|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "main.h" |
|
|
#include <Eigen/Geometry> |
|
|
#include <Eigen/LU> |
|
|
#include <Eigen/SVD> |
|
|
|
|
|
template<typename T> T bounded_acos(T v) |
|
|
{ |
|
|
using std::acos; |
|
|
using std::min; |
|
|
using std::max; |
|
|
return acos((max)(T(-1),(min)(v,T(1)))); |
|
|
} |
|
|
|
|
|
template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) |
|
|
{ |
|
|
using std::abs; |
|
|
typedef typename QuatType::Scalar Scalar; |
|
|
typedef AngleAxis<Scalar> AA; |
|
|
|
|
|
Scalar largeEps = test_precision<Scalar>(); |
|
|
|
|
|
Scalar theta_tot = AA(q1*q0.inverse()).angle(); |
|
|
if(theta_tot>Scalar(EIGEN_PI)) |
|
|
theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot; |
|
|
for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) |
|
|
{ |
|
|
QuatType q = q0.slerp(t,q1); |
|
|
Scalar theta = AA(q*q0.inverse()).angle(); |
|
|
VERIFY(abs(q.norm() - 1) < largeEps); |
|
|
if(theta_tot==0) VERIFY(theta_tot==0); |
|
|
else VERIFY(abs(theta - t * theta_tot) < largeEps); |
|
|
} |
|
|
} |
|
|
|
|
|
template<typename Scalar, int Options> void quaternion(void) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
using std::abs; |
|
|
typedef Matrix<Scalar,3,1> Vector3; |
|
|
typedef Matrix<Scalar,3,3> Matrix3; |
|
|
typedef Quaternion<Scalar,Options> Quaternionx; |
|
|
typedef AngleAxis<Scalar> AngleAxisx; |
|
|
|
|
|
Scalar largeEps = test_precision<Scalar>(); |
|
|
if (internal::is_same<Scalar,float>::value) |
|
|
largeEps = Scalar(1e-3); |
|
|
|
|
|
Scalar eps = internal::random<Scalar>() * Scalar(1e-2); |
|
|
|
|
|
Vector3 v0 = Vector3::Random(), |
|
|
v1 = Vector3::Random(), |
|
|
v2 = Vector3::Random(), |
|
|
v3 = Vector3::Random(); |
|
|
|
|
|
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)), |
|
|
b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
|
|
|
|
|
|
|
|
Quaternionx q1, q2; |
|
|
q2.setIdentity(); |
|
|
VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); |
|
|
q1.coeffs().setRandom(); |
|
|
VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); |
|
|
|
|
|
|
|
|
q1 *= q2; |
|
|
|
|
|
q1 = AngleAxisx(a, v0.normalized()); |
|
|
q2 = AngleAxisx(a, v1.normalized()); |
|
|
|
|
|
|
|
|
Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); |
|
|
if (refangle>Scalar(EIGEN_PI)) |
|
|
refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle; |
|
|
|
|
|
if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) |
|
|
{ |
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); |
|
|
} |
|
|
|
|
|
|
|
|
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); |
|
|
VERIFY_IS_APPROX(q1 * q2 * v2, |
|
|
q1.toRotationMatrix() * q2.toRotationMatrix() * v2); |
|
|
|
|
|
VERIFY( (q2*q1).isApprox(q1*q2, largeEps) |
|
|
|| !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); |
|
|
|
|
|
q2 = q1.toRotationMatrix(); |
|
|
VERIFY_IS_APPROX(q1*v1,q2*v1); |
|
|
|
|
|
Matrix3 rot1(q1); |
|
|
VERIFY_IS_APPROX(q1*v1,rot1*v1); |
|
|
Quaternionx q3(rot1.transpose()*rot1); |
|
|
VERIFY_IS_APPROX(q3*v1,v1); |
|
|
|
|
|
|
|
|
|
|
|
AngleAxisx aa = AngleAxisx(q1); |
|
|
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
|
|
|
|
|
|
|
|
|
|
|
if (abs(aa.angle()) > 5*test_precision<Scalar>() |
|
|
&& (aa.axis() - v1.normalized()).norm() < Scalar(1.99) |
|
|
&& (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) |
|
|
{ |
|
|
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); |
|
|
} |
|
|
|
|
|
|
|
|
VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); |
|
|
VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); |
|
|
VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); |
|
|
if (internal::is_same<Scalar,double>::value) |
|
|
{ |
|
|
v3 = (v1.array()+eps).matrix(); |
|
|
VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); |
|
|
VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); |
|
|
} |
|
|
|
|
|
|
|
|
VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); |
|
|
VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); |
|
|
VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); |
|
|
if (internal::is_same<Scalar,double>::value) |
|
|
{ |
|
|
v3 = (v1.array()+eps).matrix(); |
|
|
VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); |
|
|
VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); |
|
|
} |
|
|
|
|
|
|
|
|
VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); |
|
|
VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); |
|
|
|
|
|
|
|
|
Quaternion<float> q1f = q1.template cast<float>(); |
|
|
VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); |
|
|
Quaternion<double> q1d = q1.template cast<double>(); |
|
|
VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); |
|
|
|
|
|
|
|
|
Quaternionx *q = new Quaternionx; |
|
|
delete q; |
|
|
|
|
|
q1 = Quaternionx::UnitRandom(); |
|
|
q2 = Quaternionx::UnitRandom(); |
|
|
check_slerp(q1,q2); |
|
|
|
|
|
q1 = AngleAxisx(b, v1.normalized()); |
|
|
q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized()); |
|
|
check_slerp(q1,q2); |
|
|
|
|
|
q1 = AngleAxisx(b, v1.normalized()); |
|
|
q2 = AngleAxisx(-b, -v1.normalized()); |
|
|
check_slerp(q1,q2); |
|
|
|
|
|
q1 = Quaternionx::UnitRandom(); |
|
|
q2.coeffs() = -q1.coeffs(); |
|
|
check_slerp(q1,q2); |
|
|
} |
|
|
|
|
|
template<typename Scalar> void mapQuaternion(void){ |
|
|
typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; |
|
|
typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; |
|
|
typedef Map<Quaternion<Scalar> > MQuaternionUA; |
|
|
typedef Map<const Quaternion<Scalar> > MCQuaternionUA; |
|
|
typedef Quaternion<Scalar> Quaternionx; |
|
|
typedef Matrix<Scalar,3,1> Vector3; |
|
|
typedef AngleAxis<Scalar> AngleAxisx; |
|
|
|
|
|
Vector3 v0 = Vector3::Random(), |
|
|
v1 = Vector3::Random(); |
|
|
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
|
|
|
|
|
EIGEN_ALIGN_MAX Scalar array1[4]; |
|
|
EIGEN_ALIGN_MAX Scalar array2[4]; |
|
|
EIGEN_ALIGN_MAX Scalar array3[4+1]; |
|
|
Scalar* array3unaligned = array3+1; |
|
|
|
|
|
MQuaternionA mq1(array1); |
|
|
MCQuaternionA mcq1(array1); |
|
|
MQuaternionA mq2(array2); |
|
|
MQuaternionUA mq3(array3unaligned); |
|
|
MCQuaternionUA mcq3(array3unaligned); |
|
|
|
|
|
|
|
|
mq1 = AngleAxisx(a, v0.normalized()); |
|
|
mq2 = mq1; |
|
|
mq3 = mq1; |
|
|
|
|
|
Quaternionx q1 = mq1; |
|
|
Quaternionx q2 = mq2; |
|
|
Quaternionx q3 = mq3; |
|
|
Quaternionx q4 = MCQuaternionUA(array3unaligned); |
|
|
|
|
|
VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); |
|
|
VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); |
|
|
VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); |
|
|
#ifdef EIGEN_VECTORIZE |
|
|
if(internal::packet_traits<Scalar>::Vectorizable) |
|
|
VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); |
|
|
#endif |
|
|
|
|
|
VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); |
|
|
VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); |
|
|
|
|
|
VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); |
|
|
VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); |
|
|
|
|
|
VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); |
|
|
VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); |
|
|
|
|
|
VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); |
|
|
VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); |
|
|
|
|
|
VERIFY_IS_APPROX(mq1*mq2, q1*q2); |
|
|
VERIFY_IS_APPROX(mq3*mq2, q3*q2); |
|
|
VERIFY_IS_APPROX(mcq1*mq2, q1*q2); |
|
|
VERIFY_IS_APPROX(mcq3*mq2, q3*q2); |
|
|
|
|
|
|
|
|
VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum()); |
|
|
VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum()); |
|
|
mq3.w() = 1; |
|
|
const Quaternionx& cq3(q3); |
|
|
VERIFY( &cq3.x() == &q3.x() ); |
|
|
const MQuaternionUA& cmq3(mq3); |
|
|
VERIFY( &cmq3.x() == &mq3.x() ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
template<typename Scalar> void quaternionAlignment(void){ |
|
|
typedef Quaternion<Scalar,AutoAlign> QuaternionA; |
|
|
typedef Quaternion<Scalar,DontAlign> QuaternionUA; |
|
|
|
|
|
EIGEN_ALIGN_MAX Scalar array1[4]; |
|
|
EIGEN_ALIGN_MAX Scalar array2[4]; |
|
|
EIGEN_ALIGN_MAX Scalar array3[4+1]; |
|
|
Scalar* arrayunaligned = array3+1; |
|
|
|
|
|
QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; |
|
|
QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; |
|
|
QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; |
|
|
|
|
|
q1->coeffs().setRandom(); |
|
|
*q2 = *q1; |
|
|
*q3 = *q1; |
|
|
|
|
|
VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); |
|
|
VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); |
|
|
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 |
|
|
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) |
|
|
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); |
|
|
#endif |
|
|
} |
|
|
|
|
|
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; |
|
|
VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); |
|
|
VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); |
|
|
VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); |
|
|
VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); |
|
|
} |
|
|
|
|
|
void test_geo_quaternion() |
|
|
{ |
|
|
for(int i = 0; i < g_repeat; i++) { |
|
|
CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); |
|
|
CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); |
|
|
CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); |
|
|
CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); |
|
|
CALL_SUBTEST_3(( quaternion<float,DontAlign>() )); |
|
|
CALL_SUBTEST_4(( quaternion<double,DontAlign>() )); |
|
|
CALL_SUBTEST_5(( quaternionAlignment<float>() )); |
|
|
CALL_SUBTEST_6(( quaternionAlignment<double>() )); |
|
|
CALL_SUBTEST_1( mapQuaternion<float>() ); |
|
|
CALL_SUBTEST_2( mapQuaternion<double>() ); |
|
|
} |
|
|
} |
|
|
|