|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) |
|
|
#undef _GLIBCXX_ATOMIC_BUILTINS |
|
|
#undef _GLIBCXX_USE_INT128 |
|
|
#endif |
|
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE |
|
|
#define EIGEN_TEST_NO_COMPLEX |
|
|
#define EIGEN_TEST_FUNC cuda_basic |
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
|
|
|
|
|
#include <math_constants.h> |
|
|
#include <cuda.h> |
|
|
#include "main.h" |
|
|
#include "cuda_common.h" |
|
|
|
|
|
|
|
|
#include <Eigen/Dense> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T> |
|
|
struct coeff_wise { |
|
|
EIGEN_DEVICE_FUNC |
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
|
|
{ |
|
|
using namespace Eigen; |
|
|
T x1(in+i); |
|
|
T x2(in+i+1); |
|
|
T x3(in+i+2); |
|
|
Map<T> res(out+i*T::MaxSizeAtCompileTime); |
|
|
|
|
|
res.array() += (in[0] * x1 + x2).array() * x3.array(); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename T> |
|
|
struct replicate { |
|
|
EIGEN_DEVICE_FUNC |
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
|
|
{ |
|
|
using namespace Eigen; |
|
|
T x1(in+i); |
|
|
int step = x1.size() * 4; |
|
|
int stride = 3 * step; |
|
|
|
|
|
typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; |
|
|
MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); |
|
|
MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); |
|
|
MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename T> |
|
|
struct redux { |
|
|
EIGEN_DEVICE_FUNC |
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
|
|
{ |
|
|
using namespace Eigen; |
|
|
int N = 10; |
|
|
T x1(in+i); |
|
|
out[i*N+0] = x1.minCoeff(); |
|
|
out[i*N+1] = x1.maxCoeff(); |
|
|
out[i*N+2] = x1.sum(); |
|
|
out[i*N+3] = x1.prod(); |
|
|
out[i*N+4] = x1.matrix().squaredNorm(); |
|
|
out[i*N+5] = x1.matrix().norm(); |
|
|
out[i*N+6] = x1.colwise().sum().maxCoeff(); |
|
|
out[i*N+7] = x1.rowwise().maxCoeff().sum(); |
|
|
out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename T1, typename T2> |
|
|
struct prod_test { |
|
|
EIGEN_DEVICE_FUNC |
|
|
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
|
|
{ |
|
|
using namespace Eigen; |
|
|
typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; |
|
|
T1 x1(in+i); |
|
|
T2 x2(in+i+1); |
|
|
Map<T3> res(out+i*T3::MaxSizeAtCompileTime); |
|
|
res += in[i] * x1 * x2; |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename T1, typename T2> |
|
|
struct diagonal { |
|
|
EIGEN_DEVICE_FUNC |
|
|
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
|
|
{ |
|
|
using namespace Eigen; |
|
|
T1 x1(in+i); |
|
|
Map<T2> res(out+i*T2::MaxSizeAtCompileTime); |
|
|
res += x1.diagonal(); |
|
|
} |
|
|
}; |
|
|
|
|
|
template<typename T> |
|
|
struct eigenvalues { |
|
|
EIGEN_DEVICE_FUNC |
|
|
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
|
|
{ |
|
|
using namespace Eigen; |
|
|
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
|
|
T M(in+i); |
|
|
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
|
|
T A = M*M.adjoint(); |
|
|
SelfAdjointEigenSolver<T> eig; |
|
|
eig.computeDirect(M); |
|
|
res = eig.eigenvalues(); |
|
|
} |
|
|
}; |
|
|
|
|
|
void test_cuda_basic() |
|
|
{ |
|
|
ei_test_init_cuda(); |
|
|
|
|
|
int nthreads = 100; |
|
|
Eigen::VectorXf in, out; |
|
|
|
|
|
#ifndef __CUDA_ARCH__ |
|
|
int data_size = nthreads * 512; |
|
|
in.setRandom(data_size); |
|
|
out.setRandom(data_size); |
|
|
#endif |
|
|
|
|
|
CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Vector3f>(), nthreads, in, out) ); |
|
|
CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Array44f>(), nthreads, in, out) ); |
|
|
|
|
|
CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array4f>(), nthreads, in, out) ); |
|
|
CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array33f>(), nthreads, in, out) ); |
|
|
|
|
|
CALL_SUBTEST( run_and_compare_to_cuda(redux<Array4f>(), nthreads, in, out) ); |
|
|
CALL_SUBTEST( run_and_compare_to_cuda(redux<Matrix3f>(), nthreads, in, out) ); |
|
|
|
|
|
CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); |
|
|
CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); |
|
|
|
|
|
CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); |
|
|
CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); |
|
|
|
|
|
CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) ); |
|
|
CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) ); |
|
|
|
|
|
} |
|
|
|