8poFkdAnXkILgGbC3V9lChoBmgJaA9DCKTEru1tXXFAlIaUUpRoFUv3aBZHQJ15gZGax5d1fZQoaAZoCWgPQwhckC3L16NvQJSGlFKUaBVL32gWR0Cde59Jz1brdX2UKGgGaAloD0MIZMkcyzvJckCUhpRSlGgVS/ZoFkdAnXxuoxYaHnV9lChoBmgJaA9DCI3UeyrnU3BAlIaUUpRoFUvsaBZHQJ18/m2b5M11fZQoaAZoCWgPQwi7KHrgY1JwQJSGlFKUaBVL5GgWR0CdfZ7XxvvSdX2UKGgGaAloD0MIAcPy5xuQcUCUhpRSlGgVTXkBaBZHQJ1+YBfa6Bl1fZQoaAZoCWgPQwgXKZSF75twQJSGlFKUaBVL52gWR0Cdfmru6VdHdX2UKGgGaAloD0MIIhtIFxt6bkCUhpRSlGgVS/5oFkdAnX8NbPhQ33V9lChoBmgJaA9DCJ1n7Eu2UG9AlIaUUpRoFUvNaBZHQJ1/Md8zAN51fZQoaAZoCWgPQwioj8Af/rhwQJSGlFKUaBVL6WgWR0Cdfy4fOlfrdX2UKGgGaAloD0MIveMUHUkkcECUhpRSlGgVS9poFkdAnX+sju8brHV9lChoBmgJaA9DCNXQBmADUnFAlIaUUpRoFUv2aBZHQJ2ApvMr3Cd1fZQoaAZoCWgPQwhy+Q/pd8FzQJSGlFKUaBVL5mgWR0CdgKbkwN9ZdX2UKGgGaAloD0MIyogLQKOzbkCUhpRSlGgVS99oFkdAnYDifpUxVXV9lChoBmgJaA9DCEcAN4uXDHFAlIaUUpRoFUvzaBZHQJ2BB7F85S51fZQoaAZoCWgPQwixUkFFVexwQJSGlFKUaBVL7GgWR0CdgbU/wAlwdX2UKGgGaAloD0MItjF2wguuc0CUhpRSlGgVS+BoFkdAnYNUKJEYwnV9lChoBmgJaA9DCOzeisTErXJAlIaUUpRoFUvEaBZHQJ2ERF7Uoa11fZQoaAZoCWgPQwjsSzYeLIhxQJSGlFKUaBVL2GgWR0CdhGP1+RYBdX2UKGgGaAloD0MIaVN1j2yYbkCUhpRSlGgVS+9oFkdAnYSurhisn3V9lChoBmgJaA9DCOOkMO9xRkdAlIaUUpRoFUvLaBZHQJ2FPQv6CUZ1fZQoaAZoCWgPQwitMH2vYZVzQJSGlFKUaBVLxmgWR0Cdh81He7+UdX2UKGgGaAloD0MI9gzhmKX7cECUhpRSlGgVTQIBaBZHQJ2H+VgQYk51fZQoaAZoCWgPQwiKWppbodxxQJSGlFKUaBVL9GgWR0CdiCc8TzundX2UKGgGaAloD0MIshNegpMscUCUhpRSlGgVS9toFkdAnYhYRZlnRXV9lChoBmgJaA9DCNP02QEXw3JAlIaUUpRoFUvSaBZHQJ2IdqzqrzZ1fZQoaAZoCWgPQwhYjpCBfEFxQJSGlFKUaBVNHgFoFkdAnYkheLNwBHV9lChoBmgJaA9DCD0P7s4a8nFAlIaUUpRoFUv9aBZHQJ2Jk2fkFOh1fZQoaAZoCWgPQwjT9q+stIVxQJSGlFKUaBVL52gWR0Cdigpr1uiwdX2UKGgGaAloD0MI8Pj2roFhckCUhpRSlGgVS9NoFkdAnYyR1HOKO3V9lChoBmgJaA9DCHR5c7hWaXBAlIaUUpRoFUvOaBZHQJ2NBeKKpDN1fZQoaAZoCWgPQwhjmBO0yQtuQJSGlFKUaBVL62gWR0CdjThbGFSLdX2UKGgGaAloD0MInrXbLjRWcUCUhpRSlGgVS/loFkdAnY2XmzSkTHV9lChoBmgJaA9DCDZWYp5VcnJAlIaUUpRoFUvIaBZHQJ2QAA4n4PB1fZQoaAZoCWgPQwjaVUj5ybZyQJSGlFKUaBVL2mgWR0CdkJbj94u9dX2UKGgGaAloD0MIAaQ2cfJWckCUhpRSlGgVTQACaBZHQJ2Q+X8fmtB1fZQoaAZoCWgPQwh3oiQkkgt0QJSGlFKUaBVL72gWR0CdkTpwCKaYdX2UKGgGaAloD0MI0LNZ9TnVc0CUhpRSlGgVS75oFkdAnZFfboKUmnV9lChoBmgJaA9DCEVj7e8sEXNAlIaUUpRoFUvZaBZHQJ2RaVqveP91fZQoaAZoCWgPQwhyi/m5Yd9wQJSGlFKUaBVLz2gWR0CdkX8eS0SidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81b07ccb869015d37efa8df34a49476aaf418b3042ed4e09267d6c0d548ab475
