|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "main.h" |
|
|
|
|
|
#include <unsupported/Eigen/EulerAngles> |
|
|
|
|
|
using namespace Eigen; |
|
|
|
|
|
template<typename EulerSystem, typename Scalar> |
|
|
void verify_euler_ranged(const Matrix<Scalar,3,1>& ea, |
|
|
bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma) |
|
|
{ |
|
|
typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType; |
|
|
typedef Matrix<Scalar,3,3> Matrix3; |
|
|
typedef Matrix<Scalar,3,1> Vector3; |
|
|
typedef Quaternion<Scalar> QuaternionType; |
|
|
typedef AngleAxis<Scalar> AngleAxisType; |
|
|
using std::abs; |
|
|
|
|
|
Scalar alphaRangeStart, alphaRangeEnd; |
|
|
Scalar betaRangeStart, betaRangeEnd; |
|
|
Scalar gammaRangeStart, gammaRangeEnd; |
|
|
|
|
|
if (positiveRangeAlpha) |
|
|
{ |
|
|
alphaRangeStart = Scalar(0); |
|
|
alphaRangeEnd = Scalar(2 * EIGEN_PI); |
|
|
} |
|
|
else |
|
|
{ |
|
|
alphaRangeStart = -Scalar(EIGEN_PI); |
|
|
alphaRangeEnd = Scalar(EIGEN_PI); |
|
|
} |
|
|
|
|
|
if (positiveRangeBeta) |
|
|
{ |
|
|
betaRangeStart = Scalar(0); |
|
|
betaRangeEnd = Scalar(2 * EIGEN_PI); |
|
|
} |
|
|
else |
|
|
{ |
|
|
betaRangeStart = -Scalar(EIGEN_PI); |
|
|
betaRangeEnd = Scalar(EIGEN_PI); |
|
|
} |
|
|
|
|
|
if (positiveRangeGamma) |
|
|
{ |
|
|
gammaRangeStart = Scalar(0); |
|
|
gammaRangeEnd = Scalar(2 * EIGEN_PI); |
|
|
} |
|
|
else |
|
|
{ |
|
|
gammaRangeStart = -Scalar(EIGEN_PI); |
|
|
gammaRangeEnd = Scalar(EIGEN_PI); |
|
|
} |
|
|
|
|
|
const int i = EulerSystem::AlphaAxisAbs - 1; |
|
|
const int j = EulerSystem::BetaAxisAbs - 1; |
|
|
const int k = EulerSystem::GammaAxisAbs - 1; |
|
|
|
|
|
const int iFactor = EulerSystem::IsAlphaOpposite ? -1 : 1; |
|
|
const int jFactor = EulerSystem::IsBetaOpposite ? -1 : 1; |
|
|
const int kFactor = EulerSystem::IsGammaOpposite ? -1 : 1; |
|
|
|
|
|
const Vector3 I = EulerAnglesType::AlphaAxisVector(); |
|
|
const Vector3 J = EulerAnglesType::BetaAxisVector(); |
|
|
const Vector3 K = EulerAnglesType::GammaAxisVector(); |
|
|
|
|
|
EulerAnglesType e(ea[0], ea[1], ea[2]); |
|
|
|
|
|
Matrix3 m(e); |
|
|
Vector3 eabis = EulerAnglesType(m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles(); |
|
|
|
|
|
|
|
|
VERIFY(alphaRangeStart <= eabis[0] && eabis[0] <= alphaRangeEnd); |
|
|
VERIFY(betaRangeStart <= eabis[1] && eabis[1] <= betaRangeEnd); |
|
|
VERIFY(gammaRangeStart <= eabis[2] && eabis[2] <= gammaRangeEnd); |
|
|
|
|
|
Vector3 eabis2 = m.eulerAngles(i, j, k); |
|
|
|
|
|
|
|
|
eabis2[0] *= iFactor; |
|
|
eabis2[1] *= jFactor; |
|
|
eabis2[2] *= kFactor; |
|
|
|
|
|
|
|
|
if (positiveRangeAlpha && (eabis2[0] < 0)) |
|
|
eabis2[0] += Scalar(2 * EIGEN_PI); |
|
|
if (positiveRangeBeta && (eabis2[1] < 0)) |
|
|
eabis2[1] += Scalar(2 * EIGEN_PI); |
|
|
if (positiveRangeGamma && (eabis2[2] < 0)) |
|
|
eabis2[2] += Scalar(2 * EIGEN_PI); |
|
|
|
|
|
VERIFY_IS_APPROX(eabis, eabis2); |
|
|
|
|
|
Matrix3 mbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K)); |
|
|
VERIFY_IS_APPROX(m, mbis); |
|
|
|
|
|
|
|
|
if (!(positiveRangeAlpha || positiveRangeBeta || positiveRangeGamma)) |
