|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "main.h" |
|
|
#include <limits> |
|
|
#include <Eigen/Eigenvalues> |
|
|
|
|
|
template<typename MatrixType> void eigensolver(const MatrixType& m) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
Index rows = m.rows(); |
|
|
Index cols = m.cols(); |
|
|
|
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
|
|
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
|
|
|
|
|
MatrixType a = MatrixType::Random(rows,cols); |
|
|
MatrixType a1 = MatrixType::Random(rows,cols); |
|
|
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
|
|
|
|
|
EigenSolver<MatrixType> ei0(symmA); |
|
|
VERIFY_IS_EQUAL(ei0.info(), Success); |
|
|
VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); |
|
|
VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), |
|
|
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); |
|
|
|
|
|
EigenSolver<MatrixType> ei1(a); |
|
|
VERIFY_IS_EQUAL(ei1.info(), Success); |
|
|
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); |
|
|
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), |
|
|
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
|
|
VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose()); |
|
|
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); |
|
|
|
|
|
EigenSolver<MatrixType> ei2; |
|
|
ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); |
|
|
VERIFY_IS_EQUAL(ei2.info(), Success); |
|
|
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); |
|
|
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); |
|
|
if (rows > 2) { |
|
|
ei2.setMaxIterations(1).compute(a); |
|
|
VERIFY_IS_EQUAL(ei2.info(), NoConvergence); |
|
|
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); |
|
|
} |
|
|
|
|
|
EigenSolver<MatrixType> eiNoEivecs(a, false); |
|
|
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
|
|
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
|
|
VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); |
|
|
|
|
|
MatrixType id = MatrixType::Identity(rows, cols); |
|
|
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
|
|
|
|
|
if (rows > 2 && rows < 20) |
|
|
{ |
|
|
|
|
|
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
|
|
EigenSolver<MatrixType> eiNaN(a); |
|
|
VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
|
|
} |
|
|
|
|
|
|
|
|
{ |
|
|
EigenSolver<MatrixType> eig(a.adjoint() * a); |
|
|
eig.compute(a.adjoint() * a); |
|
|
} |
|
|
|
|
|
|
|
|
{ |
|
|
a.setZero(); |
|
|
EigenSolver<MatrixType> ei3(a); |
|
|
VERIFY_IS_EQUAL(ei3.info(), Success); |
|
|
VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); |
|
|
VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); |
|
|
} |
|
|
} |
|
|
|
|
|
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
|
|
{ |
|
|
EigenSolver<MatrixType> eig; |
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
|
|
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
|
|
VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); |
|
|
VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
|
|
|
|
|
MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
|
|
eig.compute(a, false); |
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
|
|
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
|
|
} |
|
|
|
|
|
void test_eigensolver_generic() |
|
|
{ |
|
|
int s = 0; |
|
|
for(int i = 0; i < g_repeat; i++) { |
|
|
CALL_SUBTEST_1( eigensolver(Matrix4f()) ); |
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
|
|
CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); |
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s) |
|
|
|
|
|
|
|
|
CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); |
|
|
CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); |
|
|
CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); |
|
|
CALL_SUBTEST_4( eigensolver(Matrix2d()) ); |
|
|
} |
|
|
|
|
|
CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); |
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
|
|
CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); |
|
|
CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); |
|
|
CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) ); |
|
|
|
|
|
|
|
|
CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s)); |
|
|
|
|
|
|
|
|
CALL_SUBTEST_2( |
|
|
{ |
|
|
MatrixXd A(1,1); |
|
|
A(0,0) = std::sqrt(-1.); |
|
|
Eigen::EigenSolver<MatrixXd> solver(A); |
|
|
VERIFY_IS_EQUAL(solver.info(), NumericalIssue); |
|
|
} |
|
|
); |
|
|
|
|
|
#ifdef EIGEN_TEST_PART_2 |
|
|
{ |
|
|
|
|
|
MatrixXd a(3,3); |
|
|
a << 0, 0, 1, |
|
|
1, 1, 1, |
|
|
1, 1e+200, 1; |
|
|
Eigen::EigenSolver<MatrixXd> eig(a); |
|
|
double scale = 1e-200; |
|
|
VERIFY_IS_APPROX(a * eig.pseudoEigenvectors()*scale, eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()*scale); |
|
|
VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()*scale); |
|
|
} |
|
|
{ |
|
|
|
|
|
MatrixXd a(2,2); |
|
|
a << 1, 1, |
|
|
-1, -1; |
|
|
Eigen::EigenSolver<MatrixXd> eig(a); |
|
|
VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.); |
|
|
VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm()+1., 1.); |
|
|
VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm()+1., 1.); |
|
|
VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.); |
|
|
VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.); |
|
|
} |
|
|
#endif |
|
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s) |
|
|
} |
|
|
|