3
+ size 147662
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f827353ccb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f827353cd40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f827353cdd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f827353ce60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f827353cef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f827353cf80>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8273543050>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f82735430e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8273543170>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8273543200>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8273543290>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f827358bae0>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 42,
49
+ "action_noise": null,
50
+ "start_time": 1651778092.5429862,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO3rMb5sX/E+8kmsPeTPrL5WMkS9SzFoPQAAAAAAAAAAmv0BvUjDlrqG98yyP8osMbV3hbqoKpwzAACAPwAAgD+T+Ga+aFvhvA3iLDry9q84rrJDPq5TYbkAAIA/AACAPyD/OL6PjHe8sYmjvKOT/rpu6dc9A1bNOwAAgD8AAIA/2hOoPQvKmz9mbNQ+s+cZv8uW7j3EkZc+AAAAAAAAAACz1fy9ClVGuzUQaTcCm700uCxNPE7GkrYAAIA/AACAPw2xF74UJ4o/TfSQvtByDb/Hlk6+ZNKuvQAAAAAAAAAAgAW5PcVXpT63QAq+zsWoviKVCT3idLY8AAAAAAAAAACaTka9SlI7PtgaKDyPGIq+PkhbO5OLWT0AAAAAAAAAAGaYcTz1W7I/ehf4PnAVkr73OzK8VqruvAAAAAAAAAAAJimQvWLLwT+CcYK+6fshvnFfmr3S5uC9AAAAAAAAAAD2y2G+DO4NPzP1Kj4iR8m+lm9bvdQ9wz0AAAAAAAAAAHogOL4cLHS8lvjeuwynK7rMctA9o8sKOwAAgD8AAIA/M4s1O5fTsD802AM9hleAvqvY+TvegcK7AAAAAAAAAACaOSY83927P8KHLT6uerU+gOOJvGV9PL0AAAAAAAAAALOyHb1SW7k/jwNCvxbojT7RNNM8bhgGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjGmmex2IcECUhpRSlIwBbJRL6IwBdJRHQJ0Su7jDKo11fZQoaAZoCWgPQwhKQiJtI3FyQJSGlFKUaBVL02gWR0CdEtYJVsDXdX2UKGgGaAloD0MInQ/PEuRlcECUhpRSlGgVS9BoFkdAnRN3r2QGOnV9lChoBmgJaA9DCCcuxyuQyWxAlIaUUpRoFUvXaBZHQJ0U2gsbvPV1fZQoaAZoCWgPQwjfwrrx7oRbQJSGlFKUaBVN6ANoFkdAnRTagM+eOHV9lChoBmgJaA9DCO4IpwWvn25AlIaUUpRoFUvcaBZHQJ0WpajesPt1fZQoaAZoCWgPQwiW6ZeItz5xQJSGlFKUaBVL7WgWR0CdFwFa0QbudX2UKGgGaAloD0MI3PXSFMHtc0CUhpRSlGgVS8ZoFkdAnRgdDx9XtHV9lChoBmgJaA9DCMk4RrLHB3JAlIaUUpRoFUvMaBZHQJ0YSYZ2pyZ1fZQoaAZoCWgPQwjbEyS2O79vQJSGlFKUaBVNAQFoFkdAnRhxnjABUHV9lChoBmgJaA9DCB3mywsw92FAlIaUUpRoFU3oA2gWR0CdGT03wTdtdX2UKGgGaAloD0MI5/wUx0HqcECUhpRSlGgVS/JoFkdAnRk9zwMH8nV9lChoBmgJaA9DCBVXlX2XGXFAlIaUUpRoFUvUaBZHQJ0aa99MK1J1fZQoaAZoCWgPQwhzgGCOns1vQJSGlFKUaBVL8WgWR0CdG2ZNfw7UdX2UKGgGaAloD0MImSzuPzIVc0CUhpRSlGgVS9FoFkdAnRvJ00WM0nV9lChoBmgJaA9DCBEcl3ETAXNAlIaUUpRoFUv5aBZHQJ0daGahHsl1fZQoaAZoCWgPQwgf2Vw1T0ZvQJSGlFKUaBVLzGgWR0CdHZnied08dX2UKGgGaAloD0MI3dJqSNwsc0CUhpRSlGgVTSQBaBZHQJ0gMuoP07N1fZQoaAZoCWgPQwjZlgFnaRNyQJSGlFKUaBVNCQFoFkdAnSBweNkvsnV9lChoBmgJaA9DCG3IPzNI73FAlIaUUpRoFUv5aBZHQJ0ho2vStvJ1fZQoaAZoCWgPQwjEk93M6KlxQJSGlFKUaBVL/mgWR0CdIkOC5EtvdX2UKGgGaAloD0MIPStpxTdoc0CUhpRSlGgVS+ZoFkdAnSKpkf9xZXV9lChoBmgJaA9DCELNkCqKOUxAlIaUUpRoFUuoaBZHQJ0jZLi++M91fZQoaAZoCWgPQwjzyvW2mcJfQJSGlFKUaBVN6ANoFkdAnSOM3qAz6HV9lChoBmgJaA9DCC0Kuyg66XBAlIaUUpRoFU0IAWgWR0CdI/sPatcOdX2UKGgGaAloD0MIqMZLNwmOcUCUhpRSlGgVS/hoFkdAnSQvozN2T3V9lChoBmgJaA9DCAcI5uixrHFAlIaUUpRoFUvcaBZHQJ0kPHQyAQR1fZQoaAZoCWgPQwjvrrMhfxxyQJSGlFKUaBVNEwFoFkdAnSREUXYUWXV9lChoBmgJaA9DCIulSL7SHHBAlIaUUpRoFUv9aBZHQJ0kYlXzUZx1fZQoaAZoCWgPQwjScTWya4pwQJSGlFKUaBVL7GgWR0CdJYzFdcB2dX2UKGgGaAloD0MI0zB8REx7ckCUhpRSlGgVS/JoFkdAnSeovzvqknV9lChoBmgJaA9DCM6JPbSPdXBAlIaUUpRoFUvNaBZHQJ0omUNayKN1fZQoaAZoCWgPQwj2RNeF3+hyQJSGlFKUaBVNDgFoFkdAnSiYHC4z8HV9lChoBmgJaA9DCIi5pGp70XBAlIaUUpRoFUvoaBZHQJ1uRwVCXyB1fZQoaAZoCWgPQwgJqHAEaZVxQJSGlFKUaBVL0WgWR0CdbpkLhJiBdX2UKGgGaAloD0MI5ssLsI82TkCUhpRSlGgVTegDaBZHQJ1vFKjBVMp1fZQoaAZoCWgPQwgfLjnulHxvQJSGlFKUaBVL12gWR0Cdb0r0rbxmdX2UKGgGaAloD0MIxuBh2rfccECUhpRSlGgVS9VoFkdAnW+DgZTAFnV9lChoBmgJaA9DCO1JYHMOPhpAlIaUUpRoFUtYaBZHQJ1wkQL/jsF1fZQoaAZoCWgPQwjXpNsSOYBuQJSGlFKUaBVL52gWR0CdcKrK/20zdX2UKGgGaAloD0MI6IcRwuPKckCUhpRSlGgVS9loFkdAnXDYbS7XhHV9lChoBmgJaA9DCG7BUl2AJXBAlIaUUpRoFUvZaBZHQJ1w4+r2g391fZQoaAZoCWgPQwihvmVOF15zQJSGlFKUaBVL2WgWR0CdcOkDp1RtdX2UKGgGaAloD0MI2NXkKSutcUCUhpRSlGgVS+VoFkdAnXFbWZqmCXV9lChoBmgJaA9DCNRH4A8/zG5AlIaUUpRoFUv2aBZHQJ1xiX1J17p1fZQoaAZoCWgPQwjJy5pYYN1wQJSGlFKUaBVNBQFoFkdAnXGtQKrq+3V9lChoBmgJaA9DCB1Z+WVwQ3JAlIaUUpRoFUvmaBZHQJ1yXOMVDa51fZQoaAZoCWgPQwiifhe2ZqFIQJSGlFKUaBVLdGgWR0CddABCUorndX2UKGgGaAloD0MI7bd2oiSCckCUhpRSlGgVS81oFkdAnXQHTI/7i3V9lChoBmgJaA9DCATLETKQInFAlIaUUpRoFUv9aBZHQJ100Bp5/sp1fZQoaAZoCWgPQwgziXrBp7VyQJSGlFKUaBVL4GgWR0Cdda5Qgs9TdX2UKGgGaAloD0MIVKcDWQ+5cUCUhpRSlGgVS/JoFkdAnXYL2+PBBXV9lChoBmgJaA9DCEw2Hmyx8m9AlIaUUpRoFUveaBZHQJ12RYuCf6J1fZQoaAZoCWgPQwiel4qN+W1zQJSGlFKUaBVL9mgWR0CddujZL7GedX2UKGgGaAloD0MIYtuizAY9cECUhpRSlGgVS8xoFkdAnXfk+HJtBXV9lChoBmgJaA9DCNMRwM0iY3BAlIaUUpRoFUvkaBZHQJ1387uDzy11fZQoaAZoCWgPQwjeAZ60sDhxQJSGlFKUaBVL4WgWR0CdeAkrf+CLdX2UKGgGaAloD0MIoidlUoMFc0CUhpRSlGgVTRgBaBZHQJ14jYlIEr51fZQoaAZoCWgPQwhhpYKKKuJvQJSGlFKUaBVL72gWR0CdeJUFB6a9dX2UKGgGaAloD0MIUBiUaXTSckCUhpRSlGgVS8poFkdAnXkILgGbC3V9lChoBmgJaA9DCKTEru1tXXFAlIaUUpRoFUv3aBZHQJ15gZGax5d1fZQoaAZoCWgPQwhckC3L16NvQJSGlFKUaBVL32gWR0Cde59Jz1brdX2UKGgGaAloD0MIZMkcyzvJckCUhpRSlGgVS/ZoFkdAnXxuoxYaHnV9lChoBmgJaA9DCI3UeyrnU3BAlIaUUpRoFUvsaBZHQJ18/m2b5M11fZQoaAZoCWgPQwi7KHrgY1JwQJSGlFKUaBVL5GgWR0CdfZ7XxvvSdX2UKGgGaAloD0MIAcPy5xuQcUCUhpRSlGgVTXkBaBZHQJ1+YBfa6Bl1fZQoaAZoCWgPQwgXKZSF75twQJSGlFKUaBVL52gWR0Cdfmru6VdHdX2UKGgGaAloD0MIIhtIFxt6bkCUhpRSlGgVS/5oFkdAnX8NbPhQ33V9lChoBmgJaA9DCJ1n7Eu2UG9AlIaUUpRoFUvNaBZHQJ1/Md8zAN51fZQoaAZoCWgPQwioj8Af/rhwQJSGlFKUaBVL6WgWR0Cdfy4fOlfrdX2UKGgGaAloD0MIveMUHUkkcECUhpRSlGgVS9poFkdAnX+sju8brHV9lChoBmgJaA9DCNXQBmADUnFAlIaUUpRoFUv2aBZHQJ2ApvMr3Cd1fZQoaAZoCWgPQwhy+Q/pd8FzQJSGlFKUaBVL5mgWR0CdgKbkwN9ZdX2UKGgGaAloD0MIyogLQKOzbkCUhpRSlGgVS99oFkdAnYDifpUxVXV9lChoBmgJaA9DCEcAN4uXDHFAlIaUUpRoFUvzaBZHQJ2