|
|
{ |
|
|
|
|
|
|
|
|
if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) ) |
|
|
VERIFY((ea-eabis).norm() <= test_precision<Scalar>()); |
|
|
|
|
|
|
|
|
VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); |
|
|
} |
|
|
|
|
|
|
|
|
QuaternionType q(e); |
|
|
eabis = EulerAnglesType(q, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles(); |
|
|
VERIFY_IS_APPROX(eabis, eabis2); |
|
|
} |
|
|
|
|
|
template<typename EulerSystem, typename Scalar> |
|
|
void verify_euler(const Matrix<Scalar,3,1>& ea) |
|
|
{ |
|
|
verify_euler_ranged<EulerSystem>(ea, false, false, false); |
|
|
verify_euler_ranged<EulerSystem>(ea, false, false, true); |
|
|
verify_euler_ranged<EulerSystem>(ea, false, true, false); |
|
|
verify_euler_ranged<EulerSystem>(ea, false, true, true); |
|
|
verify_euler_ranged<EulerSystem>(ea, true, false, false); |
|
|
verify_euler_ranged<EulerSystem>(ea, true, false, true); |
|
|
verify_euler_ranged<EulerSystem>(ea, true, true, false); |
|
|
verify_euler_ranged<EulerSystem>(ea, true, true, true); |
|
|
} |
|
|
|
|
|
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea) |
|
|
{ |
|
|
verify_euler<EulerSystemXYZ>(ea); |
|
|
verify_euler<EulerSystemXYX>(ea); |
|
|
verify_euler<EulerSystemXZY>(ea); |
|
|
verify_euler<EulerSystemXZX>(ea); |
|
|
|
|
|
verify_euler<EulerSystemYZX>(ea); |
|
|
verify_euler<EulerSystemYZY>(ea); |
|
|
verify_euler<EulerSystemYXZ>(ea); |
|
|
verify_euler<EulerSystemYXY>(ea); |
|
|
|
|
|
verify_euler<EulerSystemZXY>(ea); |
|
|
verify_euler<EulerSystemZXZ>(ea); |
|
|
verify_euler<EulerSystemZYX>(ea); |
|
|
verify_euler<EulerSystemZYZ>(ea); |
|
|
} |
|
|
|
|
|
template<typename Scalar> void eulerangles() |
|
|
{ |
|
|
typedef Matrix<Scalar,3,3> Matrix3; |
|
|
typedef Matrix<Scalar,3,1> Vector3; |
|
|
typedef Array<Scalar,3,1> Array3; |
|
|
typedef Quaternion<Scalar> Quaternionx; |
|
|
typedef AngleAxis<Scalar> AngleAxisType; |
|
|
|
|
|
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
|
|
Quaternionx q1; |
|
|
q1 = AngleAxisType(a, Vector3::Random().normalized()); |
|
|
Matrix3 m; |
|
|
m = q1; |
|
|
|
|
|
Vector3 ea = m.eulerAngles(0,1,2); |
|
|
check_all_var(ea); |
|
|
ea = m.eulerAngles(0,1,0); |
|
|
check_all_var(ea); |
|
|
|
|
|
|
|
|
q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); |
|
|
m = q1; |
|
|
ea = m.eulerAngles(0,1,2); |
|
|
check_all_var(ea); |
|
|
ea = m.eulerAngles(0,1,0); |
|
|
check_all_var(ea); |
|
|
|
|
|
|
|
|
ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1); |
|
|
check_all_var(ea); |
|
|
|
|
|
ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); |
|
|
check_all_var(ea); |
|
|
|
|
|
ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI)); |
|
|
check_all_var(ea); |
|
|
|
|
|
ea[1] = 0; |
|
|
check_all_var(ea); |
|
|
|
|
|
ea.head(2).setZero(); |
|
|
check_all_var(ea); |
|
|
|
|
|
ea.setZero(); |
|
|
check_all_var(ea); |
|
|
} |
|
|
|
|
|
void test_EulerAngles() |
|
|
{ |
|
|
for(int i = 0; i < g_repeat; i++) { |
|
|
CALL_SUBTEST_1( eulerangles<float>() ); |
|
|
CALL_SUBTEST_2( eulerangles<double>() ); |
|
|
} |
|
|
} |
|
|
|