|
|
from sam_encoder import SAMEncoder |
|
|
from sam_decoder import SAMDecoder |
|
|
import cv2 |
|
|
import numpy as np |
|
|
import argparse |
|
|
import os |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--img_path", "-i", type=str, default="../images/test.jpg", help="input image path") |
|
|
parser.add_argument("--output_dir", "-o", type=str, default="./output", help="result path") |
|
|
args = parser.parse_args() |
|
|
|
|
|
encoder = SAMEncoder(f"../onnx/mobile_sam_encoder.onnx") |
|
|
decoder = SAMDecoder(f"../onnx/mobile_sam_decoder_slim.onnx") |
|
|
|
|
|
image = cv2.imread(args.img_path) |
|
|
h, w, _ = image.shape |
|
|
image_embedding, scale = encoder.encode(image) |
|
|
print("Scale:", scale) |
|
|
|
|
|
point0 = (910, 641) |
|
|
point1 = (1488, 607) |
|
|
point2 = (579, 704) |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
for i, point in enumerate([point0, point1, point2]): |
|
|
image_draw = image.copy() |
|
|
|
|
|
output = decoder.decode(image_embedding[0], point = point,scale = scale) |
|
|
idx = output[0].argmax() |
|
|
|
|
|
image_draw = cv2.circle(image_draw, (int(point[0]), int(point[1])), 10, (0,255,0), -1) |
|
|
mask = output[1][:,idx,:,:][0] |
|
|
mask_mat = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8) |
|
|
mask_mat[mask>0] = 255 |
|
|
mask_mat = cv2.resize(mask_mat, (max(w, h),max(w, h)),interpolation=cv2.INTER_LINEAR) |
|
|
mask_mat = mask_mat[:h, :w] |
|
|
cv2.imwrite(f"{args.output_dir}/point_mask_point_{i}.jpg", mask_mat) |
|
|
mask_ovlap = np.zeros((mask_mat.shape[0], mask_mat.shape[1], 3), dtype=np.uint8) |
|
|
mask_ovlap[mask_mat>0] = [0, 255, 0] |
|
|
image_ovlap = cv2.addWeighted(image_draw, 1, mask_ovlap, 0.5, 0) |
|
|
cv2.imwrite(f"{args.output_dir}/point_mask_ovlap_point_{i}.jpg", image_ovlap) |
|
|
|
|
|
|
|
|
box0 = (910 - 160, 641 - 430, 380, 940) |
|
|
box1 = (479, 482, 191, 518) |
|
|
box2 = (1345, 333, 289, 701) |
|
|
box3 = (1, 357, 311, 751) |
|
|
|
|
|
for i, box in enumerate([box0, box1, box2, box3]): |
|
|
image_draw = image.copy() |
|
|
output = decoder.decode(image_embedding[0], box = box,scale = scale) |
|
|
idx = output[0].argmax() |
|
|
|
|
|
image_draw = cv2.rectangle(image_draw, (int(box[0]), int(box[1])), (int(box[0]+box[2]), int(box[1]+box[3])), (0,255,0), 2) |
|
|
|
|
|
|
|
|
mask = output[1][:,idx,:,:][0] |
|
|
mask_mat = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8) |
|
|
mask_mat[mask>0] = 255 |
|
|
mask_mat = cv2.resize(mask_mat, (max(w, h),max(w, h)),interpolation=cv2.INTER_LINEAR) |
|
|
mask_mat = mask_mat[:h, :w] |
|
|
cv2.imwrite(f"{args.output_dir}/box_mask_box_{i}.jpg", mask_mat) |
|
|
mask_ovlap = np.zeros((mask_mat.shape[0], mask_mat.shape[1], 3), dtype=np.uint8) |
|
|
mask_ovlap[mask_mat>0] = [0, 255, 0] |
|
|
image_ovlap = cv2.addWeighted(image_draw, 1, mask_ovlap, 0.5, 0) |
|
|
cv2.imwrite(f"{args.output_dir}/box_mask_ovlap_box_{i}.jpg", image_ovlap) |
|
|
|