BB7F85S51fZQoaAZoCWgPQwixUkFFVexwQJSGlFKUaBVL7GgWR0CdgbU/wAlwdX2UKGgGaAloD0MItjF2wguuc0CUhpRSlGgVS+BoFkdAnYNUKJEYwnV9lChoBmgJaA9DCOzeisTErXJAlIaUUpRoFUvEaBZHQJ2ERF7Uoa11fZQoaAZoCWgPQwjsSzYeLIhxQJSGlFKUaBVL2GgWR0CdhGP1+RYBdX2UKGgGaAloD0MIaVN1j2yYbkCUhpRSlGgVS+9oFkdAnYSurhisn3V9lChoBmgJaA9DCOOkMO9xRkdAlIaUUpRoFUvLaBZHQJ2FPQv6CUZ1fZQoaAZoCWgPQwitMH2vYZVzQJSGlFKUaBVLxmgWR0Cdh81He7+UdX2UKGgGaAloD0MI9gzhmKX7cECUhpRSlGgVTQIBaBZHQJ2H+VgQYk51fZQoaAZoCWgPQwiKWppbodxxQJSGlFKUaBVL9GgWR0CdiCc8TzundX2UKGgGaAloD0MIshNegpMscUCUhpRSlGgVS9toFkdAnYhYRZlnRXV9lChoBmgJaA9DCNP02QEXw3JAlIaUUpRoFUvSaBZHQJ2IdqzqrzZ1fZQoaAZoCWgPQwhYjpCBfEFxQJSGlFKUaBVNHgFoFkdAnYkheLNwBHV9lChoBmgJaA9DCD0P7s4a8nFAlIaUUpRoFUv9aBZHQJ2Jk2fkFOh1fZQoaAZoCWgPQwjT9q+stIVxQJSGlFKUaBVL52gWR0Cdigpr1uiwdX2UKGgGaAloD0MI8Pj2roFhckCUhpRSlGgVS9NoFkdAnYyR1HOKO3V9lChoBmgJaA9DCHR5c7hWaXBAlIaUUpRoFUvOaBZHQJ2NBeKKpDN1fZQoaAZoCWgPQwhjmBO0yQtuQJSGlFKUaBVL62gWR0CdjThbGFSLdX2UKGgGaAloD0MInrXbLjRWcUCUhpRSlGgVS/loFkdAnY2XmzSkTHV9lChoBmgJaA9DCDZWYp5VcnJAlIaUUpRoFUvIaBZHQJ2QAA4n4PB1fZQoaAZoCWgPQwjaVUj5ybZyQJSGlFKUaBVL2mgWR0CdkJbj94u9dX2UKGgGaAloD0MIAaQ2cfJWckCUhpRSlGgVTQACaBZHQJ2Q+X8fmtB1fZQoaAZoCWgPQwh3oiQkkgt0QJSGlFKUaBVL72gWR0CdkTpwCKaYdX2UKGgGaAloD0MI0LNZ9TnVc0CUhpRSlGgVS75oFkdAnZFfboKUmnV9lChoBmgJaA9DCEVj7e8sEXNAlIaUUpRoFUvZaBZHQJ2RaVqveP91fZQoaAZoCWgPQwhyi/m5Yd9wQJSGlFKUaBVLz2gWR0CdkX8eS0SidWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 620,
79
+ "n_steps": 1024,
80
+ "gamma": 0.995,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e0ea1d1edf8093a3bb84262df9836f88346b9879dcbf9de2d529e02fa4305ba
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:009f533edac14f89c3bbda5c553169eafc22506b874d9e30bc1a507e0f5dbc74
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bde26a58e2c5ccc85e46246eac73d7ffedd331545b44fe72235e09433cfab54
3
+ size 235778
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.7794420085553, "std_reward": 17.58548805959858, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T19:48:36.046285"}